1
|
Kulberg JL, Hooper S, Malik YS, Ghosh S. Novel Betaherpesviruses in Neotropical Bats on the Caribbean Island of St. Kitts: First Report from Antillean Tree Bats ( Ardops nichollsi) and Evidence for Cross-Species Transmission. Microorganisms 2024; 12:2603. [PMID: 39770805 PMCID: PMC11677976 DOI: 10.3390/microorganisms12122603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
To date, limited information is available on herpesviruses in bats from the Caribbean region. We report here high detection rates (24.24%, n = 66) of herpesviruses in oral samples from apparently healthy bats (Ardops nichollsi (75%, 9/12) and Molossus molossus (28%, 7/25)) on the Lesser Antillean Island of St. Kitts. Based on analysis of partial DNA polymerase (DPOL) sequences (~225 amino acid (aa) residues), we identified two distinct groups of herpesviruses (BO-I and -II) that were unique to A. nichollsi and M. molossus, respectively. Within the subfamily Betaherpesvirinae, the BO-I DPOL sequences shared low deduced aa identities (<70%) with other herpesviruses, and phylogenetically, they formed a distinct cluster, representing a putative novel betaherpesvirus. The BO-II DPOL sequences were closely related to a putative novel betaherpesvirus from a M. molossus in Lesser Antillean Island of Martinique, indicating possible transmission of herpesviruses by bat movement between the Caribbean Islands. Phylogenetically, the BO-I and -II betaherpesviruses exhibited species-specific (A. nichollsi and M. molossus, respectively) as well as family-specific (Phyllostomidae and Molossidae, respectively) clustering patterns, corroborating the hypothesis on host specificity of betaherpesviruses. Interestingly, a single M. molossus betaherpesvirus strain clustered with the A. nichollsi betaherpesviruses, indicating possible interspecies transmission of herpesviruses between Phyllostomidae and Molossidae. To our knowledge, this is the first report on detection of herpesviruses from Antillean tree bats (A. nichollsi), expanding the host range of betaherpesviruses. Taken together, the present study identified putative novel betaherpesviruses that might be unique to chiropteran species (A. nichollsi and M. molossus), indicating virus-host coevolution, and provided evidence for interspecies transmission of betaherpesviruses between chiropteran families.
Collapse
Affiliation(s)
- Jessica L. Kulberg
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (J.L.K.); (S.H.)
| | - Sarah Hooper
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (J.L.K.); (S.H.)
| | - Yashpal S. Malik
- ICAR-Indian Veterinary Research Institute, Mukteswar 263168, Uttarakhand, India;
| | - Souvik Ghosh
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis; (J.L.K.); (S.H.)
| |
Collapse
|
2
|
Allegrini C, Korine C, Krasnov BR. Climatic gradients and forest composition shape bat communities in Eastern Mediterranean pine plantations. Integr Zool 2024; 19:1121-1134. [PMID: 38196112 DOI: 10.1111/1749-4877.12800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Biotic and abiotic factors can act as filters for determining the species composition of biological communities. We aimed to identify abiotic factors driving the assembly of bat communities in Eastern Mediterranean pine plantations along a north-south climatic gradient, as they are crucial forest habitats for the assessment and conservation of these communities. We expected that bat communities are predominantly shaped by environmental filtering. We conducted acoustic sampling in 35 pine plantations in Israel and analyzed recordings for species identification. We used the ESLTP analysis, an extension of the three-table ordination (RLQ analysis), to explore relationships between environmental characteristics, species occurrences, and functional traits of species while accounting for phylogenetic relationships between species and spatial distribution of the communities. Communities showed phylogenetic and trait clustering. Climatic conditions and forest vegetation composition shaped communities of bats, affecting the distribution of traits related to foraging behaviors, vegetation clutter, and the ability of bats to maneuver in it. Maneuverable species were associated with the northern Mediterranean climatic zone, with a scarce cover of drought-tolerant small shrubs and grassland. Fast flyers were associated with the center-south semi-arid area, with abundant drought-tolerant small shrubs and grassland. These forces might have a predominant role in the assembly of these communities, presumably due to the stressful climatic conditions of the study area. The ESLTP approach can be extended to other taxa and environments to predict species responses to disturbance and environmental changes and give insights into environmental management.
Collapse
Affiliation(s)
- Claudia Allegrini
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland, Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Carmi Korine
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland, Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| | - Boris R Krasnov
- Mitrani Department of Desert Ecology, Swiss Institute of Dryland, Environmental and Energy Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 8499000, Israel
| |
Collapse
|
3
|
Kelling M, Currie SE, Troxell SA, Reusch C, Roeleke M, Hoffmeister U, Teige T, Voigt CC. Effects of tag mass on the physiology and behaviour of common noctule bats. MOVEMENT ECOLOGY 2024; 12:38. [PMID: 38725032 PMCID: PMC11084088 DOI: 10.1186/s40462-024-00477-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND External tags, such as transmitters and loggers, are often used to study bat movements. However, physiological and behavioural effects on bats carrying tags have rarely been investigated, and recommendations on the maximum acceptable tag mass are rather based on rules of thumb than on rigorous scientific assessment. METHODS We conducted a comprehensive three-step assessment of the potential physiological and behavioural effects of tagging bats, using common noctules Nyctalus noctula as a model. First, we examined seasonal changes in body mass. Second, we predicted and then measured potential changes in flight metabolic rate in a wind tunnel. Third, we conducted a meta-analysis of published data to assess effects of different tag masses on the weight and behaviour of bats. RESULTS Individual body mass of common noctules varied seasonally by 7.0 ± 2.6 g (range: 0.5-11.5 g). Aerodynamic theory predicted a 26% increase in flight metabolic rate for a common noctule equipped with a 3.8 g tag, equating to 14% of body mass. In a wind tunnel experiment, we could not confirm the predicted increase for tagged bats. Our meta-analysis revealed a weak correlation between tag mass and emergence time and flight duration in wild bats. Interestingly, relative tag mass (3-19% of bat body mass) was not related to body mass loss, but bats lost more body mass the longer tags were attached. Notably, relatively heavy bats lost more mass than conspecifics with a more average body mass index. CONCLUSION Because heavy tags (> 3 g) were generally used for shorter periods of time than lighter tags (~ 1 g), the long-term effects of heavy tags on bats cannot be assessed at this time. Furthermore, the effects of disturbance and resource distribution in the landscape cannot be separated from those of tagging. We recommend that tags weighing 5-10% of a bat's mass should only be applied for a few days. For longer studies, tags weighing less than 5% of a bat's body mass should be used. To avoid adverse effects on bats, researchers should target individuals with average, rather than peak, body mass indices.
Collapse
Affiliation(s)
- Marit Kelling
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany.
- University of Potsdam, Plant Ecology and Nature Conservation, Potsdam, Germany.
| | - Shannon E Currie
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
- School of BioSciences, University of Melbourne, Parksville, 3010, Australia
| | - Sara A Troxell
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Christine Reusch
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| | - Manuel Roeleke
- University of Potsdam, Plant Ecology and Nature Conservation, Potsdam, Germany
| | - Uwe Hoffmeister
- Natura Büro für Zoologische und Botanische Fachgutachten, Leipzig, Germany
| | - Tobias Teige
- Büro für Faunististische und Ökologische Fachgutachten, Berlin, Germany
| | - Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315, Berlin, Germany
| |
Collapse
|
4
|
Carneiro LDO, Mellado B, Nogueira MR, Cruz-Neto APD, Monteiro LR. Flight performance and wing morphology in the bat Carollia perspicillata: biophysical models and energetics. Integr Zool 2023; 18:876-890. [PMID: 36610047 DOI: 10.1111/1749-4877.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Studies on functional performance are important to understand the processes responsible for the evolution of diversity. Morphological trait variation within species influences the energetic cost of locomotion and impacts life history traits, with ecological and evolutionary consequences. This study examined wing morphology correlates of flight performance measured by energetic expenditure in the Seba's short-tailed bat, Carollia perspicillata. In the flight experiments, nature caught bats (59 females, 57 males) were allowed to fly for 3 min in a room. After each flight, thermographic images were taken to measure body temperature, and biophysical models were used to calculate sensible heat loss as a measure of energetic expenditure. Wing morphological traits were measured for each individual and associated with heat loss and power required to fly on performance surfaces. Wing morphological traits explained 7-10% of flight energetic cost, and morphologies with the best performance would save the energy equivalent to 9-30% of total daily requirements. The optimal performance areas within the C. perspicillata morphospace were consistent with predicted selection trends from the literature. A trade-off between demands for flight speed and maneuverability was observed. Wing loading and camber presented sexual dimorphism. These morphological differences are likely associated with more economical but less maneuverable flight in females, leading them to fly more often in open areas along the forest edge. Our findings demonstrate how small scale changes in wing morphology can affect life history strategies and fitness.
