1
|
Viswanath M, Peter MCS. Thyroid hormones activate TH/E 2 receptor/regulator system and drive Na +/K +-ATPase in the ovarian wall of hypothyroid air-breathing fish (Anabas testudineus Bloch). Gen Comp Endocrinol 2024; 360:114640. [PMID: 39536982 DOI: 10.1016/j.ygcen.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 11/09/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
In fish, as in other vertebrates, thyroid hormones (THs) act on many biological processes including growth and reproduction. Primary THs such as thyroxine (T4) and triiodothyronine (T3) are known for their direct action on osmoregulatory organs regulating ion osmotic homeostasis in many teleost fishes. However, it is unclear how these hormones interact with estradiol-17β (E2), an ovarian hormone that regulates the development of oocytes. We thus examined the short-term in vivo action of varied THs such as T4, T3 and T2, a potent TH metabolite diiodothyronine, on the expression pattern of receptors of THs and E2 in the ovarian wall of the hypothyroid climbing perch to identify the interactive pattern of TH/E2 receptor system and the molecular dynamics of Na+/K+ -ATPase (NKA) subunits in the ovarian wall that provides structural and functional support to ovary. We found differential pattern of transcript abundance of NKA subunits isoforms such as nkaα1a, nka<1b, nka<1c atp1b1, atp1b2 and fxyd3, fxyd5, fxyd6, TH receptor isoforms (tr<, trβ, tr
Collapse
Affiliation(s)
- Meenu Viswanath
- Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | - M C Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology-iCEIB, School of Life Sciences, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India; Sastrajeevan Integrative Bioresearch and Education-SIBE, F17-Gandhipuram, Sreekariyam, Thiruvananthapuram 695017, Kerala, India.
| |
Collapse
|
2
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular characterization of three Rhesus glycoproteins from the gills of the African lungfish, Protopterus annectens, and effects of aestivation on their mRNA expression levels and protein abundance. PLoS One 2017; 12:e0185814. [PMID: 29073147 PMCID: PMC5657625 DOI: 10.1371/journal.pone.0185814] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
African lungfishes are ammonotelic in water. They can aestivate for long periods on land during drought. During aestivation, the gills are covered with dried mucus and ammonia excretion ceases. In fishes, ammonia excretion through the gills involves Rhesus glycoproteins (RhGP/Rhgp). This study aimed to obtain the complete cDNA coding sequences of rhgp from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Three isoforms of rhgp (rhag, rhbg and rhcg) were obtained in the gills of P. annectens. Their complete cDNA coding sequences ranged between 1311 and 1398 bp, coding for 436 to 465 amino acids with estimated molecular masses between 46.8 and 50.9 kDa. Dendrogramic analyses indicated that Rhag was grouped closer to fishes, while Rhbg and Rhcg were grouped closer to tetrapods. During the induction phase, the protein abundance of Rhag, but not its transcript level, was down-regulated in the gills, suggesting that there could be a decrease in the release of ammonia from the erythrocytes to the plasma. Furthermore, the branchial transcript levels of rhbg and rhcg decreased significantly, in preparation for the subsequent shutdown of gill functions. During the maintenance phase, the branchial expression levels of rhag/Rhag, rhbg/Rhbg and rhcg/Rhcg decreased significantly, indicating that their transcription and translation were down-regulated. This could be part of an overall mechanism to shut down branchial functions and save metabolic energy used for transcription and translation. It could also be regarded as an adaptive response to stop ammonia excretion. During the arousal phase, it is essential for the lungfish to regain the ability to excrete ammonia. Indeed, the protein abundance of Rhag, Rhbg and Rhcg recovered to the corresponding control levels after 1 day or 3 days of recovery from 6 months of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of Singapore, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
3
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Aestivation Induces Changes in the mRNA Expression Levels and Protein Abundance of Two Isoforms of Urea Transporters in the Gills of the African Lungfish, Protopterus annectens. Front Physiol 2017; 8:71. [PMID: 28261105 PMCID: PMC5311045 DOI: 10.3389/fphys.2017.00071] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/26/2017] [Indexed: 11/26/2022] Open
Abstract
