1
|
Gonulkirmaz-Cancalar O, Bloch G. Sex-Related Variation in Circadian Rhythms in the Bumble Bee Bombus terrestris. J Biol Rhythms 2024; 39:594-606. [PMID: 39370745 PMCID: PMC11613518 DOI: 10.1177/07487304241283863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Mating success depends on many factors, but first of all, a male and a female need to meet at the same place and time. The circadian clock is an endogenous system regulating activity and sex-related behaviors in animals. We studied bumble bees (Bombus terrestris) in which the influence of circadian rhythms on sexual behavior has been little explored. We characterized circadian rhythms in adult emergence and locomotor activity under different illumination regimes for males and gynes (unmated queens). We developed a method to monitor adult emergence from the pupal cocoon and found no circadian rhythms in this behavior for either males or gynes. These results are not consistent with the hypothesis that the circadian clock regulates emergence from the pupa in this species. Consistent with this premise, we found that both gynes and males do not show circadian rhythms in locomotor activity during the first 3 days after pupal emergence, but shortly after developed robust circadian rhythms that are readily shifted by a phase delay in illumination regime. We conclude that the bumble bees do not need strong rhythms in adult emergence and during early adult life in their protected and regulated nest environment, but do need strong activity rhythms for timing flights and mating-related behaviors. Next, we tested the hypothesis that the locomotor activity of males and gynes have a similar phase, which may improve mating success. We found that both males and gynes have strong endogenous circadian rhythms that are entrained by the illumination regime, but males show rhythms at an earlier age, their rhythms are stronger, and their phase is slightly advanced relative to that of gynes. An earlier phase may be advantageous to males competing to mate a receptive gyne. Our results are consistent with the hypothesis that sex-related variations in circadian rhythms is shaped by sexual selection.
Collapse
Affiliation(s)
- Ozlem Gonulkirmaz-Cancalar
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Federmann Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Helfrich-Förster C. The Never Given 2022 Pittendrigh/Aschoff Lecture: The Clock Network in the Brain-Insights From Insects. J Biol Rhythms 2024:7487304241290861. [PMID: 39529231 DOI: 10.1177/07487304241290861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
My journey into chronobiology began in 1977 with lectures and internships with Wolfgang Engelmann and Hans Erkert at the University of Tübingen in Germany. At that time, the only known animal clock gene was Period, and the location and organization of the master circadian clock in the brain was completely unknown for the model insect Drosophila melanogaster. I was thus privileged to witness and participate in the research that led us from discovering the first clock gene to identifying the clock network in the fly brain and the putative pathways linking it to behavior and physiology. This article highlights my role in these developments and also shows how the successful use of D. melanogaster for studies of circadian rhythms has contributed to the understanding of clock networks in other animals. I also report on my experiences in the German scientific system and hope that my story will be of interest to some of you.
Collapse
Affiliation(s)
- Charlotte Helfrich-Förster
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Vaze KM, Manoli G, Helfrich-Förster C. Drosophila ezoana uses morning and evening oscillators to adjust its rhythmic activity to different daylengths but only the morning oscillator to measure night length for photoperiodic responses. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:535-548. [PMID: 37329349 PMCID: PMC11226516 DOI: 10.1007/s00359-023-01646-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Animals living at high latitudes are exposed to prominent seasonal changes to which they need to adapt to survive. By applying Zeitgeber cycles of different periods and photoperiods we show here that high-latitude D. ezoana flies possess evening oscillators and highly damped morning oscillators that help them adapting their activity rhythms to long photoperiods. In addition, the damped morning oscillators are involved in timing diapause. The flies measure night length and use external coincidence for timing diapause. We discuss the clock protein TIMELESS (d-TIM) as the molecular correlate and the small ventrolateral clock neurons (s-LNvs) as the anatomical correlates of the components measuring night length.