Collapse
Affiliation(s)
- Lucas de Oliveira Carneiro
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Breno Mellado
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Marcelo Rodrigues Nogueira
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | | | - Leandro Rabello Monteiro
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brasil
| |
Collapse
|
5
|
Rainho A, Ferreira DF, Makori B, Bartonjo M, Repas-Gonçalves M, Kirakou S, Maghuwa F, Webala PW, Tomé R. Guild Vertical Stratification and Drivers of Bat Foraging in a Semi-Arid Tropical Region, Kenya. BIOLOGY 2023; 12:1116. [PMID: 37627000 PMCID: PMC10452385 DOI: 10.3390/biology12081116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023]
Abstract
Africa faces significant challenges in reconciling economic and social development while preserving its natural resources. Little is known about the diverse bat community on the continent, particularly in drier ecosystems. A better understanding of the bat community will help improve and inform the management of these ecosystems. Our study aimed to provide detailed information on the main drivers of bat richness and activity at three different heights above the ground in a semi-arid region of Kenya. We assessed how bat activity varied with space and height using acoustic sampling and complementary methods. We sampled 48 sites at ground level and two sites on meteorological masts at 20 m and 35 m above the ground. We recorded more than 20 bat species, including one species of concern for conservation. Our models showed that the use of space varies with bat guild, creating trade-offs in the variables that affect their activity. Low-flying bat species are mostly associated with habitat variables, whereas high-flying species are more dependent on weather conditions. Our study highlights the richness of bat assemblages in semi-arid environments and emphasizes the need for management measures to protect bat diversity in the face of habitat degradation caused by climate change, land management, and development projects.
Collapse
Affiliation(s)
- Ana Rainho
- cE3c—Centre for Ecology, Evolution and Environmental Changes & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
| | - Diogo F. Ferreira
- CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Beryl Makori
- The Pangolin Project, P.O. Box 15156, Langata 00509, Kenya
| | - Michael Bartonjo
- Mammalogy Section, National Museums of Kenya, P.O. Box 40658, Nairobi 00100, Kenya
| | | | - Stanley Kirakou
- Environment and Sustainable Development Department, Kenya Electricity Generating Company, P.O. Box 47936, Nairobi 00100, Kenya
| | - Florah Maghuwa
- Environment and Sustainable Development Department, Kenya Electricity Generating Company, P.O. Box 47936, Nairobi 00100, Kenya
| | - Paul W. Webala
- Department of Forestry and Wildlife Management, Maasai Mara University, P.O. Box 861, Narok 20500, Kenya
| | - Ricardo Tomé
- The Biodiversity Consultancy, 3E King’s Parade, Cambridge CB2 1SJ, UK
| |
Collapse
|
6
|
Bat diversity is driven by elevation and distance to the nearest watercourse in a terra firme forest in the northeastern Brazilian Amazon. JOURNAL OF TROPICAL ECOLOGY 2023. [DOI: 10.1017/s0266467422000438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Variations in environmental conditions along gradients play an important role in species distribution through environmental filtering of morphological and physiological traits; however, their effects on bat diversity remain poorly understood. Here, we investigate the effect of the distance to the nearest watercourse, terrain elevation, vegetation clutter, basal area and canopy height on taxonomic, functional and phylogenetic diversity and on the predominance of some functional traits (body mass, wing morphology and trophic level) of bat assemblages (phyllostomid and mormoopid bats) in a terra firme forest, in the northeastern Brazilian Amazon. We captured bats using mist nets in 15 permanent plots over a 25 km2 area of continuous forest. We captured 279 individuals belonging to 28 species with a total of 77.760 m2.h of sampling effort. Our results showed that bat richness increases as a function of distance to the nearest watercourse and that the assemblage also changes, with more diverse taxonomic and functional groups in areas further from the watercourse. Furthermore, elevation positively affects species richness, and the basal area of the forest positively influences the average body mass of bats. Taken together, our results demonstrate that subtle variations in the environmental conditions along a local scale gradient impact on the main dimensions of bat diversity in primary forests.
Collapse
|
7
|
García-Herrera LV, Ramírez-Fráncel LA, Guevara G, Lim BK, Losada-Prado S. Wing morphology is related to niche specialization and interaction networks in stenodermatine bats (Chiroptera: Phyllostomidae). J Mammal 2022. [DOI: 10.1093/jmammal/gyac112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Plant–animal interactions constitute some of the most important ecological processes for the maintenance of tropical forests. Bats are the only group of mammals capable of true flight and have been recognized as important dispersers of pioneer and secondary successional plant species. Although progress has been made in the study of Neotropical bats, morphological variation of the wing and its influence on niche separation between species is unknown. We evaluated relationships among habitat structures of selected Colombian tropical dry forest patches, the diet through interaction networks, and wing morphology of 11 species of bats in the Stenodermatinae subfamily (297 individuals) using geometric morphometry in a phylogenetic context. The results indicate that the phylogenetic signal for wing size is greater than for wing shape, thus providing some evidence for evolutionary convergence. Wing shape variation was associated primarily with the distal anatomical tip of the third finger and the joint between the humerus and the radius and ulna. Species with wide, short wings, as in the genus Artibeus had generalist diets and less nested positions within the interaction networks. In contrast, species with elongated and pointed wings, such as Sturnira and Platyrrhinus, had specialized diets and more nested positions within the interaction networks. We argue that wing shape variation may play an important role as a source of interspecific variation leading to food specialization within tropical bat communities.
Collapse
Affiliation(s)
- Leidy Viviana García-Herrera
- Programa de Doctorado en Ciencias Biológicas and Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, IDEAD, Universidad del Tolima , Altos de Santa Elena, Ibagué 730004 , Colombia
| | - Leidy Azucena Ramírez-Fráncel
- Programa de Doctorado en Ciencias Biológicas and Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, IDEAD, Universidad del Tolima , Altos de Santa Elena, Ibagué 730004 , Colombia
| | - Giovany Guevara
- Departamento de Biología and Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, Universidad del Tolima , Altos de Santa Elena, Ibagué M5H 2N2 , Colombia
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum , 100 Queen’s Park, Toronto, Ontario M5S 2C6 , Canada
| | - Sergio Losada-Prado
- Departamento de Biología and Grupo de Investigación en Zoología (GIZ), Facultad de Ciencias, Universidad del Tolima , Altos de Santa Elena, Ibagué M5H 2N2 , Colombia
| |
Collapse
|
8
|
Ramos Pereira MJ, Stefanski Chaves T, Bobrowiec PE, Selbach Hofmann G. How aerial insectivore bats of different sizes respond to nightly temperature shifts. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:601-612. [PMID: 34817674 DOI: 10.1007/s00484-021-02222-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
Small, volant and nocturnal, bats face strong challenges to avoid heat loss. Among aerial insectivores, body mass varies by two orders of magnitude between the smallest and the largest species. At low temperatures, physiological constraints should be harsher for smaller bats, as they lose more heat through their body surface than larger species. So, temperature variations should lead to distinct behavioural responses by bats of different body masses. Also, because they feed on arthropods, dependent on ambient temperature, aerial insectivores should halt feeding at low temperatures. Using ultrasound detectors and temperature and humidity sensors, we investigated how aerial insectivores of the coldest region in austral Brazil respond to nightly temperature variations and compared those responses between guilds of distinct body masses. We predict that smaller bats reduce their activity faster than larger bats, but that foraging should reduce simultaneously in the two guilds, as they depend on ectothermic prey. Bat activity reduced significantly below 12 °C. Larger bats maintained their activity at temperatures where the activity of smaller bats had already halted. However, larger bats foraged mostly during the first half of the night, at higher temperatures than those chosen by smaller bats to forage. We associate these differential responses to the thermal convection process, which may increase prey availability at higher altitudes, where larger molossids are known to forage. Smaller species, mostly edge-space hunters, probably take advantage of less variable prey availability during the night, resulting in a more regular behavioural pattern of navigation and foraging.
