1
|
Glaser NC, Langowski JKA. Stiff skin, soft core: soft backings enhance the conformability and friction of fibre-reinforced adhesives. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221263. [PMID: 36908990 PMCID: PMC9993060 DOI: 10.1098/rsos.221263] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Biomimetic adhesives with a stiff fibre-reinforced base layer generate strong attachment, even without bioinspired micropatterning of the contact surface. However, current fibre-reinforced adhesive designs are still less versatile with respect to substrate variability than their biological counterparts. In this study, we enhance the comformability of a fibre-reinforced adhesive on curved substrates by adding bioinspired soft backings. We designed and fabricated soft backing variations (polyurethane foams and silicone hydroskeletons) with varying compressive stiffnesses that mimic the soft viscoelastic structures in the adhesive appendages of tree frogs, geckos and other animals. The backings were mounted on a smooth silicone layer enforced with a polyester mesh, and we experimentally investigated the contact area and friction performance of these adhesives on a curved substrate. The results show that the contact area and friction created by a fibre-reinforced adhesive with a soft backing in contact with a non-flat substrate scale inversely with backing stiffness. The integration of stiff fibre-reinforcement with a compressible backing represents an important step in bringing bioinspired adhesives out of the laboratory and into the real world, for example in soft robotic grippers. Moreover, our findings stimulate further research into the role of soft tissues in biological adhesive systems.
Collapse
Affiliation(s)
- Niels C. Glaser
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University and Research, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
2
|
Pillai R, Nordberg E, Riedel J, Schwarzkopf L. Geckos cling best to, and prefer to use, rough surfaces. Front Zool 2020; 17:32. [PMID: 33088332 PMCID: PMC7566132 DOI: 10.1186/s12983-020-00374-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/03/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Fitness is strongly related to locomotor performance, which can determine success in foraging, mating, and other critical activities. Locomotor performance on different substrates is likely to require different abilities, so we expect alignment between species' locomotor performance and the habitats they use in nature. In addition, we expect behaviour to enhance performance, such that animals will use substrates on which they perform well. METHODS We examined the associations between habitat selection and performance in three species of Oedura geckos, including two specialists, (one arboreal, and one saxicolous), and one generalist species, which used both rocks and trees. First, we described their microhabitat use in nature (tree and rock type) for these species, examined the surface roughnesses they encountered, and selected materials with comparable surface microtopographies (roughness measured as peak-to-valley heights) to use as substrates in lab experiments quantifying behavioural substrate preferences and clinging performance. RESULTS The three Oedura species occupied different ecological niches and used different microhabitats in nature, and the two specialist species used a narrower range of surface roughnesses compared to the generalist. In the lab, Oedura geckos preferred substrates (coarse sandpaper) with roughness characteristics similar to substrates they use in nature. Further, all three species exhibited greater clinging performance on preferred (coarse sandpaper) substrates, although the generalist used fine substrates in nature and had good performance capabilities on fine substrates as well. CONCLUSION We found a relationship between habitat use and performance, such that geckos selected microhabitats on which their performance was high. In addition, our findings highlight the extensive variation in surface roughnesses that occur in nature, both among and within microhabitats.
Collapse
Affiliation(s)
- Rishab Pillai
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Eric Nordberg
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Jendrian Riedel
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| | - Lin Schwarzkopf
- College of Science and Engineering, James Cook University, Townsville, QLD 4810 Australia
| |
Collapse
|
3
|
Sandoval JA, Sommers J, Peddireddy KR, Robertson-Anderson RM, Tolley MT, Deheyn DD. Toward Bioinspired Wet Adhesives: Lessons from Assessing Surface Structures of the Suction Disc of Intertidal Clingfish. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45460-45475. [PMID: 32910638 DOI: 10.1021/acsami.0c10749] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The clingfish attaches to rough surfaces with considerable strength using an intricate suction disc, which displays complex surface geometries from structures called papillae. However, the exact role of these structures in adhesion is poorly understood. To investigate the relationship between papillae geometry and adhesive performance, we developed an image processing tool that analyzed the surface and structural complexity of papillae, which we then used to model hydrodynamic adhesion. Our tool allowed for the automated analysis of thousands of papillae in specimens across a range of body sizes. The results led us to identify spatial trends in papillae across the complex geometry of the suction disc and to establish fundamental structure-function relationships used in hydrodynamic adhesion. We found that the surface area of papillae changed within a suction disc and with fish size, but that the aspect ratios and channel width between papillae did not. Using a mathematical model, we found that the surface structures can adhere considerably when subjected to disturbances of moderate to high velocities. We concluded that a predominant role of the papillae is to leverage hydrodynamic adhesion and wet friction to reinforce the seal of the suction disc. Overall, the trends in papillae characteristics provided insights into bioinspired designs of surface microstructures for future applications in which adhesion is necessary to attach to diverse surfaces (in terrestrial or aquatic environments), even when subjected to disturbance forces of randomized directionality.