Collapse
Affiliation(s)
- Koustubh M Vaze
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Giulia Manoli
- Neurobiology and Genetics, University of Würzburg, Biocentre, Theodor-Boveri-Institute, Am Hubland, 97074, Würzburg, Germany
| | - Charlotte Helfrich-Förster
- Neurobiology and Genetics, University of Würzburg, Biocentre, Theodor-Boveri-Institute, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
4
|
Colizzi FS, Martínez-Torres D, Helfrich-Förster C. The circadian and photoperiodic clock of the pea aphid. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:627-639. [PMID: 37482577 PMCID: PMC11226554 DOI: 10.1007/s00359-023-01660-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species that exhibits a remarkable annual life cycle, which is tightly coupled to the seasonal changes in day length. During spring and summer, characterised by longer days, aphid populations consist exclusively of viviparous females that reproduce parthenogenetically. When autumn comes and the days shorten, aphids switch their reproductive mode and generate males and oviparous sexual females, which mate and produce cold-resistant eggs that overwinter and survive the unfavourable season. While the photoperiodic responses have been well described, the nature of the timing mechanisms which underlie day length discrimination are still not completely understood. Experiments from the 1960's suggested that aphids rely on an 'hourglass' clock measuring the elapsed time during the dark night by accumulating a biochemical factor, which reaches a critical threshold at a certain night length and triggers the switch in reproduction mode. However, the photoperiodic responses of aphids can also be attributed to a strongly dampened circadian clock. Recent studies have uncovered the molecular components and the location of the circadian clock in the brain of the pea aphid and revealed that it is well connected to the neurohormonal system controlling aphid reproduction. We provide an overview of the putative mechanisms of photoperiodic control in aphids, from the photoreceptors involved in this process to the circadian clock and the neuroendocrine system.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- University of Würzburg, Neurobiology and Genetics, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - David Martínez-Torres
- Institut de Biologia Integrativa de Sistemes, Parc Cientific Universitat de València, C/ Catedrático José Beltrán nº 2, 46980, Paterna,, València, Spain
| | | |
Collapse
|
5
|
Helfrich-Förster C. Erwin Bünning and Wolfgang Engelmann: establishing the involvement of the circadian clock in photoperiodism. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:481-493. [PMID: 38805044 PMCID: PMC11226508 DOI: 10.1007/s00359-024-01704-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
In 1936, Erwin Bünning published his groundbreaking work that the endogenous clock is used to measure day length for initiating photoperiodic responses. His publication triggered years of controversial debate until it ultimately became the basic axiom of rhythm research and the theoretical pillar of chronobiology. Bünning's thesis is frequently quoted in the articles in this special issue on the subject of "A clock for all seasons". However, nowadays only few people know in detail about Bünning's experiments and almost nobody knows about the contribution of his former doctoral student, Wolfgang Engelmann, to his theory because most work on this topic is published in German. The aim of this review is to give an overview of the most important experiments at that time, including Wolfgang Engelmann's doctoral thesis, in which he demonstrated the importance of the circadian clock for photoperiodic flower induction in the Flaming Katy, Kalanchoë blossfeldiana, but not in the Red Morning Glory, Ipomoea coccinea.
Collapse
|
6
|
Wegener C, Amatobi KM, Ozbek-Unal AG, Fekete A. Circadian Control of Lipid Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874889 DOI: 10.1007/5584_2024_810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
To ensure optimum health and performance, lipid metabolism needs to be temporally aligned to other body processes and to daily changes in the environment. Central and peripheral circadian clocks and environmental signals such as light provide internal and external time cues to the body. Importantly, each of the key organs involved in insect lipid metabolism contains a molecular clockwork which ticks with a varying degree of autonomy from the central clock in the brain. In this chapter, we review our current knowledge about peripheral clocks in the insect fat body, gut and oenocytes, and light- and circadian-driven diel patterns in lipid metabolites and lipid-related transcripts. In addition, we highlight selected neuroendocrine signaling pathways that are or may be involved in the temporal coordination and control of lipid metabolism.