Collapse
Affiliation(s)
- Maria João Ramos Pereira
- Bird and Mammal Evolution, Systematics and Ecology Lab, Departamento de Zoologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Campus do Vale - Agronomia, Porto Alegre, RS, 90650-001, Brasil.
- CESAM, Universidade de Aveiro, Aveiro, Portugal.
| | - Thais Stefanski Chaves
- Bird and Mammal Evolution, Systematics and Ecology Lab, Departamento de Zoologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Campus do Vale - Agronomia, Porto Alegre, RS, 90650-001, Brasil
| | - Paulo Estefano Bobrowiec
- Programa de Pós-Graduação Em Ecologia, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brasil
| | - Gabriel Selbach Hofmann
- Laboratório de Geoprocessamento, Centro de Ecologia, Instituto de Biociências, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brasil
| |
Collapse
|
9
|
Kruszynski C, de Andrade Moral R, Míllan C, Diniz-Reis TR, Mello MAR, de Camargo PB. Diet Composition of Bats in a Human-Modified Tropical Landscape. ACTA CHIROPTEROLOGICA 2022. [DOI: 10.3161/15081109acc2021.23.2.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Cecilia Kruszynski
- Laboratório de Ecologia, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Avenida Centenário, 303, 13400-970 Piracicaba, SP, Brazil
| | | | - Cristiane Míllan
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, 321/Travessa 14, 05508-090 São Paulo, SP, Brazil
| | - Thais R. Diniz-Reis
- Laboratório de Ecologia, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Avenida Centenário, 303, 13400-970 Piracicaba, SP, Brazil
| | - Marco A. R. Mello
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo. Rua do Matão, 321/Travessa 14, 05508-090 São Paulo, SP, Brazil
| | - Plinio B. de Camargo
- Laboratório de Ecologia, Centro de Energia Nuclear na Agricultura (CENA), Universidade de São Paulo, Avenida Centenário, 303, 13400-970 Piracicaba, SP, Brazil
| |
Collapse
|
10
|
Maucieri D, Ashbaugh A, Theodor J. Sexual dimorphism in bat wing morphology — variation among foraging styles. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2021-0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sexual dimorphism can lead to differences in foraging style among conspecifics due to morphological differences. Within bats, maneuverability and speed of flight are influenced by wing shape and size, which may differ between sexes. Female bats gain about 30% of their body mass during pregnancy, affecting their agility and flight efficiency. To fill the same foraging niche as males, pregnant female bats would require wing size and (or) shape modifications to maintain maneuverability. We investigated sexual dimorphism in bat wing morphology and how it varies among foraging guilds. Wing photos of male and female adult bats (19 species) in Canada, Belize, and Dominica were analyzed using two-dimensional geometric morphometrics, wing loading, and aspect ratios. Nonpregnant female bats had higher wing loading than males, suggesting that they are less maneuverable than males. Additionally, mass increases during pregnancy may not permit female bats to forage as male conspecifics do. Wing shape differed minimally among foraging guilds with only frugivores differing significantly from all other guilds. Further studies should investigate how female bats forage during their reproductive cycle and determine how frugivore wings differ and whether there are individual differences in wing shape that are not consistent among bat species.
Collapse
Affiliation(s)
- D.G. Maucieri
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - A.J. Ashbaugh
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - J.M. Theodor
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Ervis MD, Eric-Moise BF, Aaron MM, Jules AP, Fernand-Nestor TF. Diversity pattern of bats (Mammalia: Chiroptera) in a modified tropical environment in the western region of Cameroon. AFRICAN ZOOLOGY 2021. [DOI: 10.1080/15627020.2021.1932588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Ecological Morphology of Neotropical Bat Wing Structures. Zool Stud 2021; 59:e60. [PMID: 34140977 DOI: 10.6620/zs.2020.59-60] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/17/2020] [Indexed: 11/18/2022]
Abstract
Morphology has a direct influence on animal fitness. Studies addressing the identification of patterns and variations across several guilds are fundamental in ecomorphological research. Wings are the core of ecological morphology in bats; nevertheless, individual bones and structures that support the wing, including metacarpals, phalanges and the length of digits, have rarely been the subject of comprehensive research when studying wing morphology. Here, I analyzed morphological variations of wing structures across 11 bat guilds and how individual bone structures are correlated to diet, foraging mode and habitat use. I obtained wing measurements from 1512 voucher specimens of 97 species. All the specimens analyzed came from the Mammalian Collection at the Museo Javeriano de Historia Natural of Pontificia Universidad Javeriana (MPUJ-MAMM) (Bogotá, Colombia). Positive correlations between size and the length of the third and fifth digit were detected. Bat guilds that capture their preys using aerial strategy in uncluttered habitats had longer third digits but short fifth digits compared to guilds that rely on gleaning strategy and forage in highly cluttered space. Although terminal phalanges were shown to be important structures for guild classification, metacarpals were strongly related to aerial foragers from uncluttered habitats because of their potential role in flight performance and ecological adaptations. Results show that habitat use, as well as foraging mode, are reflected in wing structures. Different wing traits to those evaluated in this study should be considered to better understand the ecological interactions, foraging strategy, wing adaptations, and flight performance in Neotropical bats.