The African lungfish, Protopterus annectens, is ammonotelic in water despite being ureogenic. When it aestivates in mucus cocoon on land, ammonia is detoxified to urea. During the maintenance phase of aestivation, urea accumulates in the body, which is subsequently excreted upon arousal. Urea excretion involves urea transporters (UT/Ut). This study aimed to clone and sequence the ut isoforms from the gills of P. annectens, and to test the hypothesis that the mRNA and/or protein expression levels of ut/Ut isoforms could vary in the gills of P. annectens during the induction, maintenance, and arousal phases of aestivation. Two isoforms of ut, ut-a2a and ut-a2b, were obtained from the gills of P. annectens. ut-a2a consisted of 1227 bp and coded for 408 amino acids with an estimated molecular mass of 44.7 kDa, while ut-a2b consisted of 1392 bp and coded for 464 amino acids with an estimated molecular mass of 51.2 kDa. Ut-a2a and Ut-a2b of P. annectens had a closer phylogenetic relationship with Ut/UT of tetrapods than Ut of fishes. While the mRNA expression pattern of ut-a2a and ut-a2b across various tissues of P. annectens differed, the transcript levels of ut-a2a and ut-a2b in the gills were comparable, indicating that they might be equally important for branchial urea excretion during the initial arousal phase of aestivation. During the maintenance phase of aestivation, the transcript level of ut-a2a increased significantly, but the protein abundance of Ut-a2a remained unchanged in the gills of P. annectens. This could be an adaptive feature to prepare for an increase in the production of Ut-a2a upon arousal. Indeed, arousal led to a significant increase in the branchial Ut-a2a protein abundance. Although the transcript level of ut-a2b remained unchanged, there were significant increases in the protein abundance of Ut-a2b in the gills of P. annectens throughout the three phases of aestivation. The increase in the protein abundance of Ut-a2b during the maintenance phase could also be an adaptive feature to prepare for efficient urea excretion when water becomes available.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- NUS Environmental Research Institute, National University of SingaporeSingapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|
4
|
Ong JLY, Chng YR, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Ip YK. Molecular characterization of myostatin from the skeletal muscle of the African lungfish, Protopterus annectens, and changes in its mRNA and protein expression levels during three phases of aestivation. J Comp Physiol B 2017; 187:575-589. [PMID: 28184997 DOI: 10.1007/s00360-017-1057-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 12/26/2016] [Accepted: 01/11/2017] [Indexed: 01/12/2023]
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - You R Chng
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Xiu L Chen
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Chng YR, Ong JLY, Ching B, Chen XL, Hiong KC, Wong WP, Chew SF, Lam SH, Ip YK. Molecular Characterization of Aquaporin 1 and Aquaporin 3 from the Gills of the African Lungfish, Protopterus annectens, and Changes in Their Branchial mRNA Expression Levels and Protein Abundance during Three Phases of Aestivation. Front Physiol 2016; 7:532. [PMID: 27891097 PMCID: PMC5102888 DOI: 10.3389/fphys.2016.00532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023] Open
Abstract
African lungfishes can undergo long periods of aestivation on land during drought. During aestivation, lungfishes are confronted with desiccation and dehydration, and their gills become non-functional and covered with a thick layer of dried mucus. Aquaporins (Aqps) are a superfamily of integral membrane proteins which generally facilitate the permeation of water through plasma membranes. This study aimed to obtain the complete cDNA coding sequences of aqp1 and aqp3 from the gills of Protopterus annectens, and to determine their branchial mRNA and protein expression levels during the induction, maintenance and arousal phases of aestivation. Dendrogramic analyses of the deduced Aqp1 and Aqp3 amino acid sequences of P. annectens revealed their close relationships with those of Latimeria chalumnae and tetrapods. During the induction phase, there were significant decreases in the transcript levels of aqp1 and aqp3 in the gills of P. annectens, but the branchial Aqp1 and Aqp3 protein abundance remained unchanged. As changes in transcription might precede changes in translation, this could be regarded as an adaptive response to decrease the protein abundance of Aqp1 and Aqp3 in the subsequent maintenance phase of aestivation. As expected, the branchial transcript levels and protein abundance of aqp1/Aqp1 and aqp3/Aqp3 were significantly down-regulated during the maintenance phase, probably attributable to the shutdown of branchial functions and the cessation of volume regulation of branchial epithelial cells. Additionally, these changes could reduce the loss of water through branchial epithelial surfaces, supplementing the anti-desiccating property of the dried mucus. Upon arousal, it was essential for the lungfish to restore branchial functions. Indeed, the protein abundance of Aqp1 recovered partially, with complete recovery of mRNA expression level and protein abundance of Aqp3, in the gills of P. annectens after 3 days of arousal. These results provide insights into how P. annectens regulates branchial Aqp expression to cope with desiccation and rehydration during different phases of aestivation.
