1
|
Itani N, Salinas CE, Villena M, Skeffington KL, Beck C, Villamor E, Blanco CE, Giussani DA. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. J Physiol 2017; 596:2991-3006. [PMID: 28983923 DOI: 10.1113/jp274111] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 12/31/2022] Open
Abstract
It is now established that adverse conditions during pregnancy can trigger a fetal origin of cardiovascular dysfunction and/or increase the risk of heart disease in later life. Suboptimal environmental conditions during early life that may promote the development of cardiovascular dysfunction in the offspring include alterations in fetal oxygenation and nutrition as well as fetal exposure to stress hormones, such as glucocorticoids. There has been growing interest in identifying the partial contributions of each of these stressors to programming of cardiovascular dysfunction. However, in humans and in many animal models this is difficult, as the challenges cannot be disentangled. By using the chicken embryo as an animal model, science has been able to circumvent a number of problems. In contrast to mammals, in the chicken embryo the effects on the developing cardiovascular system of changes in oxygenation, nutrition or stress hormones can be isolated and determined directly, independent of changes in the maternal or placental physiology. In this review, we summarise studies that have exploited the chicken embryo model to determine the effects on prenatal growth, cardiovascular development and pituitary-adrenal function of isolated chronic developmental hypoxia.
Collapse
Affiliation(s)
- N Itani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - C E Salinas
- Instituto Boliviano de Biología de Altura, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - M Villena
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - K L Skeffington
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - C Beck
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - E Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Universiteitssingel 40, 6229, ER Maastricht, The Netherlands
| | - C E Blanco
- Department of Neonatology, The National Maternity Hospital, Holles Street, Dublin, D02 YH21, Ireland
| | - D A Giussani
- Department of Physiology, Development & Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Cambridge Cardiovascular Strategic Research Initiative, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
2
|
Brinks L, Moonen RMJ, Moral-Sanz J, Barreira B, Kessels L, Perez-Vizcaino F, Cogolludo A, Villamor E. Hypoxia-induced contraction of chicken embryo mesenteric arteries: mechanisms and developmental changes. Am J Physiol Regul Integr Comp Physiol 2016; 311:R858-R869. [DOI: 10.1152/ajpregu.00461.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 08/10/2016] [Indexed: 11/22/2022]
Abstract
The fetal cardiovascular responses to acute hypoxia include a redistribution of the cardiac output toward the heart and the brain at the expense of other organs, such as the intestine. We hypothesized that hypoxia exerts a direct effect on the mesenteric artery (MA) that may contribute to this response. Using wire myography, we investigated the response to hypoxia (Po2 ~2.5 kPa for 20 min) of isolated MAs from 15- to 21-day chicken embryos (E15, E19, E21), and 1- to 45-day-old chickens (P1, P3, P14, P45). Agonist-induced pretone or an intact endothelium were not required to obtain a consistent and reproducible response to hypoxia, which showed a pattern of initial rapid phasic contraction followed by a sustained tonic contraction. Phasic contraction was reduced by elimination of extracellular Ca2+ or by presence of the neurotoxin tetrodotoxin, the α1-adrenoceptor antagonist prazosin, or inhibitors of L-type voltage-gated Ca2+ channels (nifedipine), mitochondrial electron transport chain (rotenone and antimycin A), and NADPH oxidase (VAS2870). The Rho-kinase inhibitor Y27632 impaired both phasic and tonic contraction and, when combined with elimination of extracellular Ca2+, hypoxia-induced contraction was virtually abolished. Hypoxic MA contraction was absent at E15 but present from E19 and increased toward the first days posthatching. It then decreased during the first weeks of life and P45 MAs were unable to sustain hypoxia-induced contraction over time. In conclusion, the results of the present study demonstrate that hypoxic vasoconstriction is an intrinsic feature of chicken MA vascular smooth muscle cells during late embryogenesis and the perinatal period.
Collapse
Affiliation(s)
- Leonie Brinks
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Rob M. J. Moonen
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
- Department of Pediatrics, Zuyderland Medical Center, Heerlen, The Netherlands; and
| | - Javier Moral-Sanz
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Bianca Barreira
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Lilian Kessels
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| | - Francisco Perez-Vizcaino
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Angel Cogolludo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Centro de Investigaciones Biomédicas en Red de Enfermedades Respiratorias (CIBERES), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), School for Oncology and Developmental Biology (GROW), Maastricht, The Netherlands
| |
Collapse
|
3
|
Nair J, Gugino SF, Nielsen LC, Caty MG, Lakshminrusimha S. Fetal and postnatal ovine mesenteric vascular reactivity. Pediatr Res 2016; 79:575-82. [PMID: 26672733 PMCID: PMC4837013 DOI: 10.1038/pr.2015.260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 09/24/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Intestinal circulation and mesenteric arterial (MA) reactivity may play a role in preparing the fetus for enteral nutrition. We hypothesized that MA vasoreactivity changes with gestation and vasodilator pathways predominate in the postnatal period. METHODS Small distal MA rings (0.5-mm diameter) were isolated from fetal (116-d, 128-d, 134-d, and 141-d gestation, term ~ 147 d) and postnatal lambs. Vasoreactivity was evaluated using vasoconstrictors (norepinephrine (NE) after pretreatment with propranolol and endothelin-1(ET-1)) and vasodilators (NO donors A23187 and s-nitrosopenicillamine (SNAP)). Protein and mRNA assays for receptors and enzymes (endothelin receptor A, alpha-adrenergic receptor 1A (ADRA1A), endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), and phosphodiesterase5 (PDE5)) were performed in mesenteric arteries. RESULTS MA constriction to NE and ET-1 peaked at 134 d. Relaxation to A23187 and SNAP was maximal after birth. Basal eNOS activity was low at 134 d. ADRA1A mRNA and protein increased significantly at 134 d and decreased postnatally. sGC and PDE5 protein increased from 134 to 141 d. CONCLUSION Mesenteric vasoconstriction predominates in late-preterm gestation (134 d; the postconceptional age with the highest incidence of necrotizing enterocolitis (NEC)) followed by a conversion to vasodilatory influences near the time of full-term birth. Perturbations in this ontogenic mechanism, including preterm birth, may be a risk factor for NEC.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Sylvia F. Gugino