Collapse
|
13
|
The first record of European free-tailed bat, Tadarida teniotis Rafinesque, 1814, and note on probable elevational movement from Nepal. JOURNAL OF ASIA-PACIFIC BIODIVERSITY 2021. [DOI: 10.1016/j.japb.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
14
|
Sánchez MS, Carrizo LV. Forelimb Bone Morphology and its Association with Foraging Ecology in Four Families of Neotropical Bats. J MAMM EVOL 2020. [DOI: 10.1007/s10914-020-09526-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
15
|
Voigt CC, Kravchenko K, Liechti F, Bumrungsri S. Skyrocketing Flights as a Previously Unrecognized Behaviour of Open-Space Foraging Bats. ACTA CHIROPTEROLOGICA 2020. [DOI: 10.3161/15081109acc2019.21.2.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Christian C. Voigt
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Kseniia Kravchenko
- Department Evolutionary Ecology Leibniz Institute for Zoo and Wildlife Research Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany
| | - Felix Liechti
- Swiss Ornithological Institute, Seerose 1, CH-6204 Sempach, Switzerland
| | - Sara Bumrungsri
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
16
|
Azofeifa Y, Estrada-Villegas S, Mavárez J, Nassar JM. Activity of Aerial Insectivorous Bats in Two Rice Fields in the Northwestern Llanos of Venezuela. ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2019.21.1.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yara Azofeifa
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Aptdo. 20632, Carretera Panamericana km 11, Caracas 1020-A, Miranda, Venezuela
| | - Sergio Estrada-Villegas
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, Wisconsin, 53201-1881, USA
| | - Jesús Mavárez
- Laboratoire d'Ecologie Alpine, UMR UGA-USMB-CNRS 5553 Université Grenoble Alpes, CS 40700 38058 Grenoble, cedex 9, France
| | - Jafet M. Nassar
- Centro de Ecología, Instituto Venezolano de Investigaciones Científicas, Aptdo. 20632, Carretera Panamericana km 11, Caracas 1020-A, Miranda, Venezuela
| |
Collapse
|
17
|
Amador LI, Almeida FC, Giannini NP. Evolution of Traditional Aerodynamic Variables in Bats (Mammalia: Chiroptera) within a Comprehensive Phylogenetic Framework. J MAMM EVOL 2019. [DOI: 10.1007/s10914-019-09475-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Troxell SA, Holderied MW, Pētersons G, Voigt CC. Nathusius' bats optimize long-distance migration by flying at maximum range speed. ACTA ACUST UNITED AC 2019; 222:222/4/jeb176396. [PMID: 30814276 DOI: 10.1242/jeb.176396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/25/2019] [Indexed: 11/20/2022]
Abstract
Aerial migration is the fastest, yet most energetically demanding way of seasonal movement between habitats. However, for many taxa, and bats in particular, we lack a clear understanding of the energy requirements for migration. Here, we examined the energetic cost and flight speed of the long-distance migratory Nathusius' bat (Pipistrellus nathusii). We measured flight metabolism in relation to airspeed in a wind tunnel, inferred the optimal traveling speed over long distances, i.e. maximum range speed, and compared this value with flight speed measured in wild conspecifics. Body mass and wing morphologies were similar in captive and wild bats, indicating that the body condition of captive bats was similar to that of migratory bats. Nine out of the 12 captive bats exhibited a U-shaped relationship between flight metabolic power and airspeed when flying in the wind tunnel. The flight metabolic rate across all airspeeds averaged 0.98±0.28 W, which corresponds well to established allometric relationships between flight metabolic rate and body mass for bats. During summer migration, P. nathusii traveled at an average speed of 6.9±0.7 m s-1, which was significantly higher than the minimum power speed (5.8±1.0 m s-1), yet within the range of expected maximum range speed inferred from wind tunnel experiments. This suggests that P. nathusii may migrate at an energetically optimal speed and that aerial refueling does not substantially lower migratory speed in P. nathusii.
Collapse
Affiliation(s)
- Sara A Troxell
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany.,Freie Universität, Takustrasse 6, 14195 Berlin, Germany.,Max Planck Institute for Ornithology, Eberhard-Gwinner-Strasse 11, 82319 Seewiesen, Germany
| | - Marc W Holderied
- School of Biological Sciences, University of Bristol, 24 Tyndale Avenue, Bristol BS8 1TQ, UK
| | - Gunārs Pētersons
- Faculty of Veterinary Medicine, Latvia University of Agriculture, Helamaņa 8, Jelgava 3004, Latvia
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Strasse 17, 10315 Berlin, Germany .,Freie Universität, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
19
|
Ruadreo N, Voigt CC, Bumrungsri S. Large Dietary Niche Overlap of Sympatric Open-space Foraging Bats Revealed by Carbon and Nitrogen Stable Isotopes. ACTA CHIROPTEROLOGICA 2019. [DOI: 10.3161/15081109acc2018.20.2.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Nittaya Ruadreo
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Christian C. Voigt
- Department Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Sara Bumrungsri
- Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
20
|
Voigt CC, Frick WF, Holderied MW, Holland R, Kerth G, Mello MAR, Plowright RK, Swartz S, Yovel Y. PRINCIPLES AND PATTERNS OF BAT MOVEMENTS: FROM AERODYNAMICS TO ECOLOGY. QUARTERLY REVIEW OF BIOLOGY 2019; 92:267-287. [PMID: 29861509 DOI: 10.1086/693847] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Movement ecology as an integrative discipline has advanced associated fields because it presents not only a conceptual framework for understanding movement principles but also helps formulate predictions about the consequences of movements for animals and their environments. Here, we synthesize recent studies on principles and patterns of bat movements in context of the movement ecology paradigm. The motion capacity of bats is defined by their highly articulated, flexible wings. Power production during flight follows a U-shaped curve in relation to speed in bats yet, in contrast to birds, bats use mostly exogenous nutrients for sustained flight. The navigation capacity of most bats is dominated by the echolocation system, yet other sensory modalities, including an iron-based magnetic sense, may contribute to navigation depending on a bat's familiarity with the terrain. Patterns derived from these capacities relate to antagonistic and mutualistic interactions with food items. The navigation capacity of bats may influence their sociality, in particular, the extent of group foraging based on eavesdropping on conspecifics' echolocation calls. We infer that understanding the movement ecology of bats within the framework of the movement ecology paradigm provides new insights into ecological processes mediated by bats, from ecosystem services to diseases.
Collapse
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research 10315 Berlin, Germany, Institute of Biology, Freie Universität Berlin 14195 Berlin, Germany
| | - Winifred F Frick
- Bat Conservation International Austin, Texas 78716 USA, Ecology and Evolutionary Biology, University of California Santa Cruz, California 95064 USA
| | - Marc W Holderied
- School of Biological Sciences, Bristol University Bristol BS8 1TQ United Kingdom
| | - Richard Holland
- School of Biological Sciences, Bangor University Bangor, Gwynedd LL57 2UW United Kingdom
| | - Gerald Kerth
- Applied Zoology and Conservation, University of Greifswald D-17489 Greifswald, Germany
| | - Marco A R Mello
- Department of General Biology, Federal University of Minas Gerais 31270-901 Belo Horizonte, MG, Brazil
| | - Raina K Plowright
- Department of Microbiology and Immunology, Montana State University Bozeman, Montana 59717 USA
| | - Sharon Swartz
- Department of Ecology and Evolutionary Biology and School of Engineering, Brown University Providence, Rhode Island 02912 USA
| | - Yossi Yovel
- Department of Zoology, Faculty of Life Sciences, and the "Sagol" School of Neuroscience, Tel-Aviv University Tel-Aviv, Israel
| |
Collapse
|
21
|
Illuminating the physiological implications of artificial light on an insectivorous bat community. Oecologia 2018; 189:69-77. [PMID: 30446844 DOI: 10.1007/s00442-018-4300-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
Abstract
Global light pollution threatens to disturb numerous wildlife species, but impacts of artificial light will likely vary among species within a community. Thus, artificial lights may change the environment in such a way as to create winners and losers as some species benefit while others do not. Insectivorous bats are nocturnal and a good model to test for differential effects of light pollution on a single community. We used a physiological technique to address this community-level question by measuring plasma ß-hydroxybutyrate (a blood metabolite) concentrations from six species of insectivorous bats in lit and unlit conditions. We also recorded bat calls acoustically to measure activity levels between experimental conditions. Blood metabolite level and acoustic activity data suggest species-specific changes in foraging around lights. In red bats (Lasiurus borealis), ß-hydroxybutyrate levels at lit sites were highest early in the night before decreasing. Acoustic data indicate pronounced peaks in activity at lit sites early in the night. In red bats on dark nights and in the other species in this community, which seem to avoid lights, ß-hydroxybutyrate remained relatively constant. Our results suggest red bats are more willing to expend energy to actively forage around lights despite potential negative impacts, while other, generally rarer species avoid lit areas. Artificial light appears to have a bifurcating effect on bat communities, whereby some species take advantage of concentrated prey resources, yet most do not. Further, this may concentrate light-intolerant species into limited dark refugia, thereby increasing competition for depauperate, phototactic insect communities.
