1
|
Figueroa-Huitrón R, Díaz de la Vega-Pérez A, Plasman M, Pérez-Mendoza HA. Physiological thermal responses of three Mexican snakes with distinct lifestyles. PeerJ 2024; 12:e17705. [PMID: 39040933 PMCID: PMC11262299 DOI: 10.7717/peerj.17705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
The impact of temperature on reptile physiology has been examined through two main parameters: locomotor performance and metabolic rates. Among reptiles, different species may respond to environmental temperatures in distinct ways, depending on their thermal sensitivity. Such variation can be linked to the ecological lifestyle of the species and needs to be taken into consideration when assessing the thermal influence on physiology. This is particularly relevant for snakes, which are a very functionally diverse group. In this study, our aim was to analyze the thermal sensitivity of locomotor performance and resting metabolic rate (RMR) in three snake species from central Mexico (Crotalus polystictus, Conopsis lineata, and Thamnophis melanogaster), highlighting how it is influenced by their distinctive behavioral and ecological traits. We tested both physiological parameters in five thermal treatments: 15 °C, 25 °C, 30 °C, 33 °C, and 36 °C. Using the performance data, we developed thermal performance curves (TPCs) for each species and analyzed the RMR data using generalized linear mixed models. The optimal temperature for locomotion of C. polystictus falls near its critical thermal maximum, suggesting that it can maintain performance at high temperatures but with a narrow thermal safety margin. T. melanogaster exhibited the fastest swimming speeds and the highest mass-adjusted RMR. This aligns with our expectations since it is an active forager, a high energy demand mode. The three species have a wide performance breadth, which suggests that they are thermal generalists that can maintain performance over a wide interval of temperatures. This can be beneficial to C. lineata in its cold habitat, since such a characteristic has been found to allow some species to maintain adequate performance levels in suboptimal temperatures. RMR increased along with temperature, but the proportional surge was not uniform since thermal sensitivity measured through Q10 increased at the low and high thermal treatments. High Q10 at low temperatures could be an adaptation to maintain favorable performance in suboptimal temperatures, whereas high Q10 at high temperatures could facilitate physiological responses to heat stress. Overall, our results show different physiological adaptations of the three species to the environments they inhabit. Their different activity patterns and foraging habits are closely linked to these adaptations. Further studies of other populations with different climatic conditions would provide valuable information to complement our current understanding of the effect of environmental properties on snake physiology.
Collapse
Affiliation(s)
- Ricardo Figueroa-Huitrón
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Anibal Díaz de la Vega-Pérez
- Consejo Nacional de Humanidades Ciencias y Tecnologías-Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Melissa Plasman
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Hibraim Adán Pérez-Mendoza
- Laboratorio de Ecología Evolutiva y Conservación de Anfibios y Reptiles, Facultad de Estudios Superiores Iztacala, UNAM, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
2
|
Dezetter M, Dupoué A, Le Galliard J, Lourdais O. Additive effects of developmental acclimation and physiological syndromes on lifetime metabolic and water loss rates of a dry‐skinned ectotherm. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mathias Dezetter
- CNRS Sorbonne UniversitéUMR 7618iEES ParisUniversité Pierre et Marie Curie Paris France
- Centre d’étude Biologique de Chizé CNRSUMR 7372 Villiers en Bois France
| | - Andréaz Dupoué
- CNRS Sorbonne UniversitéUMR 7618iEES ParisUniversité Pierre et Marie Curie Paris France
| | - Jean‐François Le Galliard
- CNRS Sorbonne UniversitéUMR 7618iEES ParisUniversité Pierre et Marie Curie Paris France
- Ecole Normale SupérieurePSL Research UniversityCNRSUMS 3194Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron IleDeFrance) Saint‐Pierre‐lès‐Nemours France
| | - Olivier Lourdais
- Centre d’étude Biologique de Chizé CNRSUMR 7372 Villiers en Bois France
- School of Life Sciences Arizona State University Tempe AZ USA
| |
Collapse
|
3
|
Rodgers EM, Franklin CE, Noble DWA. Diving in hot water: a meta-analytic review of how diving vertebrate ectotherms will fare in a warmer world. J Exp Biol 2021; 224:224/Suppl_1/jeb228213. [PMID: 33627460 DOI: 10.1242/jeb.228213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Diving ectothermic vertebrates are an important component of many aquatic ecosystems, but the threat of climate warming is particularly salient to this group. Dive durations typically decrease as water temperatures rise; yet, we lack an understanding of whether this trend is apparent in all diving ectotherms and how this group will fare under climate warming. We compiled data from 27 studies on 20 ectothermic vertebrate species to quantify the effect of temperature on dive durations. Using meta-analytic approaches, we show that, on average, dive durations decreased by 11% with every 1°C increase in water temperature. Larger increases in temperature (e.g. +3°C versus +8-9°C) exerted stronger effects on dive durations. Although species that respire bimodally are projected to be more resilient to the effects of temperature on dive durations than purely aerial breathers, we found no significant difference between these groups. Body mass had a weak impact on mean dive durations, with smaller divers being impacted by temperature more strongly. Few studies have examined thermal phenotypic plasticity (N=4) in diving ectotherms, and all report limited plasticity. Average water temperatures in marine and freshwater habitats are projected to increase between 1.5 and 4°C in the next century, and our data suggest that this magnitude of warming could translate to substantial decreases in dive durations, by approximately 16-44%. Together, these data shed light on an overlooked threat to diving ectothermic vertebrates and suggest that time available for underwater activities, such as predator avoidance and foraging, may be shortened under future warming.