Collapse
Affiliation(s)
- Jessica A Sandoval
- Materials Science and Engineering Program, Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jade Sommers
- Department of Mechanical Engineering, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, United States
| | - Karthik R Peddireddy
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, University of San Diego, 5998 Alcala Park, San Diego, California 92110, United States
| | - Michael T Tolley
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Bauer U, Poppinga S, Müller UK. Mechanical Ecology-Taking Biomechanics to the Field. Integr Comp Biol 2020; 60:820-828. [PMID: 32275745 DOI: 10.1093/icb/icaa018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Synopsis Interdisciplinary research can have strong and surprising synergistic effects, leading to rapid knowledge gains. Equally important, it can help to reintegrate fragmented fields across increasingly isolated specialist sub-disciplines. However, the lack of a common identifier for research "in between fields" can make it difficult to find relevant research outputs and network effectively. We illustrate and address this issue for the emerging interdisciplinary hotspot of "mechanical ecology," which we define here as the intersection of quantitative biomechanics and field ecology at the organism level. We show that an integrative approach crucially advances our understanding in both disciplines by (1) putting biomechanical mechanisms into a biologically meaningful ecological context and (2) addressing the largely neglected influence of mechanical factors in organismal and behavioral ecology. We call for the foundation of knowledge exchange platforms such as meeting symposia, special issues in journals, and focus groups dedicated to mechanical ecology.
Collapse
Affiliation(s)
- Ulrike Bauer
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Simon Poppinga
- Plant Biomechanics Group, Botanic Garden, University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Materials Research Center (FMF), University of Freiburg, Freiburg im Breisgau, Germany
| | - Ulrike K Müller
- Department of Biology, California State University Fresno, Fresno, CA, USA
| |
Collapse
|
5
|
Federle W, Labonte D. Dynamic biological adhesion: mechanisms for controlling attachment during locomotion. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190199. [PMID: 31495309 PMCID: PMC6745483 DOI: 10.1098/rstb.2019.0199] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2019] [Indexed: 01/12/2023] Open
Abstract
The rapid control of surface attachment is a key feature of natural adhesive systems used for locomotion, and a property highly desirable for man-made adhesives. Here, we describe the challenges of adhesion control and the timescales involved across diverse biological attachment systems and different adhesive mechanisms. The most widespread control principle for dynamic surface attachment in climbing animals is that adhesion is 'shear-sensitive' (directional): pulling adhesive pads towards the body results in strong attachment, whereas pushing them away from it leads to easy detachment, providing a rapid mechanical 'switch'. Shear-sensitivity is based on changes of contact area and adhesive strength, which in turn arise from non-adhesive default positions, the mechanics of peeling, pad sliding, and the targeted storage and controlled release of elastic strain energy. The control of adhesion via shear forces is deeply integrated with the climbing animals' anatomy and locomotion, and involves both active neuromuscular control, and rapid passive responses of sophisticated mechanical systems. The resulting dynamic adhesive systems are robust, reliable, versatile and nevertheless remarkably simple. This article is part of the theme issue 'Transdisciplinary approaches to the study of adhesion and adhesives in biological systems'.