Collapse
|
22
|
Roeleke M, Johannsen L, Voigt CC. How Bats Escape the Competitive Exclusion Principle—Seasonal Shift From Intraspecific to Interspecific Competition Drives Space Use in a Bat Ensemble. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
23
|
Voigt CC, Currie SE, Fritze M, Roeleke M, Lindecke O. Conservation Strategies for Bats Flying at High Altitudes. Bioscience 2018. [DOI: 10.1093/biosci/biy040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Christian C Voigt
- Department of Evolutionary Ecology at the Leibniz Institute for Zoo and Wildlife Research, in Berlin, Germany
| | - Shannon E Currie
- Department of Evolutionary Ecology at the Leibniz Institute for Zoo and Wildlife Research, in Berlin, Germany
| | - Marcus Fritze
- Department of Evolutionary Ecology at the Leibniz Institute for Zoo and Wildlife Research, in Berlin, Germany
| | - Manuel Roeleke
- Department of Evolutionary Ecology at the Leibniz Institute for Zoo and Wildlife Research, in Berlin, Germany
| | - Oliver Lindecke
- Department of Evolutionary Ecology at the Leibniz Institute for Zoo and Wildlife Research, in Berlin, Germany
| |
Collapse
|
24
|
Elliott KH. Measurement of flying and diving metabolic rate in wild animals: Review and recommendations. Comp Biochem Physiol A Mol Integr Physiol 2016; 202:63-77. [PMID: 27264988 DOI: 10.1016/j.cbpa.2016.05.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/16/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Animals' abilities to fly long distances and dive to profound depths fascinate earthbound researchers. Due to the difficulty of making direct measurements during flying and diving, many researchers resort to modeling so as to estimate metabolic rate during each of those activities in the wild, but those models can be inaccurate. Fortunately, the miniaturization, customization and commercialization of biologgers has allowed researchers to increasingly follow animals on their journeys, unravel some of their mysteries and test the accuracy of biomechanical models. I provide a review of the measurement of flying and diving metabolic rate in the wild, paying particular attention to mass loss, doubly-labelled water, heart rate and accelerometry. Biologgers can impact animal behavior and influence the very measurements they are designed to make, and I provide seven guidelines for the ethical use of biologgers. If biologgers are properly applied, quantification of metabolic rate across a range of species could produce robust allometric relationships that could then be generally applied. As measuring flying and diving metabolic rate in captivity is difficult, and often not directly translatable to field conditions, I suggest that applying multiple techniques in the field to reinforce one another may be a viable alternative. The coupling of multi-sensor biologgers with biomechanical modeling promises to improve precision in the measurement of flying and diving metabolic rate in wild animals.
Collapse
Affiliation(s)
- Kyle H Elliott
- Department of Natural Resource Sciences, McGill University, Ste Anne-de-Bellevue, QC, Canada
| |
Collapse
|
25
|
Gager Y, Tarland E, Lieckfeldt D, Ménage M, Botero-Castro F, Rossiter SJ, Kraus RHS, Ludwig A, Dechmann DKN. The Value of Molecular vs. Morphometric and Acoustic Information for Species Identification Using Sympatric Molossid Bats. PLoS One 2016; 11:e0150780. [PMID: 26943355 PMCID: PMC4778951 DOI: 10.1371/journal.pone.0150780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/17/2016] [Indexed: 11/21/2022] Open
Abstract
A fundamental condition for any work with free-ranging animals is correct species identification. However, in case of bats, information on local species assemblies is frequently limited especially in regions with high biodiversity such as the Neotropics. The bat genus Molossus is a typical example of this, with morphologically similar species often occurring in sympatry. We used a multi-method approach based on molecular, morphometric and acoustic information collected from 962 individuals of Molossus bondae, M. coibensis, and M. molossus captured in Panama. We distinguished M. bondae based on size and pelage coloration. We identified two robust species clusters composed of M. molossus and M. coibensis based on 18 microsatellite markers but also on a more stringently determined set of four markers. Phylogenetic reconstructions using the mitochondrial gene co1 (DNA barcode) were used to diagnose these microsatellite clusters as M. molossus and M. coibensis. To differentiate species, morphological information was only reliable when forearm length and body mass were combined in a linear discriminant function (95.9% correctly identified individuals). When looking in more detail at M. molossus and M. coibensis, only four out of 13 wing parameters were informative for species differentiation, with M. coibensis showing lower values for hand wing area and hand wing length and higher values for wing loading. Acoustic recordings after release required categorization of calls into types, yielding only two informative subsets: approach calls and two-toned search calls. Our data emphasizes the importance of combining morphological traits and independent genetic data to inform the best choice and combination of discriminatory information used in the field. Because parameters can vary geographically, the multi-method approach may need to be adjusted to local species assemblies and populations to be entirely informative.
Collapse
Affiliation(s)
- Yann Gager
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- International Max Planck Research School for Organismal Biology, University of Konstanz, Konstanz, Germany
- * E-mail:
| | - Emilia Tarland
- Swedish University of Agricultural Sciences, Department of Animal Breeding and Genetics, Uppsala, Sweden
- Department of Evolutionary Genetics, Leibniz-Institute of Zoo and Wildlife Research, Berlin, Germany
| | - Dietmar Lieckfeldt
- Department of Evolutionary Genetics, Leibniz-Institute of Zoo and Wildlife Research, Berlin, Germany
| | - Matthieu Ménage
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Fidel Botero-Castro
- Institut des Sciences de l’Evolution, UMR 5554-CNRS-IRD, Université de Montpellier, Montpellier, France
| | - Stephen J. Rossiter
- School of Biological and Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Robert H. S. Kraus
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Arne Ludwig
- Department of Evolutionary Genetics, Leibniz-Institute of Zoo and Wildlife Research, Berlin, Germany
| | - Dina K. N. Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
- Smithsonian Tropical Research Institute, Panamá, Rep. of Panamá
| |
Collapse
|
26
|
Gager Y, Gimenez O, O'Mara MT, Dechmann DKN. Group size, survival and surprisingly short lifespan in socially foraging bats. BMC Ecol 2016; 16:2. [PMID: 26767616 PMCID: PMC4714502 DOI: 10.1186/s12898-016-0056-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 01/04/2016] [Indexed: 11/10/2022] Open
Abstract
Background The relationships between group size, survival, and longevity vary greatly among social species. Depending on demographic and ecological circumstances, there are both positive and negative effects of group size variation on individual survival and longevity. For socially foraging species in particular there may be an optimal group size that predicts maximum individual survival that is directly related to the potential for information transfer, social coordination, and costs of conspecific interference. Our aim was to investigate this central aspect of evolutionary ecology by focusing on a socially foraging bat, Molossus molossus. This species optimizes foraging success by eavesdropping on the echolocation calls of group members to locate ephemeral food patches. We expected to find the highest survival and longest lifespans in small groups as a consequence of a trade-off between benefits of information transfer on ephemeral resources and costs of conspecific interference. Results In a mark-recapture study of 14 mixed-sex M. molossus social groups in Gamboa, Panama, spanning several years we found the expected relatively small and intermediate, but stable groups, with a mean size of 9.6 ± 6.7 adults and juveniles. We estimated survival proxies using Cox proportional hazard models and multistate-mark recapture models generated with recapture data as well as automated monitoring of roost entrances in a subset of the groups. Median survival of females was very short with 1.8 years and a maximum estimated longevity of 5.6 years. Contrary to our expectations, we found no relationship between variation in group size and survival, a result similar to few other studies. Conclusions Strong selection towards small group size may result from psychoacoustic and cognitive constraints related to acoustic interference in social foraging and the complexity of coordinated flight. The short lifespans were unexpected and may result from life at the energetic edge due to a highly specialized diet. The absence of a relationship between group size and survival may reflect a similar but optimized survival within the selected range of group sizes. We expect the pattern of small group sizes will be consistent in future research on species dependent on social information transfer about ephemeral resources. Electronic supplementary material The online version of this article (doi:10.1186/s12898-016-0056-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yann Gager
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315, Radolfzell, Germany. .,Department of Biology, University of Konstanz, 78464, Konstanz, Germany. .,International Max Planck Research School for Organismal Biology, University of Konstanz, 78464, Konstanz, Germany.