Collapse
Affiliation(s)
- You R. Chng
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Jasmine L. Y. Ong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Xiu L. Chen
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Kum C. Hiong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological UniversitySingapore, Singapore
| | - Siew H. Lam
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
- NUS Environmental Research Institute, National University of SingaporeSingapore, Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of SingaporeSingapore, Singapore
| |
Collapse
|
6
|
Yang WK, Chung CH, Cheng HC, Tang CH, Lee TH. Different expression patterns of renal Na +/K +-ATPase α-isoform-like proteins between tilapia and milkfish following salinity challenges. Comp Biochem Physiol B Biochem Mol Biol 2016; 202:23-30. [PMID: 27497666 DOI: 10.1016/j.cbpb.2016.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 07/28/2016] [Accepted: 07/30/2016] [Indexed: 01/13/2023]
Abstract
Euryhaline teleosts can survive in a broad range of salinity via alteration of the molecular mechanisms in certain osmoregulatory organs, including in the gill and kidney. Among these mechanisms, Na+/K+-ATPase (NKA) plays a crucial role in triggering ion-transporting systems. The switch of NKA isoforms in euryhaline fish gills substantially contributes to salinity adaptation. However, there is little information about switches in the kidneys of euryhaline teleosts. Therefore, the responses of the renal NKA α-isoform protein switch to salinity challenge in euryhaline tilapia (Oreochromis mossambicus) and milkfish (Chanos chanos) with different salinity preferences were examined and compared in this study. Immunohistochemical staining in tilapia kidneys revealed the localization of NKA in renal tubules rather than in the glomeruli, similar to our previous findings in milkfish kidneys. Protein abundance in the renal NKA pan α-subunit-like, α1-, and α3-isoform-like proteins in seawater-acclimated tilapia was significantly higher than in the freshwater group, whereas the α2-isoform-like protein exhibited the opposite pattern of expression. In the milkfish, higher protein abundance in the renal NKA pan α-subunit-like and α1-isoform-like proteins was found in freshwater-acclimated fish, whereas no difference was found in the protein abundance of α2- and α3-isoform-like proteins between groups. These findings suggested that switches for renal NKA α-isoforms, especially the α1-isoform, were involved in renal osmoregulatory mechanisms of euryhaline teleosts. Moreover, differences in regulatory responses of the renal NKA α-subunit to salinity acclimation between tilapia and milkfish revealed that divergent mechanisms for maintaining osmotic balance might be employed by euryhaline teleosts with different salinity preferences.
Collapse
Affiliation(s)
- Wen-Kai Yang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chang-Hung Chung
- Graduate Institute of Science Education, National Changhua University of Education, Changhua 50007, Taiwan; Taichung Municipal Kuang Rong Junior High School, Taichung 41265, Taiwan
| | - Hui Chen Cheng
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Cheng-Hao Tang
- Department of Oceanography, National Sun Yat-sen University, Kaohsiung 80424, Taiwan.