Collapse
Affiliation(s)
- Walter Federle
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - David Labonte
- Department of Bioengineering, Imperial College, London, UK
| |
Collapse
|
6
|
Russell AP, Stark AY, Higham TE. The Integrative Biology of Gecko Adhesion: Historical Review, Current Understanding, and Grand Challenges. Integr Comp Biol 2019; 59:101-116. [DOI: 10.1093/icb/icz032] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
Geckos are remarkable in their ability to reversibly adhere to smooth vertical, and even inverted surfaces. However, unraveling the precise mechanisms by which geckos do this has been a long process, involving various approaches over the last two centuries. Our understanding of the principles by which gecko adhesion operates has advanced rapidly over the past 20 years and, with this knowledge, material scientists have attempted to mimic the system to create artificial adhesives. From a biological perspective, recent studies have examined the diversity in morphology, performance, and real-world use of the adhesive apparatus. However, the lack of multidisciplinarity is likely a key roadblock to gaining new insights. Our goals in this paper are to 1) present a historical review of gecko adhesion research, 2) discuss the mechanisms and morphology of the adhesive apparatus, 3) discuss the origin and performance of the system in real-world contexts, 4) discuss advancement in bio-inspired design, and 5) present grand challenges in gecko adhesion research. To continue to improve our understanding, and to more effectively employ the principles of gecko adhesion for human applications, greater intensity and scope of interdisciplinary research are necessary.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Alyssa Y Stark
- Department of Biology, Villanova University, Villanova, PA 19085, USA
| | - Timothy E Higham
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Bauer AM. Gecko Adhesion in Space and Time: A Phylogenetic Perspective on the Scansorial Success Story. Integr Comp Biol 2019; 59:117-130. [DOI: 10.1093/icb/icz020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Abstract
An evolutionary perspective on gecko adhesion was previously hampered by a lack of an explicit phylogeny for the group and of robust comparative methods to study trait evolution, an underappreciation for the taxonomic and structural diversity of geckos, and a dearth of fossil evidence bearing directly on the origin of the scansorial apparatus. With a multigene dataset as the basis for a comprehensive gekkotan phylogeny, model-based methods have recently been employed to estimate the number of unique derivations of the adhesive system and its role in lineage diversification. Evidence points to a single basal origin of the spinulate oberhautchen layer of the epidermis, which is a necessary precursor for the subsequent elaboration of a functional adhesive mechanism in geckos. However, multiple gains and losses are implicated for the elaborated setae that are necessary for adhesion via van der Waals forces. The well-supported phylogeny of gekkotans has demonstrated that convergence and parallelism in digital design are even more prevalent than previously believed. It also permits the reexamination of previously collected morphological data in an explicitly evolutionary context. Both time-calibrated trees and recently discovered amber fossils that preserve gecko toepads suggest that a fully-functional adhesive apparatus was not only present, but also represented by diverse architectures, by the mid-Cretaceous. Further characterization and phylogenetically-informed analyses of the other components of the adhesive system (muscles, tendons, blood sinuses, etc.) will permit a more comprehensive reconstruction of the evolutionary pathway(s) by which geckos have achieved their structural and taxonomic diversity. A phylogenetic perspective can meaningfully inform functional and performance studies of gecko adhesion and locomotion and can contribute to advances in bioinspired materials.
Collapse
Affiliation(s)
- A M Bauer
- Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA
| |
Collapse
|
8
|
Russell AP, Gamble T. Evolution of the Gekkotan Adhesive System: Does Digit Anatomy Point to One or More Origins? Integr Comp Biol 2019; 59:131-147. [DOI: 10.1093/icb/icz006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Recently-developed, molecularly-based phylogenies of geckos have provided the basis for reassessing the number of times adhesive toe-pads have arisen within the Gekkota. At present both a single origin and multiple origin hypotheses prevail, each of which has consequences that relate to explanations about digit form and evolutionary transitions underlying the enormous variation in adhesive toe pad structure among extant, limbed geckos (pygopods lack pertinent features). These competing hypotheses result from mapping the distribution of toe pads onto a phylogenetic framework employing the simple binary expedient of whether such toe pads are present or absent. It is evident, however, that adhesive toe pads are functional complexes that consist of a suite of integrated structural components that interact to bring about adhesive contact with the substratum and release from it. We evaluated the competing hypotheses about toe pad origins using 34 features associated with digit structure (drawn from the overall form of the digits; the presence and form of adhesive scansors; the proportions and structure of the phalanges; aspects of digital muscular and tendon morphology; presence and form of paraphalangeal elements; and the presence and form of substrate compliance-enhancing structures). We mapped these onto a well-supported phylogeny to reconstruct their evolution. Nineteen of these characters proved to be informative for all extant, limbed geckos, allowing us to assess which of them exhibit co-occurrence and/or clade-specificity. We found the absence of adhesive toe pads to be the ancestral state for the extant Gekkota as a whole, and our data to be consistent with independent origins of adhesive toe pads in the Diplodactylidae, Sphaerodactylidae, Phyllodactylidae, and Gekkonidae, with a strong likelihood of multiple origins in the latter three families. These findings are consistent with recently-published evidence of the presence of adhesively-competent digits in geckos generally regarded as lacking toe pads. Based upon morphology we identify other taxa at various locations within the gekkotan tree that are promising candidates for the expression of the early phases of adhesively-assisted locomotion. Investigation of functionally transitional forms will be valuable for enhancing our understanding of what is necessary and sufficient for the transition to adhesively-assisted locomotion, and for those whose objectives are to develop simulacra of the gekkotan adhesive system for biotechnological applications.