| | - Olivier Gimenez
- CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 34293, Montpellier Cedex 5, France.
| | - M Teague O'Mara
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315, Radolfzell, Germany. .,Department of Biology, University of Konstanz, 78464, Konstanz, Germany. .,Zukunftskolleg, University of Konstanz, 78464, Konstanz, Germany. .,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama.
| | - Dina K N Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, 78315, Radolfzell, Germany. .,Department of Biology, University of Konstanz, 78464, Konstanz, Germany. .,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama.
| |
Collapse
|
27
|
Abstract
Bats are diverse, speciose, and inhabit most of earth’s habitats, aided by powered flapping flight. The many traits that enable flight in these mammals have long attracted popular and research interest, but recent technological and conceptual advances have provided investigators with new kinds of information concerning diverse aspects of flight biology. As a consequence of these new data, our understanding of how bats fly has begun to undergo fundamental changes. Physical and neural science approaches are now beginning to inform understanding of structural architecture of wings. High-speed videography is dramatically expanding documentation of how bats fly. Experimental fluid dynamics and innovative physiological techniques profoundly influence how we interpret the ways bats produce aerodynamic forces as they execute distinctive flight behaviors and the mechanisms that underlie flight energetics. Here, we review how recent bat flight research has provided significant new insights into several important aspects of bat flight structure and function. We suggest that information coming from novel approaches offer opportunities to interconnect studies of wing structure, aerodynamics, and physiology more effectively, and to connect flight biology to newly emerging studies of bat evolution and ecology.
Collapse
Affiliation(s)
- S.M. Swartz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - N. Konow
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
28
|
Deshpande K, Kelkar N. Acoustic Identification ofOtomops wroughtoniand other Free-Tailed Bat Species (Chiroptera: Molossidae) from India. ACTA CHIROPTEROLOGICA 2015. [DOI: 10.3161/15081109acc2015.17.2.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Carter G, Schoeppler D, Manthey M, Knörnschild M, Denzinger A. Distress Calls of a Fast-Flying Bat (Molossus molossus) Provoke Inspection Flights but Not Cooperative Mobbing. PLoS One 2015; 10:e0136146. [PMID: 26353118 PMCID: PMC4564210 DOI: 10.1371/journal.pone.0136146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 11/18/2022] Open
Abstract
Many birds and mammals produce distress calls when captured. Bats often approach speakers playing conspecific distress calls, which has led to the hypothesis that bat distress calls promote cooperative mobbing. An alternative explanation is that approaching bats are selfishly assessing predation risk. Previous playback studies on bat distress calls involved species with highly maneuverable flight, capable of making close passes and tight circles around speakers, which can look like mobbing. We broadcast distress calls recorded from the velvety free-tailed bat, Molossus molossus, a fast-flying aerial-hawker with relatively poor maneuverability. Based on their flight behavior, we predicted that, in response to distress call playbacks, M. molossus would make individual passing inspection flights but would not approach in groups or approach within a meter of the distress call source. By recording responses via ultrasonic recording and infrared video, we found that M. molossus, and to a lesser extent Saccopteryx bilineata, made more flight passes during distress call playbacks compared to noise. However, only the more maneuverable S. bilineata made close approaches to the speaker, and we found no evidence of mobbing in groups. Instead, our findings are consistent with the hypothesis that single bats approached distress calls simply to investigate the situation. These results suggest that approaches by bats to distress calls should not suffice as clear evidence for mobbing.
Collapse
Affiliation(s)
- Gerald Carter
- Biology Department, University of Maryland, College Park, MD, United States of America
- * E-mail:
| | - Diana Schoeppler
- Animal Physiology, Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Marie Manthey
- Animal Physiology, Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| | - Mirjam Knörnschild
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Balboa, Panama
| | - Annette Denzinger
- Animal Physiology, Institute for Neurobiology, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
30
|
Welch KC, Péronnet F, Hatch KA, Voigt CC, McCue MD. Carbon stable-isotope tracking in breath for comparative studies of fuel use. Ann N Y Acad Sci 2015; 1365:15-32. [PMID: 25817456 DOI: 10.1111/nyas.12737] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Almost half a century ago, researchers demonstrated that the ratio of stable carbon isotopes in exhaled breath of rats and humans could reveal the oxidation of labeled substrates in vivo, opening a new chapter in the study of fuel use, the fate of ingested substrates, and aerobic metabolism. Until recently, the combined use of respirometry and stable-isotope tracer techniques had not been broadly employed to study fuel use in other animal groups. In this review, we summarize the history of this approach in human and animal research and define best practices that maximize its utility. We also summarize several case studies that use stable-isotope measurements of breath to explore the limits of aerobic metabolism and substrate turnover among several species and various physiological states. We highlight the importance of a comparative approach in revealing the profound effects that phylogeny, ecology, and behavior can have in shaping aerobic metabolism and energetics as well as the fundamental biological principles that underlie fuel use and metabolic function across taxa. New analytical equipment and refinement of methodology make the combined use of respirometry and stable-isotope tracer techniques simpler to perform, less costly, and more field ready than ever before.
Collapse
Affiliation(s)
- Kenneth C Welch
- Department of Biology, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - François Péronnet
- Département de Kinésiologie, Université de Montréal, Montréal, Québec, Canada
| | - Kent A Hatch
- Department of Biology, Long Island University Post, Brookville, New York
| | - Christian C Voigt
- Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Marshall D McCue
- Department of Biological Sciences, St. Mary's University, San Antonio, Texas
| |
Collapse
|
31
|
Dechmann DKN, Wikelski M, Varga K, Yohannes E, Fiedler W, Safi K, Burkhard WD, O'Mara MT. Tracking post-hibernation behavior and early migration does not reveal the expected sex-differences in a "female-migrating" bat. PLoS One 2014; 9:e114810. [PMID: 25517947 PMCID: PMC4269398 DOI: 10.1371/journal.pone.0114810] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/12/2014] [Indexed: 11/24/2022] Open
Abstract
Long-distance migration is a rare phenomenon in European bats. Genetic analyses and banding studies show that females can cover distances of up to 1,600 km, whereas males are sedentary or migrate only short distances. The onset of this sex-biased migration is supposed to occur shortly after rousing from hibernation and when the females are already pregnant. We therefore predicted that the sexes are exposed to different energetic pressures in early spring, and this should be reflected in their behavior and physiology. We investigated this in one of the three Central European long-distance migrants, the common noctule (Nyctalus noctula) in Southern Germany recording the first individual partial migration tracks of this species. In contrast to our predictions, we found no difference between male and female home range size, activity, habitat use or diet. Males and females emerged from hibernation in similar body condition and mass increase rate was the same in males and females. We followed the first migration steps, up to 475 km, of radio-tagged individuals from an airplane. All females, as well as some of the males, migrated away from the wintering area in the same northeasterly direction. Sex differences in long-distance migratory behavior were confirmed through stable isotope analysis of hair, which showed greater variation in females than in males. We hypothesize that both sexes faced similarly good conditions after hibernation and fattened at maximum rates, thus showing no differences in their local behavior. Interesting results that warrant further investigation are the better initial condition of the females and the highly consistent direction of the first migratory step in this population as summering habitats of the common noctule occur at a broad range in Northern Europe. Only research focused on individual strategies will allow us to fully understand the migratory behavior of European bats.