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Lori C. Nielsen
- Department of Pediatrics, University at Buffalo, Buffalo, New York
| | - Michael G. Caty
- Department of Surgery, Yale New Haven Children’s Hospital, New Haven, Connecticut
| | | |
Collapse
|
4
|
Mohammed R, Cavallaro G, Kessels CGA, Villamor E. Functional differences between the arteries perfusing gas exchange and nutritional membranes in the late chicken embryo. J Comp Physiol B 2015; 185:783-96. [PMID: 26119481 PMCID: PMC4568027 DOI: 10.1007/s00360-015-0917-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/28/2015] [Accepted: 06/10/2015] [Indexed: 11/30/2022]
Abstract
The chicken extraembryonic arterial system comprises the allantoic arteries, which irrigate the gas exchange organ (the chorioallantoic membrane, CAM) and the yolk sac (YS) artery, which irrigates the nutritional organ (the YS membrane). We compared, using wire myography, the reactivity of allantoic and YS arteries from 19-day chicken embryos (total incubation 21 days). The contractions induced by KCl, the adrenergic agonists norepinephrine (NE, nonselective), phenylephrine (α1), and oxymetazoline (α2), electric field stimulation (EFS), serotonin, U46619 (TP receptor agonist), and endothelin (ET)-1 and the relaxations induced by acetylcholine (ACh), sodium nitroprusside (SNP, NO donor), forskolin (adenylate cyclase activator), and isoproterenol (β-adrenergic agonist) were investigated. Extraembryonic allantoic arteries did not show α-adrenergic-mediated contraction (either elicited by exogenous agonists or EFS) or ACh-induced (endothelium-dependent) relaxation, whereas these responses were present in YS arteries. Interestingly, the intraembryonic segment of the allantoic artery showed EFS- and α-adrenergic-induced contraction and ACh-mediated relaxation. Moreover, glyoxylic acid staining showed the presence of catecholamine-containing nerves in the YS and the intraembryonic allantoic artery, but not in the extraembryonic allantoic artery. Isoproterenol- and forskolin-induced relaxation and ET-1-induced contraction were higher in YS than in allantoic arteries, whereas serotonin- and U46619-induced contraction and SNP-induced relaxation did not significantly differ between the two arteries. In conclusion, our study demonstrates a different pattern of reactivity in the arteries perfusing the gas exchange and the nutritional membranes of the chicken embryo.
Collapse
Affiliation(s)
- Riazudin Mohammed
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Research Institute Growth and Development (GROW) and Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Giacomo Cavallaro
- Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Carolina G A Kessels
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Research Institute Growth and Development (GROW) and Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands
| | - Eduardo Villamor
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), Research Institute Growth and Development (GROW) and Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, P. Debyelaan 25, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.
| |
Collapse
|
5
|
|
6
|
Nair J, Gugino SF, Nielsen LC, Allen C, Russell JA, Mathew B, Swartz DD, Lakshminrusimha S. Packed red cell transfusions alter mesenteric arterial reactivity and nitric oxide pathway in preterm lambs. Pediatr Res 2013; 74:652-7. [PMID: 24002328 PMCID: PMC4401459 DOI: 10.1038/pr.2013.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/23/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Cases of necrotizing enterocolitis occurring within 48 h of packed red blood cell (PRBC) transfusions are increasingly being described in observational studies. Transfusion-associated gut injury is speculated to result from an abnormal mesenteric vascular response to transfusion. However, the mechanism of disruption of the balance between mesenteric vasoconstriction and relaxation following transfusion is not known. METHODS Preterm lambs (n = 16, 134 d gestation; term: 145-147 d) were delivered and ventilated for 24 h. All the lambs received orogastric feeds with colostrum. In addition, 10 of these lambs received PRBC transfusions. Vasoreactivity was evaluated in isolated mesenteric arterial rings using norepinephrine and endothelin-1 as vasoconstrictors. Endothelium-dependent (A23187, a calcium ionophore) and endothelium-independent (SNAP) nitric oxide (NO) donors were used as vasorelaxants. Mesenteric arterial endothelial NO synthase (eNOS), soluble guanylyl cyclase (sGC), and phosphodiesterase 5 (PDE5) mRNA analyses and protein assays were performed. RESULTS Transfusion with PRBC significantly increased mesenteric vasoconstriction to norepinephrine and endothelin-1 and impaired relaxation to A23187 and SNAP. Mesenteric arterial eNOS protein decreased following PRBC transfusion. No significant changes were noted in sGC and PDE5 mRNA or protein assays. CONCLUSION PRBC transfusion in enterally fed preterm lambs promotes mesenteric vasoconstriction and impairs vasorelaxation by reducing mesenteric arterial eNOS.
Collapse
Affiliation(s)
- Jayasree Nair
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| | - Sylvia F. Gugino
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| | - Lori C. Nielsen
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| | - Cheryl Allen
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| | - James A. Russell
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York,Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York
| | - Bobby Mathew
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| | - Daniel D. Swartz
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatology, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|