Collapse
Affiliation(s)
- Anthony P Russell
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53201, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN 55113, USA
- Milwaukee Public Museum, Milwaukee, WI 53233, USA
| |
Collapse
|
9
|
Goetzke HH, Pattrick JG, Federle W. Froghoppers jump from smooth plant surfaces by piercing them with sharp spines. Proc Natl Acad Sci U S A 2019; 116:3012-3017. [PMID: 30718417 PMCID: PMC6386693 DOI: 10.1073/pnas.1814183116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attachment mechanisms used by climbing animals facilitate their interactions with complex 3D environments and have inspired novel types of synthetic adhesives. Here we investigate one of the most dynamic forms of attachment, used by jumping insects living on plants. Froghopper insects can perform explosive jumps with some of the highest accelerations known among animals. As many plant surfaces are smooth, we studied whether Philaenus spumarius froghoppers are able to take off from such substrates. When attempting to jump from smooth glass, the insects' hind legs slipped, resulting in weak, uncontrolled jumps with a rapid forward spin. By contrast, on smooth ivy leaves and smooth epoxy surfaces, Philaenus froghoppers performed strong jumps without any slipping. We discovered that the insects produced traction during the acceleration phase by piercing these substrates with sharp spines of their tibia and tarsus. High-speed microscopy recordings of hind legs during the acceleration phase of jumps revealed that the spine tips indented and plastically deformed the substrate. On ivy leaves, the spines of jumping froghoppers perforated the cuticle and epidermal cell walls, and wounds could be visualized after the jumps by methylene blue staining and scanning electron microscopy. Improving attachment performance by indenting or piercing plant surfaces with sharp spines may represent a widespread but previously unrecognized strategy utilized by plant-living insects. This attachment mechanism may also provide inspiration for the design of robotic grippers.
Collapse
Affiliation(s)
- Hanns Hagen Goetzke
- Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom
| | - Jonathan G Pattrick
- Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom
- Department of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, United Kingdom
| | - Walter Federle
- Department of Zoology, University of Cambridge, CB2 3EJ Cambridge, United Kingdom;
| |
Collapse
|
10
|
Langowski JKA, Rummenie A, Pieters RPM, Kovalev A, Gorb SN, van Leeuwen JL. Estimating the maximum attachment performance of tree frogs on rough substrates. BIOINSPIRATION & BIOMIMETICS 2019; 14:025001. [PMID: 30706849 DOI: 10.1088/1748-3190/aafc37] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Tree frogs can attach to smooth and rough substrates using their adhesive toe pads. We present the results of an experimental investigation of tree frog attachment to rough substrates, and of the role of mechanical interlocking between superficial toe pad structures and substrate asperities in the tree frog species Litoria caerulea and Hyla cinerea. Using a rotation platform setup, we quantified the adhesive and frictional attachment performance of whole frogs clinging to smooth, micro-, and macrorough substrates. The transparent substrates enabled quantification of the instantaneous contact area during detachment by using frustrated total internal reflection. A linear mixed-effects model shows that the adhesive performance of the pads does not differ significantly with roughness (for nominal roughness levels of 0-15 µm) in both species. This indicates that mechanical interlocking does not contribute to the attachment of whole animals. Our results show that the adhesion performance of tree frogs is higher than reported previously, emphasising the biomimetic potential of tree frog attachment. Overall, our findings contribute to a better understanding of the complex interplay of attachment mechanisms in the toe pads of tree frogs, which may promote future designs of tree-frog-inspired adhesives.