Collapse
Affiliation(s)
- Dina K. N. Dechmann
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
- * E-mail:
| | - Martin Wikelski
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| | - Katarina Varga
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
| | | | - Wolfgang Fiedler
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
| | - Kamran Safi
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
| | | | - M. Teague O'Mara
- Max Planck Institute for Ornithology, Department of Migration and Immuno-Ecology, Am Obstberg 1, 78315 Radolfzell, Germany
- University of Konstanz, Department of Biology, 78457 Konstanz, Germany
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
32
|
Schmieder DA, Zsebők S, Siemers BM. The tail plays a major role in the differing manoeuvrability of two sibling species of mouse-eared bats (Myotis myotis and Myotis blythii). CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two sympatrically occurring bat species, the greater mouse-eared bat (Myotis myotis (Borkhausen, 1797)) and the lesser mouse-eared bat (Myotis blythii (Tomes, 1857)) (Chiroptera, Vespertillionidae), share numerous similarities in morphology, roosting behaviour, and echolocation and are often difficult to distinguish. However, despite these similarities, their foraging behaviour is noticeably different. Our aim was to examine the extent to which these different foraging strategies reflect morphological adaptation. We assessed whether the morphology of the wing, body, and tail differed between M. myotis and M. blythii. In addition, in a laboratory experiment involving an obstacle course, we compared differences in manoeuvrability by relating them to our morphological measurements. The two species differed in their overall size, wing-tip shape, and tail-to-body length ratio. The generally smaller sized M. blythii performed better in the obstacle course and was therefore considered to be more manoeuvrable. Although differences in wing-tip shape were observed, we found the most important characteristic affecting manoeuvrability in both species to be the tail-to-body length ratio. Additionally, when we compared two bats with injured wing membranes with unharmed bats of the same species, we found no difference in manoeuvrability, even when the wing shape was asymmetric. We therefore postulate that morphometric differences between the two species in their overall size and, more importantly, in their tail-to-body length ratio are the main physical characteristics providing proof of adaptation to different foraging and feeding strategies.
Collapse
Affiliation(s)
- Daniela A. Schmieder
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- International Max Planck Research School (IMPRS) for Organismal Biology, University Konstanz, Konstanz, Germany
- Conservation Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Sándor Zsebők
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
- Université Paris Sud, Centre de Neurosciences Paris Sud, UMR 8195, Orsay, France
| | - Björn M. Siemers
- Sensory Ecology Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| |
Collapse
|
33
|
Marinello M, Bernard E. Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0127] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wing morphology has a direct influence on the flight manoeuvrability, agility, and speed of bats. Studies addressing the relationship between bat wing morphology and ecology are biased towards Old World species and few of them have addressed the ecologically rich Amazonian bat fauna. We quantitatively and qualitatively characterized the wing shape of 51 bat species found in the Brazilian Amazonia by measuring their aspect ratio (AR) and relative wing load (RWL). We found a high variability in wing shape: AR varied from 5.0862 (pygmy round-eared bat, Lophostoma brasiliense (Peters, 1866)) to 8.2774 (brown dog-faced bat, Molossus (Cynomops) paranus (Thomas, 1901)), while RWL varied from 20.0459 (spectral bat, Vampyrum spectrum (L., 1758)) to 55.3931 (Pallas’s mastiff, Molossus molossus (Pallas, 1766)). Insectivores had the largest variability, whereas frugivores and nectarivores had intermediate values with lower variability, indicating a higher flexibility in the use of space and resources. Our predictions on flight patterns are supported by capture and behavioural data from the literature, both of which point to the use of wing shape as a good proxy for habitat use and food partitioning among species. Our data are useful for integrative studies in ecology, physiology, behaviour, and evolution, and can contribute to a better understanding of the ecological interactions of Neotropical bat species.
Collapse
Affiliation(s)
- M.M. Marinello
- Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Nelson Chaves s/n, 50670-420, Recife, PE, Brazil
| | - E. Bernard
- Departamento de Zoologia, Universidade Federal de Pernambuco, Rua Nelson Chaves s/n, 50670-420, Recife, PE, Brazil
| |
Collapse
|
34
|
Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (molossidae). PLoS One 2014; 9:e85279. [PMID: 24454833 PMCID: PMC3891751 DOI: 10.1371/journal.pone.0085279] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 11/26/2013] [Indexed: 11/23/2022] Open
Abstract
Phylogeny, ecology, and sensorial constraints are thought to be the most important factors influencing echolocation call design in bats. The Molossidae is a diverse bat family with a majority of species restricted to tropical and subtropical regions. Most molossids are specialized to forage for insects in open space, and thus share similar navigational challenges. We use an unprecedented dataset on the echolocation calls of 8 genera and 18 species of New World molossids to explore how habitat, phylogenetic relatedness, body mass, and prey perception contribute to echolocation call design. Our results confirm that, with the exception of the genus Molossops, echolocation calls of these bats show a typical design for open space foraging. Two lines of evidence point to echolocation call structure of molossids reflecting phylogenetic relatedness. First, such structure is significantly more similar within than among genera. Second, except for allometric scaling, such structure is nearly the same in congeneric species. Despite contrasting body masses, 12 of 18 species call within a relatively narrow frequency range of 20 to 35 kHz, a finding that we explain by using a modeling approach whose results suggest this frequency range to be an adaptation optimizing prey perception in open space. To conclude, we argue that the high variability in echolocation call design of molossids is an advanced evolutionary trait allowing the flexible adjustment of echolocation systems to various sensorial challenges, while conserving sender identity for social communication. Unraveling evolutionary drivers for echolocation call design in bats has so far been hampered by the lack of adequate model organisms sharing a phylogenetic origin and facing similar sensorial challenges. We thus believe that knowledge of the echolocation call diversity of New World molossid bats may prove to be landmark to understand the evolution and functionality of species-specific signal design in bats.
Collapse
|
35
|
Hackett TD, Korine C, Holderied M. A whispering bat that screams: bimodal switch of foraging guild from gleaning to aerial-hawking in the desert long-eared bat. J Exp Biol 2014; 217:3028-32. [DOI: 10.1242/jeb.100362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Echolocating bats have historically been classified as either loud aerial-hawkers or whispering gleaners. Some bat species can forage in multiple ways and others have demonstrated limited flexibility in the amplitude of their echolocation calls. The desert long-eared bat, Otonycteris hemprichii, has been said to be a passive gleaning whispering bat preying on terrestrial arthropods such as scorpions. Using an acoustic tracking system we recorded individuals flying at foraging and drinking sites and compared their flight height, flight speed, call duration, pulse interval and source levels to gleaning individuals previously recorded using the same setup. We found differences in all variables with the strongest difference in source levels where bats called at a mean of 119 dBpeSPL (compared to 75 dBpeSPL when gleaning). Bat faecal analysis indicated that their diet differed from previous studies and that prey species were capable of flight. We conclude that the bats switched from passive gleaning to capturing airborne insects (aerial-hawking). While whispering bats have been known to opportunistically catch insects on the wing, in the present study we show a full bimodal switch between foraging guilds with the respective changes in source level to those typical of a true aerial-hawker.