Collapse
Affiliation(s)
- Essie M Rodgers
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, 4072 Queensland, Australia
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
4
|
Wiles SC, Bertram MG, Martin JM, Tan H, Lehtonen TK, Wong BBM. Long-Term Pharmaceutical Contamination and Temperature Stress Disrupt Fish Behavior. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8072-8082. [PMID: 32551542 DOI: 10.1021/acs.est.0c01625] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Natural environments are subject to a range of anthropogenic stressors, with pharmaceutical pollution being among the fastest-growing agents of global change. However, despite wild animals living in complex multi-stressor environments, interactions between pharmaceutical exposure and other stressors remain poorly understood. Accordingly, we investigated effects of long-term exposure to the pervasive pharmaceutical contaminant fluoxetine (Prozac) and acute temperature stress on reproductive behaviors and activity levels in the guppy (Poecilia reticulata). Fish were exposed to environmentally realistic fluoxetine concentrations (measured average: 38 or 312 ng/L) or a solvent control for 15 months using a mesocosm system. Additionally, fish were subjected to one of three acute (24 h) temperature treatments: cold stress (18 °C), heat stress (32 °C), or a control (24 °C). We found no evidence for interactive effects of fluoxetine exposure and temperature stress on guppy behavior. However, both stressors had independent impacts. Fluoxetine exposure resulted in increased male coercive copulatory behavior, while fish activity levels were unaffected. Under cold-temperature stress, both sexes were less active and males exhibited less frequent reproductive behaviors. Our results demonstrate that long-term exposure to a common pharmaceutical pollutant and acute temperature stress alter fundamental fitness-related behaviors in fish, potentially shifting population dynamics in contaminated ecosystems.
Collapse
Affiliation(s)
- Sarah C Wiles
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Michael G Bertram
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Department of Wildlife, Fish, and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Jake M Martin
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Hung Tan
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| | - Topi K Lehtonen
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
- Ecology and Genetics Research Unit, Faculty of Science, University of Oulu, Oulu, 90570, Finland
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
5
|
Evidence for Control of Cutaneous Oxygen Uptake in the Yellow-Lipped Sea KraitLaticauda colubrina(Schneider, 1799). J HERPETOL 2016. [DOI: 10.1670/15-037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Udyawer V, Simpfendorfer CA, Heupel MR, Clark TD. Coming up for air: thermal-dependence of dive behaviours and metabolism in sea snakes. J Exp Biol 2016; 219:3447-3454. [DOI: 10.1242/jeb.146571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/22/2016] [Indexed: 02/04/2023]
Abstract
Cutaneous gas exchange allows some air-breathing diving ectotherms to supplement their pulmonary oxygen uptake, which may allow prolongation of dives and an increased capacity to withstand anthropogenic and natural threatening processes that increase submergence times. However, little is known of the interplay between metabolism, bimodal oxygen uptake and activity levels across thermal environments in diving ectotherms. Here, we show in two species of sea snake (spine-bellied sea snake; Hydrophis curtus and elegant sea snake; H. elegans) that increasing temperature elevates surfacing rates, increases total oxygen consumption, and decreases dive durations. The majority of dives observed in both species remained within estimated maximal aerobic limits. While cutaneous gas exchange accounted for a substantial proportion of total oxygen consumption (up to 23%), unexpectedly it was independent of water temperature and activity levels, suggesting a diffusion-limited mechanism. Our findings demonstrate that rising water temperature and a limited capability to up-regulate cutaneous oxygen uptake may compromise the proficiency with which sea snakes perform prolonged dives. This may hinder their capacity to withstand ongoing anthropogenic activities like trawl fishing, and increase their susceptibility to surface predation as their natural environments continue to warm.