Collapse
Affiliation(s)
- Julian K A Langowski
- Experimental Zoology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
11
|
Langowski JKA, Dodou D, Kamperman M, van Leeuwen JL. Tree frog attachment: mechanisms, challenges, and perspectives. Front Zool 2018; 15:32. [PMID: 30154908 PMCID: PMC6107968 DOI: 10.1186/s12983-018-0273-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 06/29/2018] [Indexed: 11/16/2022] Open
Abstract
Tree frogs have the remarkable ability to attach to smooth, rough, dry, and wet surfaces using their versatile toe pads. Tree frog attachment involves the secretion of mucus into the pad-substrate gap, requiring adaptations towards mucus drainage and pad lubrication. Here, we present an overview of tree frog attachment, with focus on (i) the morphology and material of the toe pad; (ii) the functional demands on the toe pad arising from ecology, lifestyle, and phylogenetics; (iii) experimental data of attachment performance such as adhesion and friction forces; and (iv) potential perspectives on future developments in the field. By revisiting reported data and observations, we discuss the involved mechanisms of attachment and propose new hypotheses for further research. Among others, we address the following questions: Do capillary and hydrodynamic forces explain the strong friction of the toe pads directly, or indirectly by promoting dry attachment mechanisms? If friction primarily relies on van der Waals (vdW) forces instead, how much do these forces contribute to adhesion in the wet environment tree frogs live in and what role does the mucus play? We show that both pad morphology and measured attachment performance suggest the coaction of several attachment mechanisms (e.g. capillary and hydrodynamic adhesion, mechanical interlocking, and vdW forces) with situation-dependent relative importance. Current analytical models of capillary and hydrodynamic adhesion, caused by the secreted mucus and by environmental liquids, do not capture the contributions of these mechanisms in a comprehensive and accurate way. We argue that the soft pad material and a hierarchical surface pattern on the ventral pad surface enhance the effective contact area and facilitate gap-closure by macro- to nanoscopic drainage of interstitial liquids, which may give rise to a significant contribution of vdW interactions to tree frog attachment. Increasing the comprehension of the complex mechanism of tree frog attachment contributes to a better understanding of other biological attachment systems (e.g. in geckos and insects) and is expected to stimulate the development of a wide array of bioinspired adhesive applications.
Collapse
Affiliation(s)
- Julian K. A. Langowski
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| | - Dimitra Dodou
- Department of BioMechanical Engineering, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD The Netherlands
| | - Marleen Kamperman
- Physical Chemistry and Soft Matter, Department of Agrotechnology and Food Sciences, Wageningen University & Research, Stippeneng 4, Wageningen, 6708 WE The Netherlands
| | - Johan L. van Leeuwen
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, Wageningen, 6708 WD The Netherlands
| |
Collapse
|
12
|
Stark AY, Arstingstall K, Yanoviak SP. Adhesive performance of tropical arboreal ants varies with substrate temperature. ACTA ACUST UNITED AC 2018; 221:jeb.171843. [PMID: 29146768 DOI: 10.1242/jeb.171843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022]
Abstract
The surface temperature of tree branches in the tropical rainforest canopy can reach up to 55°C. Ants and other small cursorial organisms must maintain adequate attachment in this extreme microenvironment to forage effectively and avoid falling. Ant adhesion depends on liquid secretions that should become less viscous at high temperatures, causing ants to slip. However, tropical arboreal ants have high thermal tolerance and actively forage on hot canopy surfaces, suggesting that these ants can maintain adhesion on hot substrates. We measured tarsal pad shear adhesion of 580 workers (representing 11 species and four subfamilies) of tropical arboreal ants at temperatures spanning the range observed in the field (23-55°C). Adhesive performance among species showed three general trends: (1) a linear decrease with increasing temperature, (2) a non-linear relationship with peak adhesive performance at ca. 30-40°C, and (3) no relationship with temperature. The mechanism responsible for these large interspecific differences remains to be determined, but likely reflects variation in the composition of the secreted adhesive fluid. Understanding such differences will reveal the diverse ways that ants cope with highly variable, and often unpredictable, thermal conditions in the forest canopy.
Collapse
Affiliation(s)
- Alyssa Y Stark
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Katherine Arstingstall
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA
| | - Stephen P Yanoviak
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY 40292, USA.,Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
13
|
Korde JM, Kandasubramanian B. Biocompatible alkyl cyanoacrylates and their derivatives as bio-adhesives. Biomater Sci 2018; 6:1691-1711. [DOI: 10.1039/c8bm00312b] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyanoacrylate adhesives and their homologues have elicited interest over the past few decades owing to their applications in the biomedical sector, extending from tissue adhesives to scaffolds to implants to dental material and adhesives, because of their inherent biocompatibility and ability to polymerize solely with moisture, thanks to which they adhere to any substrate containing moisture such as the skin.
