1
|
Żarski D, Król J, Ledoré Y, Sarosiek B, Dryl K, Gomułka P, Palińska-Żarska K, Toomey L, Fontaine P, Milla S. Constant darkness negatively affects the outcome of hormonally induced reproduction in cultured Eurasian perch females. Animal 2021; 15:100340. [PMID: 34450509 DOI: 10.1016/j.animal.2021.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022] Open
Abstract
This study aimed to assess the effect of constant darkness applied to fish during controlled breeding on reproductive traits in domesticated females of Eurasian perch. Based on the assumption that keeping fish in constant darkness during the reproduction operation may reduce stress, suspected to be responsible for variable spawning effectiveness in this species. Two conditions were assessed (16 h light per day [group 16L] and constant darkness [group 0L], two tank replicates per condition). The reproductive protocol involved a 7-day-long adaptation period for group 0L where photoperiod was reduced by 2.3 h a day down to constant darkness. After the adaptation period, two hormone injections (salmon gonadoliberin analogue) were applied to both groups: priming (10 µg/kg) and resolving (25 µg/kg) with a 7-day interval between them. During the study, morphometric indices were recorded and blood, brain, and pituitary samples were collected to assess stress markers and determine hypothalamic-pituitary-gonadal axis functioning via measuring blood plasma hormones, as well as gonadoliberin and gonadotropins (luteinising hormone [LH] and follicle-stimulating hormone [FSH]) transcript abundance (n = 7 for each group at each sampling point). In addition, kinetics of the final oocyte maturation (FOM) process, ovulation rate, and egg quality of each group was monitored (n = 12 for each group). The results indicated that there were no differences in terms of morphometry, FOM kinetics, and most stress indices between groups throughout the experiment, except haematocrit, which increased immediately following the acclimation period in fish kept in darkness. Constant darkness negatively affected plasma levels of 17α,20β-dihydroxy-4-pregnen-3-one (DHP) and LH transcript expression at the time of the second hormone injection. This indicated that exposure to constant darkness negatively affected priming of the hormonal dose applied, resulted in the disruption of ovulation, and reduced ovulation rates (50%) for group 0L, as compared to 16L (91%). The findings of this study clearly indicate that constant darkness may have significant deleterious effects on reproductive traits throughout out-of-season induced, hormonally supported, controlled reproduction. Therefore, we advise against the use of constant darkness when managing broodstock reproduction in domesticated Eurasian perch.
Collapse
Affiliation(s)
- D Żarski
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748 Olsztyn, Poland.
| | - J Król
- Department of Salmonid Research, The Stanisław Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - Y Ledoré
- University of Lorraine, INRAE, UR AFPA, Faculty of Science and Technology, Boulevard des Aiguillettes, F-54506 Vandoeuvre-Lés-Nancy, France
| | - B Sarosiek
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748 Olsztyn, Poland
| | - K Dryl
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, ul. Tuwima 10, 10-748 Olsztyn, Poland
| | - P Gomułka
- Department of Ichthyology and Aquaculture, Faculty of Animal Bioengineering, University of Warmia and Mazury, Oczapowskiego 2, 10-719 Olsztyn, Poland
| | - K Palińska-Żarska
- Department of Ichthyology, Hydrobiology and Ecology of Waters, The Stanisław Sakowicz Inland Fisheries Institute, Oczapowskiego 10, 10-719 Olsztyn, Poland
| | - L Toomey
- University of Lorraine, INRAE, UR AFPA, Faculty of Science and Technology, Boulevard des Aiguillettes, F-54506 Vandoeuvre-Lés-Nancy, France
| | - P Fontaine
- University of Lorraine, INRAE, UR AFPA, Faculty of Science and Technology, Boulevard des Aiguillettes, F-54506 Vandoeuvre-Lés-Nancy, France
| | - S Milla
- University of Lorraine, INRAE, UR AFPA, Faculty of Science and Technology, Boulevard des Aiguillettes, F-54506 Vandoeuvre-Lés-Nancy, France
| |
Collapse
|
2
|
Pichaud N, Ekström A, Breton S, Sundström F, Rowinski P, Blier PU, Sandblom E. Adjustments of cardiac mitochondrial phenotype in a warmer thermal habitat is associated with oxidative stress in European perch, Perca fluviatilis. Sci Rep 2020; 10:17697. [PMID: 33077851 PMCID: PMC7572411 DOI: 10.1038/s41598-020-74788-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are playing key roles in setting the thermal limits of fish, but how these organelles participate in selection mechanisms during extreme thermal events associated with climate warming in natural populations is unclear. Here, we investigated the thermal effects on mitochondrial metabolism, oxidative stress, and mitochondrial gene expression in cardiac tissues of European perch (Perca fluviatilis) collected from an artificially heated ecosystem, the "Biotest enclosure", and an adjacent reference area in the Baltic sea with normal temperatures (~ 23 °C and ~ 16 °C, respectively, at the time of capture in summer). Fish were sampled one month after a heat wave that caused the Biotest temperatures to peak at ~ 31.5 °C, causing significant mortality. When assayed at 23 °C, Biotest perch maintained high mitochondrial capacities, while reference perch displayed depressed mitochondrial functions relative to measurements at 16 °C. Moreover, mitochondrial gene expression of nd4 (mitochondrial subunit of complex I) was higher in Biotest fish, likely explaining the increased respiration rates observed in this population. Nonetheless, cardiac tissue from Biotest perch displayed higher levels of oxidative damage, which may have resulted from their chronically warm habitat, as well as the extreme temperatures encountered during the preceding summer heat wave. We conclude that eurythermal fish such as perch are able to adjust and maintain mitochondrial capacities of highly aerobic organs such as the heart when exposed to a warming environment as predicted with climate change. However, this might come at the expense of exacerbated oxidative stress, potentially threatening performance in nature.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1A 3E9, Canada. .,Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada.