Collapse
Affiliation(s)
- Christian Wegener
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany.
| | - Kelechi M Amatobi
- Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Ayten Gizem Ozbek-Unal
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Helfrich-Förster C. Neuropeptidergic regulation of insect diapause by the circadian clock. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101198. [PMID: 38588944 DOI: 10.1016/j.cois.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024]
Abstract
Diapause is an endocrine-mediated strategy used by insects to survive seasons of adverse environmental conditions. Insects living in temperate zones are regularly exposed to such conditions in the form of winter. To survive winter, they must prepare for it long before it arrives. A reliable indicator of impending winter is the shortening of day length. To measure day length, insects need their circadian clock as internal time reference. In this article, I provide an overview of the current state of knowledge on the neuropeptides that link the clock to the diapause inducing hormonal brain centers.
Collapse
|
8
|
Aguida B, Babo J, Baouz S, Jourdan N, Procopio M, El-Esawi MA, Engle D, Mills S, Wenkel S, Huck A, Berg-Sørensen K, Kampranis SC, Link J, Ahmad M. 'Seeing' the electromagnetic spectrum: spotlight on the cryptochrome photocycle. FRONTIERS IN PLANT SCIENCE 2024; 15:1340304. [PMID: 38495372 PMCID: PMC10940379 DOI: 10.3389/fpls.2024.1340304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 03/19/2024]
Abstract
Cryptochromes are widely dispersed flavoprotein photoreceptors that regulate numerous developmental responses to light in plants, as well as to stress and entrainment of the circadian clock in animals and humans. All cryptochromes are closely related to an ancient family of light-absorbing flavoenzymes known as photolyases, which use light as an energy source for DNA repair but themselves have no light sensing role. Here we review the means by which plant cryptochromes acquired a light sensing function. This transition involved subtle changes within the flavin binding pocket which gave rise to a visual photocycle consisting of light-inducible and dark-reversible flavin redox state transitions. In this photocycle, light first triggers flavin reduction from an initial dark-adapted resting state (FADox). The reduced state is the biologically active or 'lit' state, correlating with biological activity. Subsequently, the photoreduced flavin reoxidises back to the dark adapted or 'resting' state. Because the rate of reoxidation determines the lifetime of the signaling state, it significantly modulates biological activity. As a consequence of this redox photocycle Crys respond to both the wavelength and the intensity of light, but are in addition regulated by factors such as temperature, oxygen concentration, and cellular metabolites that alter rates of flavin reoxidation even independently of light. Mechanistically, flavin reduction is correlated with conformational change in the protein, which is thought to mediate biological activity through interaction with biological signaling partners. In addition, a second, entirely independent signaling mechanism arises from the cryptochrome photocycle in the form of reactive oxygen species (ROS). These are synthesized during flavin reoxidation, are known mediators of biotic and abiotic stress responses, and have been linked to Cry biological activity in plants and animals. Additional special properties arising from the cryptochrome photocycle include responsivity to electromagnetic fields and their applications in optogenetics. Finally, innovations in methodology such as the use of Nitrogen Vacancy (NV) diamond centers to follow cryptochrome magnetic field sensitivity in vivo are discussed, as well as the potential for a whole new technology of 'magneto-genetics' for future applications in synthetic biology and medicine.