Collapse
Affiliation(s)
- Jay M. Korde
- Biocomposite Fabrication Lab
- Department of Metallurgical and Materials Engineering
- DIAT (DU)
- Ministry of Defence
- Pune-411025
| | | |
Collapse
|
14
|
Pashazanusi L, Lwoya B, Oak S, Khosla T, Albert JNL, Tian Y, Bansal G, Kumar N, Pesika NS. Enhanced Adhesion of Mosquitoes to Rough Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24373-24380. [PMID: 28654231 DOI: 10.1021/acsami.7b06659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Insects and small animals capable of adhering reversibly to a variety of surfaces employ the unique design of the distal part of their legs. In the case of mosquitoes, their feet are composed of thousands of micro- and nanoscale protruding structures, which impart superhydrophobic properties. Previous research has shown that the superhydrophobic nature of the feet allows mosquitoes to land on water, which is necessary for their reproduction cycle. Here, we show that van der Waals interactions are the main adhesion mechanism employed by mosquitoes to adhere to various surfaces. We further demonstrate that the judicious creation of surface roughness on an opposing surface can increase the adhesion strength because of the increased number of surface elements interacting with the setae through multiple contact points. Although van der Waals forces are shown to be the predominant mechanism by which mosquitoes adhere to surfaces, capillary forces can also contribute to the total adhesion force when the opposing surface is hydrophilic and under humid conditions. These fundamental properties can potentially be applied in the development of superior Long Lasting Insecticidal Nets (LLINs), which represent one of the most effective methods to mitigate mosquito-transmitted infectious diseases such as Malaria, Filaria, Zika, and Dengue.
Collapse
Affiliation(s)
- Leila Pashazanusi
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
- Vector-Borne Infectious Disease Research Center, Tulane University , New Orleans, Louisiana 70112, United States
| | - Baraka Lwoya
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Shreyas Oak
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Tushar Khosla
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
| | - Julie N L Albert
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
- Vector-Borne Infectious Disease Research Center, Tulane University , New Orleans, Louisiana 70112, United States
| | - Yu Tian
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, People's Republic of China
| | - Geetha Bansal
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine , New Orleans, Louisiana 70112, United States
- Vector-Borne Infectious Disease Research Center, Tulane University , New Orleans, Louisiana 70112, United States
| | - Nirbhay Kumar
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine , New Orleans, Louisiana 70112, United States
- Vector-Borne Infectious Disease Research Center, Tulane University , New Orleans, Louisiana 70112, United States
| | - Noshir S Pesika
- Department of Chemical and Biomolecular Engineering, Tulane University , New Orleans, Louisiana 70118, United States
- Vector-Borne Infectious Disease Research Center, Tulane University , New Orleans, Louisiana 70112, United States
| |
Collapse
|
15
|
Sahay R, Low HY, Baji A, Foong S, Wood KL. A state-of-the-art review and analysis on the design of dry adhesion materials for applications such as climbing micro-robots. RSC Adv 2015. [DOI: 10.1039/c5ra06770g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article highlights the design considerations for the development of robust and durable bio-inspired synthetic adhesives.
Collapse
Affiliation(s)
- Rahul Sahay
- Engineering Product Development (EPD) Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Hong Yee Low
- Engineering Product Development (EPD) Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Avinash Baji
- Engineering Product Development (EPD) Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Shaohui Foong
- Engineering Product Development (EPD) Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| | - Kristin L. Wood
- Engineering Product Development (EPD) Pillar
- Singapore University of Technology and Design (SUTD)
- Singapore 487372
- Singapore
| |
Collapse
|
16
|
Labonte D, Williams JA, Federle W. Surface contact and design of fibrillar 'friction pads' in stick insects (Carausius morosus): mechanisms for large friction coefficients and negligible adhesion. J R Soc Interface 2014; 11:20140034. [PMID: 24554580 PMCID: PMC3973371 DOI: 10.1098/rsif.2014.0034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many stick insects and mantophasmids possess tarsal ‘heel pads’ (euplantulae) covered by arrays of conical, micrometre-sized hairs (acanthae). These pads are used mainly under compression; they respond to load with increasing shear resistance, and show negligible adhesion. Reflected-light microscopy in stick insects (Carausius morosus) revealed that the contact area of ‘heel pads’ changes with normal load on three hierarchical levels. First, loading brought larger areas of the convex pads into contact. Second, loading increased the density of acanthae in contact. Third, higher loads changed the shape of individual hair contacts gradually from circular (tip contact) to elongated (side contact). The resulting increase in real contact area can explain the load dependence of friction, indicating a constant shear stress between acanthae and substrate. As the euplantula contact area is negligible for small loads (similar to hard materials), but increases sharply with load (resembling soft materials), these pads show high friction coefficients despite little adhesion. This property appears essential for the pads’ use in locomotion. Several morphological characteristics of hairy friction pads are in apparent contrast to hairy pads used for adhesion, highlighting key adaptations for both pad types. Our results are relevant for the design of fibrillar structures with high friction coefficients but small adhesion.