Collapse
Affiliation(s)
- Vinay Udyawer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Colin A. Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
| | - Michelle R. Heupel
- Centre for Sustainable Tropical Fisheries and Aquaculture & College of Marine and Environmental Sciences, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Timothy D. Clark
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Current address: University of Tasmania & CSIRO Agriculture and Food, Hobart, Tasmania, Australia
| |
Collapse
|
7
|
Rodgers EM, Schwartz JJ, Franklin CE. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus). CONSERVATION PHYSIOLOGY 2015; 3:cov054. [PMID: 27293738 PMCID: PMC4778457 DOI: 10.1093/conphys/cov054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/18/2015] [Accepted: 10/27/2015] [Indexed: 06/06/2023]
Abstract
Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of 'fright-dive' capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; 'moderate' climate warming, 31.5°C; 'high' climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q 10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28-35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained 'fright-dive' performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming.
Collapse
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jonathon J. Schwartz
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Xu C, Dang W, Luo L, Lu H. Aquatic and terrestrial locomotor performance of juvenile three-keeled pond turtles acclimated to different temperatures. ANIM BIOL 2015. [DOI: 10.1163/15707563-00002475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Locomotion is important for behaviors such as foraging and predator avoidance, and is influenced by temperature in ectotherms. To investigate this in turtles, we acclimated juvenile Chinese three-keeled pond turtles, Chinemys reevesii, under three thermal conditions for four weeks. Subsequently, we measured three locomotor performances (swimming, running, and righting) at different test temperatures. Overall, swimming and running speeds of turtles increased with increasing test temperature in the range of 13-33°C and decreased at higher test temperatures, whereas righting time decreased with increasing test temperature in the range of 13-33°C and slightly increased at higher test temperatures. Acclimation temperature affected both swimming and running speeds, with the high temperature-acclimated turtles swimming and running faster than low temperature-acclimated turtles, but it did not affect righting performance. From the constructed thermal performance curves, between-group differences were found in the estimated maximal speed (swimming and running) and optimal temperature, but not in the performance breadth. Juvenile turtles acclimated to relatively warm temperatures had better performances than those acclimated to cool temperatures, supporting the “hotter is better” hypothesis. A similar acclimatory change was found during aquatic and terrestrial locomotion in juvenile C. reevesii. Our findings are consistent with the hypothesis that animals from less thermally variable environments should have a greater acclimatory ability than those from more variable environments, because turtles were acclimated under aquatic environments with no thermal variability.
Collapse
Affiliation(s)
- Chunxia Xu
- 1Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Wei Dang
- 1Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| | - Laigao Luo
- 2School of Biology and Food Engineering, Chuzhou University, Chuzhou Anhui, 239000, China
| | - Hongliang Lu
- 1Hangzhou Key Laboratory for Animal Adaptation and Evolution, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 310036, China
| |
Collapse
|
9
|
Fobian D, Overgaard J, Wang T. Oxygen transport is not compromised at high temperature in pythons. ACTA ACUST UNITED AC 2014; 217:3958-61. [PMID: 25267848 DOI: 10.1242/jeb.105148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To evaluate whether the 'oxygen and capacity limited thermal tolerance' model (OCLTT) applies to an air-breathing ectothermic vertebrate, we measured oxygen uptake (V̇(O₂)), cardiac performance and arterial blood gases during a progressive rise of temperature from 30 to 40°C in the snake Python regius. V̇(O₂) of fasting snakes increased exponentially with temperature whereas V̇(O₂) of digesting snakes at high temperatures plateaued at a level 3- to 4-fold above fasting. The high and sustained aerobic metabolism over the entire temperature range was supported by pronounced tachycardia at all temperatures, and both fasting and digesting snakes maintained a normal acid-base balance without any indication of anaerobic metabolism. All snakes also maintained high arterial PO2, even at temperatures close to the upper lethal temperature. Thus, there is no evidence of a reduced capacity for oxygen transport at high temperatures in either fasting or digesting snakes, suggesting that the upper thermal tolerance of this species is limited by other factors.
Collapse
Affiliation(s)
- Dannie Fobian
- Zoophysiology, Department of Bioscience, 8000 Aarhus C, Denmark
| | | | - Tobias Wang
- Zoophysiology, Department of Bioscience, 8000 Aarhus C, Denmark
| |
Collapse
|