Wan C, Gorb S. Functional morphology and biomechanics of arthropods.
J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023;
209:215-218. [PMID:
36813948 PMCID:
PMC10006257 DOI:
10.1007/s00359-023-01621-1]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023]
Abstract
Representatives of arthropods, the largest animal phylum, occupy terrestrial, aquatic, arboreal, and subterranean niches. Their evolutionary success depends on specific morphological and biomechanical adaptations related to their materials and structures. Biologists and engineers have become increasingly interested in exploring these natural solutions to understand relationships between structures, materials, and their functions in living organisms. The aim of this special issue is to present the state-of-the-art research in this interdisciplinary field using modern methodology, such as imaging techniques, mechanical testing, movement capture, and numerical modeling. It contains nine original research reports covering diverse topics, including flight, locomotion, and attachment of the arthropods. The research achievements are essential not only to understand ecological adaptations, and evolutionary and behavioral traits, but also to drive prominent advances for engineering from exploitation of numerous biomimetic ideas.
Collapse