Collapse
Affiliation(s)
- David Labonte
- Department of Zoology, University of Cambridge, , Cambridge CB2 1TN, UK
| | | | | |
Collapse
|
17
|
|
18
|
Martinelli A, Carru GA, D'Ilario L, Caprioli F, Chiaretti M, Crisante F, Francolini I, Piozzi A. Wet adhesion of buckypaper produced from oxidized multiwalled carbon nanotubes on soft animal tissue. ACS APPLIED MATERIALS & INTERFACES 2013; 5:4340-4349. [PMID: 23635074 DOI: 10.1021/am400543s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Buckypaper (BP) is the general definition of a macroscopic assembly of entangled carbon nanotubes. In this paper, a new property of a BP film produced from oxidized multiwalled carbon nanotubes was investigated. In particular, BP shows to be able to promptly and strongly adhere to animal internal soft and wet tissues, as evaluated by peeling and shear tests. BP adhesion strength is higher than that recorded for a commercial prosthetic fabric (sealed to the tissue by fibrin glue) and comparable with that of other reported optimized nanopatterned surfaces. In order to give an interpretation of the observed behavior, the BP composition, morphology, porosity, water wettability, and mechanical properties were analyzed by AFM, X-ray photoelectron spectroscopy, wicking tests, contact angle, and stress-strain measurements. Although further investigations are needed to assess the biocompatibility and safety of the BP film used in this work, the obtained results pave the way for a possible future use of buckypaper as adhesive tape in abdominal prosthetic surgery. This would allow the substitution of conventional sealants or the reduction in the use of perforating fixation.
Collapse
|
19
|
Gilman CA, Irschick DJ. Foils of flexion: the effects of perch compliance on lizard locomotion and perch choice in the wild. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12063] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Casey A. Gilman
- Graduate Program in Organismic and Evolutionary Biology University of Massachusetts Amherst Amherst Massachusetts USA
| | - Duncan J. Irschick
- Graduate Program in Organismic and Evolutionary Biology University of Massachusetts Amherst Amherst Massachusetts USA
- Department of Biology University of Massachusetts at Amherst Amherst Massachusetts USA
| |
Collapse
|
20
|
Crawford N, Endlein T, Barnes WJP. Self-cleaning in tree frog toe pads; a mechanism for recovering from contamination without the need for grooming. ACTA ACUST UNITED AC 2013; 215:3965-72. [PMID: 23100487 DOI: 10.1242/jeb.073809] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tree frogs use adhesive toe pads for climbing on a variety of surfaces. They rely on wet adhesion, which is aided by the secretion of mucus. In nature, the pads will undoubtedly get contaminated regularly through usage, but appear to maintain their stickiness over time. Here, we show in two experiments that the toe pads of White's tree frogs (Litoria caerulea) quickly recover from contamination through a self-cleaning mechanism. We compared adhesive forces prior to and after contamination of (1) the whole animal on a rotatable platform and (2) individual toe pads in restrained frogs mimicking individual steps using a motorised stage. In both cases, the adhesive forces recovered after a few steps but this took significantly longer in single toe pad experiments from restrained frogs, showing that use of the pads increases recovery. We propose that both shear movements and a 'flushing' effect of the secreted mucus play an important role in shedding particles/contaminants.
Collapse
Affiliation(s)
- Niall Crawford
- Centre for Cell Engineering, Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
21
|
Gillies AG, Lin H, Henry A, Ren A, Shiuan K, Fearing RS, Full RJ. Gecko toe and lamellar shear adhesion on macroscopic, engineered rough surfaces. J Exp Biol 2013; 217:283-9. [DOI: 10.1242/jeb.092015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The role in adhesion of the toes and lamellae - intermediate sized structures - found on the gecko foot remains unclear. Insight into the function of these structures can lead to a more general understanding of the hierarchical nature of the gecko adhesive system, but in particular how environmental topology may relate to gecko foot morphology. We sought to discern the mechanics of the toes and lamellae by examining gecko adhesion on controlled, macroscopically rough surfaces. We used live Tokay geckos, Gekko gecko, to observe the maximum shear force a gecko foot can attain on an engineered substrate constructed with sinusoidal patterns of varying amplitudes and wavelengths in sizes similar to the dimensions of the toes and lamellae structures (0.5 to 6 mm). We found shear adhesion was significantly decreased on surfaces that had amplitudes and wavelengths approaching the lamella length and inter-lamella spacing, losing 95% of shear adhesion over the range tested. We discovered that the toes are capable of adhering to surfaces with amplitudes much larger than their dimensions even without engaging claws, maintaining 60% of shear adhesion on surfaces with amplitudes of 3 mm. Gecko adhesion can be predicted by the ratio of the lamella dimensions to surface feature dimensions. In addition to setae, remarkable macroscopic-scale features of gecko toes and lamellae that include compliance and passive conformation are necessary to maintain contact, and consequently, generate shear adhesion on macroscopically rough surfaces. Findings on the larger scale structures in the hierarchy of gecko foot function could provide the biological inspiration to drive the design of more effective and versatile synthetic fibrillar adhesives.