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Agricultural Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
7
|
Ong JLY, Woo JM, Hiong KC, Ching B, Wong WP, Chew SF, Ip YK. Molecular characterization of betaine-homocysteine methyltransferase 1 from the liver, and effects of aestivation on its expressions and homocysteine concentrations in the liver, kidney and muscle, of the African lungfish, Protopterus annectens. Comp Biochem Physiol B Biochem Mol Biol 2015; 183:30-41. [PMID: 25575738 DOI: 10.1016/j.cbpb.2014.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/19/2014] [Accepted: 12/23/2014] [Indexed: 01/12/2023]
Abstract
Homocysteine accumulation has numerous deleterious effects, and betaine-homocysteine S-methyltransferase (BHMT) catalyses the synthesis of methionine from homocysteine and betaine. This study aimed to determine homocysteine concentrations, and mRNA expression levels and protein abundances of bhmt1/Bhmt1 in the liver, kidney and muscle of the African lungfish, Protopterus annectens, during the induction (6 days), maintenance (6 months) or arousal (3 days after arousal) phase of aestivation. The homocysteine concentration decreased significantly in the liver of P. annectens after 6 days or 6 months of aestivation, but it returned to the control level upon arousal. By contrast, homocysteine concentrations in the kidney and muscle remained unchanged during the three phases of aestivation. The complete coding cDNA sequence of bhmt1 from P. annectens consisted of 1236 bp, coding for 412 amino acids. The Bhmt1 from P. annectens had a close phylogenetic relationship with those from tetrapods and Callorhinchus milii. The expression of bhmt1 was detected in multiple organs/tissues of P. annectens, and this is the first report on the expression of bhmt1/Bhmt1 in animal skeletal muscle. The mRNA and protein expression levels of bhmt1/Bhmt1 were up-regulated in the liver of P. annectens during the induction and maintenance phases of aestivation, possibly to regulate the hepatic homocysteine concentration. The significant increase in hepatic Bhmt1 protein abundance during the arousal phase could be a response to increased cellular methylation for the purpose of tissue reconstruction. Unlike the liver, Bhmt1 expression in the kidney and muscle of P. annectens was regulated translationally, and its up-regulation could be crucial to prevent homocysteine accumulation.
Collapse
Affiliation(s)
- Jasmine L Y Ong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Jia M Woo
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Kum C Hiong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Biyun Ching
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore
| | - Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore, 10 Kent Ridge Road, Singapore 117543, Republic of Singapore; The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore.
| |
Collapse
|
8
|
Hiong KC, Tan XR, Boo MV, Wong WP, Chew SF, Ip YK. Aestivation induces changes in transcription and translation of coagulation factor II and fibrinogen gamma chain in the liver of the African lungfish, Protopterus annectens. J Exp Biol 2015; 218:3717-28. [DOI: 10.1242/jeb.125260] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 09/17/2015] [Indexed: 11/20/2022]
Abstract
This study aimed to sequence and characterize two pro-coagulant genes, coagulation factor II (f2) and fibrinogen gamma chain (fgg), from the liver of the African lungfish Protopterus annectens, and to determine their hepatic mRNA expression levels during three phases of aestivation. The protein abundances of F2 and Fgg in the liver and plasma were determined by immunoblotting. Results indicated that F2 and Fgg of P. annectens were phylogenetically closer to those of amphibians than those of teleosts. Three days of aestivation resulted in an up-regulation in the hepatic fgg mRNA expression level, while 6 days of aestivation led to a significant increase (3-fold) in the protein abundance of Fgg in the plasma. Hence, there could be an increase in the blood clotting ability in P. annectens during the induction phase of aestivation. By contrast, the blood clotting ability in P. annectens might be reduced in response to decreased blood flow and increased possibility of thrombosis during the maintenance phase of aestivation, as 6 months of aestivation led to significant decreases in mRNA expression levels of f2 and fgg in the liver. There could also be a decrease in the export of F2 and Fgg from the liver to the plasma so as to avert thrombosis. Upon 3-6 days of arousal from 6 months of aestivation, the protein abundances of F2 and Fgg recovered partially in the plasma of P. annectens, and a complete recovery of the transcription and translation of f2/F2 in the liver might occur only after refeeding.