Collapse
|
36
|
Speakman JR. Measuring energy metabolism in the mouse - theoretical, practical, and analytical considerations. Front Physiol 2013; 4:34. [PMID: 23504620 PMCID: PMC3596737 DOI: 10.3389/fphys.2013.00034] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
Abstract
The mouse is one of the most important model organisms for understanding human genetic function and disease. This includes characterization of the factors that influence energy expenditure and dysregulation of energy balance leading to obesity and its sequelae. Measuring energy metabolism in the mouse presents a challenge because the animals are small, and in this respect it presents similar challenges to measuring energy demands in many other species of small mammal. This paper considers some theoretical, practical, and analytical considerations to be considered when measuring energy expenditure in mice. Theoretically total daily energy expenditure is comprised of several different components: basal or resting expenditure, physical activity, thermoregulation, and the thermic effect of food. Energy expenditure in mice is normally measured using open flow indirect calorimetry apparatus. Two types of system are available – one of which involves a single small Spartan chamber linked to a single analyzer, which is ideal for measuring the individual components of energy demand. The other type of system involves a large chamber which mimics the home cage environment and is generally configured with several chambers/analyzer. These latter systems are ideal for measuring total daily energy expenditure but at present do not allow accurate decomposition of the total expenditure into its components. The greatest analytical challenge for mouse expenditure data is how to account for body size differences between individuals. This has been a matter of some discussion for at least 120 years. The statistically most appropriate approach is to use analysis of covariance with individual aspects of body composition as independent predictors.
Collapse
Affiliation(s)
- John R Speakman
- Key State Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences Beijing, China ; Institute of Biological and Environmental Sciences, University of Aberdeen Aberdeen, Scotland, UK
| |
Collapse
|
37
|
von Busse R, Swartz SM, Voigt CC. Flight metabolism in relation to speed in Chiroptera: testing the U-shape paradigm in the short-tailed fruit bat Carollia perspicillata. ACTA ACUST UNITED AC 2013; 216:2073-80. [PMID: 23430989 DOI: 10.1242/jeb.081760] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Aerodynamic theory predicts that flight for fixed-wing aircraft requires more energy at low and high speeds compared with intermediate speeds, and this theory has often been extended to predict speed-dependent metabolic rates and optimal flight speeds for flying animals. However, the theoretical U-shaped flight power curve has not been robustly tested for Chiroptera, the only mammals capable of flapping flight. We examined the metabolic rate of seven Seba's short-tailed fruit bats (Carollia perspicillata) during unrestrained flight in a wind tunnel at air speeds from 1 to 7 m s(-1). Following intra-peritoneal administration of (13)C-labeled Na-bicarbonate, we measured the enrichment in (13)C of exhaled breath before and after flight. We converted fractional turnover of (13)C into metabolic rate and power, based on the assumption that bats oxidized glycogen during short flights. Power requirements of flight varied with air speed in a U-shaped manner in five out of seven individuals, whereas energy turnover was not related to air speed in two individuals. Power requirements of flight were close to values predicted by Pennycuick's aerodynamic model for minimum power speed, but differed for maximum range speed. The results of our experiment support the theoretical expectation of a U-shaped power curve for flight metabolism in a bat.
Collapse
Affiliation(s)
- Rhea von Busse
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
38
|
Voigt CC, Sörgel K, Šuba J, Keišs O, Pētersons G. The insectivorous bat Pipistrellus nathusii uses a mixed-fuel strategy to power autumn migration. Proc Biol Sci 2012; 279:3772-8. [PMID: 22719039 DOI: 10.1098/rspb.2012.0902] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In contrast to birds, bats are possibly limited in their capacity to use body fat as an energy source for long migrations. Here, we studied the fuel choice of migratory Pipistrellus nathusii (approximate weight: 8 g) by analysing the stable carbon isotope ratio (δ(13)C(V-PDB)) of breath and potential energy sources. Breath δ(13)C(V-PDB) was intermediate between δ(13)C(V-PDB) of insect prey and adipocyte triacylglycerols, suggesting a mixed-fuel use of P. nathusii during autumn migration. To clarify the origin of oxidized fatty acids, we performed feeding experiments with captive P. nathusii. After an insect diet, bat breath was enriched in (13)C relative to the bulk and fat portion of insects, but not deviating from the non-fat portion of insects, suggesting that bats oxidized exogenous proteins and carbohydrates, but not exogenous fatty acids. A feeding experiment with (13)C-labelled substrates confirmed these findings. In conclusion, migratory P. nathusii oxidized dietary proteins directly from insects captured en route in combination with endogenous fatty acids from adipocytes, and replenished their body reserves by routing dietary fatty acids to their body reserves.
Collapse
Affiliation(s)
- Christian C Voigt
- Leibniz Institute for Zoo and Wildlife Research, Evolutionary Ecology Research Group, 10315 Berlin, Germany.
| | | | | | | | | |
Collapse
|
39
|
Voigt CC, Lewanzik D. 'No cost of echolocation for flying bats' revisited. J Comp Physiol B 2012; 182:831-40. [PMID: 22526262 DOI: 10.1007/s00360-012-0663-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 03/21/2012] [Accepted: 04/03/2012] [Indexed: 11/29/2022]
Abstract
Echolocation is energetically costly for resting bats, but previous experiments suggested echolocation to come at no costs for flying bats. Yet, previous studies did not investigate the relationship between echolocation, flight speed, aerial manoeuvres and metabolism. We re-evaluated the 'no-cost' hypothesis, by quantifying the echolocation pulse rate, the number of aerial manoeuvres (landings and U-turns), and the costs of transport in the 5-g insectivorous bat Rhogeessa io (Vespertilionidae). On average, bats (n = 15) travelled at 1.76 ± 0.36 m s⁻¹ and performed 11.2 ± 6.1 U-turns and 2.8 ± 2.9 ground landings when flying in an octagonal flight cage. Bats made more U-turns with decreasing wing loading (body weight divided by wing area). At flight, bats emitted 19.7 ± 2.7 echolocation pulses s⁻¹ (range 15.3-25.8 pulses s⁻¹), and metabolic rate averaged 2.84 ± 0.95 ml CO₂ min⁻¹, which was more than 16 times higher than at rest. Bats did not echolocate while not engaged in flight. Costs of transport were not related to the rate of echolocation pulse emission or the number of U-turns, but increased with increasing number of landings; probably as a consequence of slower travel speed when staying briefly on ground. Metabolic power of flight was lower than predicted for R. io under the assumption that energetic costs of echolocation call production is additive to the aerodynamic costs of flight. Results of our experiment are consistent with the notion that echolocation does not add large energetic costs to the aerodynamic power requirements of flight in bats.
Collapse
Affiliation(s)
- Christian C Voigt
- Evolutionary Ecology Research Group, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, 10315 Berlin, Germany.
| | | |
Collapse
|
40
|
Voigt CC, Borissov IM, Voigt-Heucke SL. Terrestrial locomotion imposes high metabolic requirements on bats. J Exp Biol 2012; 215:4340-4. [DOI: 10.1242/jeb.076224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
The evolution of powered flight involved major morphological changes in Chiroptera. Nevertheless, all bats are also capable of crawling on the ground and some are even skilled sprinters. We asked if a highly derived morphology adapted for flapping flight imposes high metabolic requirements on bats when moving on the ground. We measured the metabolic rate during terrestrial locomotion in mastiff bats, Molossus currentium; a species that is both, a fast-flying aerial-hawking bat and an agile crawler on the ground. Metabolic rates of bats averaged 8.0 ± 4.0 ml CO2 min-1 during a one minute period of sprinting at 1.3 ± 0.6 km h-1. With rising average speed, mean metabolic rates increased, reaching peak values that were similar to those of flying conspecifics. Metabolic rates of M. currentium were higher than those of similar-sized rodents under steady-state conditions that sprinted at similar velocities. When M. currentium sprinted at peak velocities its aerobic metabolic rate was 3-5 times higher than those of rodent species running continuously in steady-state condition. Costs of transport (J kg-1 m-1) were more than ten times higher for running than for flying bats. We conclude that at the same speed bats experience higher metabolic rates during short sprints than quadruped mammals during steady-state terrestrial locomotion, yet running bats achieve higher maximal mass-specific aerobic metabolic rates than non-volant mammals such as rodents.
Collapse
Affiliation(s)
- Christian C. Voigt
- Leibniz Institute for Zoo and Wildlife Research; Freie Universität Berlin
| | | | | |
Collapse
|