Collapse
Affiliation(s)
| | | | - Amy Henry
- University of California, Berkeley, USA
| | | | | | | | | |
Collapse
|
22
|
Peattie AM, Dirks JH, Henriques S, Federle W. Arachnids secrete a fluid over their adhesive pads. PLoS One 2011; 6:e20485. [PMID: 21637774 PMCID: PMC3102731 DOI: 10.1371/journal.pone.0020485] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 04/26/2011] [Indexed: 11/18/2022] Open
Abstract
Background Many arachnids possess adhesive pads on their feet that help them climb smooth surfaces and capture prey. Spider and gecko adhesives have converged on a branched, hairy structure, which theoretically allows them to adhere solely by dry (solid-solid) intermolecular interactions. Indeed, the consensus in the literature is that spiders and their smooth-padded relatives, the solifugids, adhere without the aid of a secretion. Methodology and Principal Findings We investigated the adhesive contact zone of living spiders, solifugids and mites using interference reflection microscopy, which allows the detection of thin liquid films. Like insects, all the arachnids we studied left behind hydrophobic fluid footprints on glass (mean refractive index: 1.48–1.50; contact angle: 3.7–11.2°). Fluid was not always secreted continuously, suggesting that pads can function in both wet and dry modes. We measured the attachment forces of single adhesive setae from tarantulas (Grammostola rosea) by attaching them to a bending beam with a known spring constant and filming the resulting deflection. Individual spider setae showed a lower static friction at rest (26%±2.8 SE of the peak friction) than single gecko setae (Thecadactylus rapicauda; 96%±1.7 SE). This may be explained by the fact that spider setae continued to release fluid after isolation from the animal, lubricating the contact zone. Significance This finding implies that tarsal secretions occur within all major groups of terrestrial arthropods with adhesive pads. The presence of liquid in an adhesive contact zone has important consequences for attachment performance, improving adhesion to rough surfaces and introducing rate-dependent effects. Our results leave geckos and anoles as the only known representatives of truly dry adhesive pads in nature. Engineers seeking biological inspiration for synthetic adhesives should consider whether model species with fluid secretions are appropriate to their design goals.
Collapse
Affiliation(s)
- Anne M Peattie
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Yucel T, Kojic N, Leisk GG, Lo TJ, Kaplan DL. Non-equilibrium silk fibroin adhesives. J Struct Biol 2009; 170:406-12. [PMID: 20026216 DOI: 10.1016/j.jsb.2009.12.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 12/12/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
Abstract
Regenerated silkworm silk solutions formed metastable, soft-solid-like materials (e-gels) under weak electric fields, displaying interesting mechanical characteristics such as dynamic adhesion and strain stiffening. Raman spectroscopy, in situ electric field dynamic oscillatory rheology and polarized optical microscopy indicated that silk fibroin electrogelation involved intermolecular self-assembly of silk molecules into amorphous, micron-scale, micellar structures and the formation of relatively long lifetime, intermicellar entanglement crosslinks. Overall, the electrogelation process did not require significant intramolecular beta-strand or intermolecular beta-sheet formation, unlike silk hydrogels. The kinetics of e-gel formation could be tuned by changing the field strength and assembly conditions, such as silk concentration and solution pH, while e-gel stiffness was partially reversible by removal of the applied field. Transient adhesion testing indicated that the adhesive characteristics of e-gels could at least partially be attributed to a local increase in proton concentration around the positive electrode due to the applied field and surface effects. A working model of electrogelation was described en route to understanding the origins of the adhesive characteristics.
Collapse
Affiliation(s)
- Tuna Yucel
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | | | | | | | | |
Collapse
|
24
|
RISKIN DANIELK, RACEY PAULA. How do sucker-footed bats hold on, and why do they roost head-up? Biol J Linn Soc Lond 2009. [DOI: 10.1111/j.1095-8312.2009.01362.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|