Collapse
Affiliation(s)
- Kum C. Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Xiang R. Tan
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Mel V. Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Wai P. Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
| | - Shit F. Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore 637616, Republic of Singapore
| | - Yuen K. Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 117543, Republic of Singapore
- The Tropical Marine Science Institute, National University of Singapore, Kent Ridge, Singapore 119227, Republic of Singapore
| |
Collapse
|
9
|
Molecular characterization of argininosuccinate synthase and argininosuccinate lyase from the liver of the African lungfish Protopterus annectens, and their mRNA expression levels in the liver, kidney, brain and skeletal muscle during aestivation. J Comp Physiol B 2014; 184:835-53. [PMID: 25034132 DOI: 10.1007/s00360-014-0842-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/11/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023]
Abstract
Argininosuccinate synthase (Ass) and argininosuccinate lyase (Asl) are involved in arginine synthesis for various purposes. The complete cDNA coding sequences of ass and asl from the liver of Protopterus annectens consisted of 1,296 and 1,398 bp, respectively. Phylogenetic analyses revealed that the deduced Ass and Asl of P. annectens had close relationship with that of the cartilaginous fish Callorhinchus milii. Besides being strongly expressed in the liver, ass and asl expression were detectable in many tissues/organs. In the liver, mRNA expression levels of ass and asl increased significantly during the induction phase of aestivation, probably to increase arginine production to support increased urea synthesis. The increases in ass and asl mRNA expression levels during the prolonged maintenance phase and early arousal phase of aestivation could reflect increased demand on arginine for nitric oxide (NO) production in the liver. In the kidney, there was a significant decrease in ass mRNA expression level after 6 months of aestivation, indicating possible decreases in the synthesis and supply of arginine to other tissues/organs. In the brain, changes in ass and asl mRNA expression levels during the three phases of aestivation could be related to the supply of arginine for NO synthesis in response to conditions that resemble ischaemia and ischaemia-reperfusion during the maintenance and arousal phase of aestivation, respectively. The decrease in ass mRNA expression level, accompanied with decreases in the concentrations of arginine and NO, in the skeletal muscle of aestivating P. annectens might ameliorate the potential of disuse muscle atrophy.
Collapse
|
10
|
Chew SF, Hiong KC, Lam SP, Ong SW, Wee WL, Wong WP, Ip YK. Functional roles of Na(+)/K(+)-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri. Front Physiol 2014; 5:158. [PMID: 24795653 PMCID: PMC4006040 DOI: 10.3389/fphys.2014.00158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/03/2014] [Indexed: 01/16/2023] Open
Abstract
The giant mudskipper, Periophthalmodon schlosseri, is an amphibious fish that builds burrows in the mudflats. It can actively excrete ammonia through its gills, and tolerate high environmental ammonia. This study aimed to examine the effects of seawater (salinity 30; SW) acclimation and/or environmental ammonia exposure on the kinetic properties of Na+/K+-ATPase (Nka) from, and mRNA expression and protein abundance of nka/Nka α–subunit isoforms in, the gills of P. schlosseri pre-acclimated to slightly brackish water (salinity 3; SBW). Our results revealed that the Nka from the gills of P. schlosseri pre-acclimated to SBW for 2 weeks had substantially higher affinity to (or lower Km for) K+ than NH+4, and its affinity to NH+4 decreased significantly after 6-days exposure to 75 mmol l−1 NH4Cl in SBW. Hence, Nka transported K+ selectively to maintain intracellular K+ homeostasis, instead of transporting NH+4 from the blood into ionocytes during active NH+4 excretion as previously suggested. Two nkaα isoforms, nkaα1 and nkaα3, were cloned and sequenced from the gills of P. schlosseri. Their deduced amino acid sequences had K+ binding sites identical to that of Nkaα1c from Anabas testudineus, indicating that they could effectively differentiate K+ from NH+4. Six days of exposure to 75 mmol l−1 NH4Cl in SBW, or to SW with or without 50 mmol l−1 NH4Cl led to significant increases in Nka activities in the gills of P. schlosseri. However, a significant increase in the comprehensive Nkaα protein abundance was observed only in the gills of fish exposed to 50 mmol l−1 NH4Cl in SW. Hence, post-translational modification could be an important activity modulator of branchial Nka in P. schlosseri. The fast modulation of Nka activity and concurrent expressions of two branchial nkaα isoforms could in part contribute to the ability of P. schlosseri to survive abrupt transfer between SBW and SW or abrupt exposure to ammonia.
Collapse
Affiliation(s)
- Shit F Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Kum C Hiong
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore ; Department of Biological Sciences, National University of Singapore Singapore, Singapore
| | - Sock P Lam
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University Singapore, Singapore
| | - Seow W Ong
- Department of Biological Sciences, National University of Singapore Singapore, Singapore
| | - Wei L Wee
- Department of Biological Sciences, National University of Singapore Singapore, Singapore
| | - Wai P Wong
- Department of Biological Sciences, National University of Singapore Singapore, Singapore
| | - Yuen K Ip
- Department of Biological Sciences, National University of Singapore Singapore, Singapore
| |
Collapse
|