Collapse
Affiliation(s)
- Blanche Aguida
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Jonathan Babo
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Soria Baouz
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Nathalie Jourdan
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
| | - Maria Procopio
- Department of Biophysics, Faculty of Arts and Sciences, Johns Hopkins University, Baltimore, MD, United States
| | | | - Dorothy Engle
- Biology Department, Xavier University, Cincinnati, OH, United States
| | - Stephen Mills
- Chemistry Department, Xavier University, Cincinnati, OH, United States
| | - Stephan Wenkel
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alexander Huck
- DTU Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Sotirios C. Kampranis
- Biochemical Engineering Group, Plant Biochemistry Section, Department of Plant and Environment Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Justin Link
- Physics and Engineering Department, Cincinnati, OH, United States
| | - Margaret Ahmad
- Unite Mixed de Recherche (UMR) Centre Nationale de la Recherche Scientifique (CNRS) 8256 (B2A), Institut de Biologie Paris-Seine (IBPS), Sorbonne Université, Paris, France
- Biology Department, Xavier University, Cincinnati, OH, United States
| |
Collapse
|
9
|
Iiams SE, Wan G, Zhang J, Lugena AB, Zhang Y, Hayden AN, Merlin C. Loss of functional cryptochrome 1 reduces robustness of 24-hour behavioral rhythms in monarch butterflies. iScience 2024; 27:108980. [PMID: 38333697 PMCID: PMC10850777 DOI: 10.1016/j.isci.2024.108980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
Light is one of the strongest cues for entrainment of circadian clocks. While some insect species rely only on visual input, others like Drosophila melanogaster use both the visual system and the deep-brain blue-light photoreceptor cryptochrome for entraining circadian rhythms. Here, we used the monarch butterfly Danaus plexippus (dp), which possesses a light-sensitive cryptochrome 1 (dpCry1), to test the conservation of mechanisms of clock entrainment. We showed that loss of functional dpCry1 reduced the amplitude and altered the phase of adult eclosion rhythms, and disrupted brain molecular circadian rhythms. Robust rhythms could be restored by entrainment to temperature cycles, indicating a likely functional core circadian clock in dpCry1 mutants. We also showed that rhythmic flight activity was less robust in dpCry1 mutants, and that visual impairment in dpNinaB1 mutants impacted flight suppression at night. Our data suggest that dpCRY1 is a major photoreceptor for light-entrainment of the monarch circadian clock.
Collapse
Affiliation(s)
- Samantha E. Iiams
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| | - Guijun Wan
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiwei Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Aldrin B. Lugena
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Ying Zhang
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Ashley N. Hayden
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
| | - Christine Merlin
- Department of Biology and Center for Biological Clocks Research, Texas A&M University, College Station, TX 77843, USA
- Genetics Interdisciplinary Program, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
10
|
Cheatle Jarvela AM, Wexler JR. Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Dev Genes Evol 2023; 233:59-76. [PMID: 37982820 DOI: 10.1007/s00427-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, MD, USA.
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Judith R Wexler
- Department of Ecology, Evolution, and Behavior, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
11
|
Colizzi FS, Veenstra JA, Rezende GL, Helfrich-Förster C, Martínez-Torres D. Pigment-dispersing factor is present in circadian clock neurons of pea aphids and may mediate photoperiodic signalling to insulin-producing cells. Open Biol 2023; 13:230090. [PMID: 37369351 PMCID: PMC10299861 DOI: 10.1098/rsob.230090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The neuropeptide pigment-dispersing factor (PDF) plays a pivotal role in the circadian clock of most Ecdysozoa and is additionally involved in the timing of seasonal responses of several photoperiodic species. The pea aphid, Acyrthosiphon pisum, is a paradigmatic photoperiodic species with an annual life cycle tightly coupled to the seasonal changes in day length. Nevertheless, PDF could not be identified in A. pisum so far. In the present study, we identified a PDF-coding gene that has undergone significant changes in the otherwise highly conserved insect C-terminal amino acid sequence. A newly generated aphid-specific PDF antibody stained four neurons in each hemisphere of the aphid brain that co-express the clock protein Period and have projections to the pars lateralis that are highly plastic and change their appearance in a daily and seasonal manner, resembling those of the fruit fly PDF neurons. Most intriguingly, the PDF terminals overlap with dendrites of the insulin-like peptide (ILP) positive neurosecretory cells in the pars intercerebralis and with putative terminals of Cryptochrome (CRY) positive clock neurons. Since ILP has been previously shown to be crucial for seasonal adaptations and CRY might serve as a circadian photoreceptor vital for measuring day length, our results suggest that PDF plays a critical role in aphid seasonal timing.
Collapse
Affiliation(s)
- Francesca Sara Colizzi
- Neurobiology and Genetics, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Jan A. Veenstra
- Université de Bordeaux, INCIA CNRS UMR, 5287 Talence, France
| | - Gustavo L. Rezende
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| | | | - David Martínez-Torres
- Universitat de València, Institut de Biologia Integrativa de Sistemes, Parc Cientific, C/ Catedrático Agustín Escardino Benlloch no. 9, 46980 Paterna, València, Spain
| |
Collapse
|