1
|
Lin CC, Hedwig B. The central organisation of courtship and rivalry behaviour in Gryllus bimaculatus (deGeer) as revealed by lesions of abdominal connectives. Behav Brain Res 2022; 434:114005. [PMID: 35882278 DOI: 10.1016/j.bbr.2022.114005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/27/2022] [Accepted: 07/11/2022] [Indexed: 11/30/2022]
Abstract
Behaviour is rooted in the organization and activity of an animal's nervous system. As male crickets use their front wings for sound production, the neural circuits underlying singing had been suggested to be housed in the thoracic ganglia. However, systematic lesion experiments of the CNS demonstrated that the abdominal nervous system is essential for their calling song behaviour. As male crickets also generate a courtship and rivalry song, we explored which parts of the abdominal central nervous system control the underlying motor patterns. A combination of systematic lesions to the abdominal nerve cord and video recording of courtship and rivalry behaviour revealed that most components of male courtship and rivalry behaviour were not affected by the lesions, except for the generation of courtship song, rivalry song, and the male's ability to copulate with the female. Any lesion to the abdominal nerve cord abolished copulations. Generation of courtship song initially failed when the connection to abdominal ganglion A6 was severed but in few males recovered after a week. For rivalry song production a central nerve cord extending to abdominal ganglion A4 was sufficient. These findings indicate that in the bispotted cricket the neural organization of courtship song is different from calling and rivalry song, while calling song and rivalry song might share a common network for generating the song patterns.
Collapse
Affiliation(s)
- Chu-Cheng Lin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, United Kingdom.
| |
Collapse
|
2
|
Zupanc GKH, Arikawa K, Helfrich-Förster C, Homberg U, Narins PM, Rössler W, Simmons AM, Warrant EJ. It's all about seeing and hearing: the Editors' and Readers' Choice Awards 2022. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:351-353. [PMID: 35107606 DOI: 10.1007/s00359-022-01541-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
This year marks the inauguration of the annual Editors' Choice Award and the Readers' Choice Award, each presented for outstanding original papers and review articles published in the Journal of Comparative Physiology A. The winners of the 2022 Editors' Choice Award were determined by vote of the Editorial Board for the most highly recommended papers published in Volume 207 in 2021. They are 'Visual discrimination and resolution in freshwater stingrays (Potamotrygon motoro)' by Daniel et al. (J Comp Physiol A 207, 43-58, 2021) in the Original Paper category; and 'Neurophysiology goes wild: from exploring sensory coding in sound proof rooms to natural environments' by Römer (J Comp Physiol A 207, 303-319, 2021) in the Review Article category. The 2022 Readers' Choice Award was based on access number of articles published in Volume 206 in 2020, to ensure at least 12-month online presence. It is given to Nicholas et al. for their original paper titled 'Visual motion sensitivity in descending neurons in the hoverfly' (J Comp Physiol A 206, 149-163, 2020); and to Schnaitmann et al. for their review article entitled 'Color vision in insects: insights from Drosophila' (J Comp Physiol A 206, 183-198, 2020).
Collapse
Affiliation(s)
| | - Kentaro Arikawa
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, 240-0115, Kanagawa, Japan
| | | | - Uwe Homberg
- Department of Biology, Philipps-University of Marburg, 35032, Marburg, Germany
| | - Peter M Narins
- Departments of Integrative Biology & Physiology, and Ecology & Evolutionary Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biocentre, University of Würzburg, 97074, Würzburg, Germany
| | - Andrea Megela Simmons
- Department of Cognitive, Linguistic and Psychological Sciences, Brown University, Providence, RI, 02912, USA
| | - Eric J Warrant
- Department of Biology, University of Lund, 22362, Lund, Sweden
| |
Collapse
|
3
|
Lin CC, Hedwig B. Wing movements underlying sound production in calling, rivalry, and courtship songs of the cricket Gryllus bimaculatus (DeGeer). JOURNAL OF INSECT PHYSIOLOGY 2021; 134:104299. [PMID: 34418404 DOI: 10.1016/j.jinsphys.2021.104299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
We recorded the wing movements and sound signals during the production of calling, rivalry, and courtship song in the bispotted field cricket Gryllus bimaculatus. Recordings confirm that salient sound pulses during calling and rivalry song are generated during the closing movements of the wings. Wing movements for calling and rivalry song start from an elevated wing position and are performed with a very similar opening-closing movement, indicating that both types of songs may be generated by the same neuronal network. Wing movements for courtship song start from a low wing position; rapid closing movements generate high-frequency ticks and low-amplitude wing oscillations lead to low-amplitude pulses, generated during the opening and closing movements with a carrier frequency corresponding to the calling song. The two types of wing movements underlying courtship song indicate a different motor control as compared to calling song and may represent an early evolutionary phenotype.
Collapse
Affiliation(s)
- Chu-Cheng Lin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom
| | - Berthold Hedwig
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, United Kingdom.
| |
Collapse
|