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Fredrik Sundström
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Piotr Rowinski
- Department of Ecology and Genetics, Uppsala University, 752 36, Uppsala, Sweden
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, G5L 3A1, Canada
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
| |
Collapse
|
3
|
Gomez Isaza DF, Cramp RL, Franklin CE. Thermal acclimation offsets the negative effects of nitrate on aerobic scope and performance. J Exp Biol 2020; 223:jeb224444. [PMID: 32647016 DOI: 10.1242/jeb.224444] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/06/2020] [Indexed: 08/26/2023]
Abstract
Rising temperatures are set to imperil freshwater fishes as climate change ensues unless compensatory strategies are employed. However, the presence of additional stressors, such as elevated nitrate concentrations, may affect the efficacy of compensatory responses. Here, juvenile silver perch (Bidyanus bidyanus) were exposed to current-day summer temperatures (28°C) or a future climate-warming scenario (32°C) and simultaneously exposed to one of three ecologically relevant nitrate concentrations (0, 50 or 100 mg l-1). We measured indicators of fish performance (growth, swimming), aerobic scope (AS) and upper thermal tolerance (CTmax) to test the hypothesis that nitrate exposure would increase susceptibility to elevated temperatures and limit thermal compensatory responses. After 8 weeks of acclimation, the thermal sensitivity and plasticity of AS and swimming performance were tested at three test temperatures (28, 32, 36°C). The AS of 28°C-acclimated fish declined with increasing temperature, and the effect was more pronounced in nitrate-exposed individuals. In these fish, declines in AS corresponded with poorer swimming performance and a 0.8°C decrease in CTmax compared with unexposed fish. In contrast, acclimation to 32°C masked the effects of nitrate; fish acclimated to 32°C displayed a thermally insensitive phenotype whereby locomotor performance remained unchanged, AS was maintained and CTmax was increased by ∼1°C irrespective of nitrate treatment compared with fish acclimated to 28°C. However, growth was markedly reduced in 32°C-acclimated compared with 28°C-acclimated fish. Our results indicate that nitrate exposure increases the susceptibility of fish to acute high temperatures, but thermal compensation can override some of these potentially detrimental effects.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca L Cramp
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Schwieterman GD, Bouyoucos IA, Potgieter K, Simpfendorfer CA, Brill RW, Rummer JL. Analysing tropical elasmobranch blood samples in the field: blood stability during storage and validation of the HemoCue® haemoglobin analyser. CONSERVATION PHYSIOLOGY 2019; 7:coz081. [PMID: 31803471 PMCID: PMC6883209 DOI: 10.1093/conphys/coz081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Blood samples collected from wild-caught fishes can provide important information regarding the effects of capture (and thus post-release survival) as well as other stressors. Unfortunately, blood samples often cannot be analysed immediately upon sampling, and blood parameters (e.g. blood oxygen levels and acid-base parameters) are known to change with storage duration due to the metabolic activity of the red blood cells. We obtained blood samples from both untreated and stressed individuals of both blacktip reef shark (Carcharhinus melanopterus) and sicklefin lemon shark (Negaprion acutidens) to determine the effects of storage duration on blood pH, haematocrit and haemoglobin concentration ([Hb]). We found no significant effects after storage on ice for up to 180 minutes. Moreover, to validate the usability of a HemoCue haemoglobin analyser (a point-of-care device), we compared data from this device to [Hb] determined using the cyanomethaemoglobin method with blood samples from 10 individuals from each of the aforementioned species as well as epaulette shark (Hemiscyllium ocellatum). Values from the HemoCue consistently overestimated [Hb], and we therefore developed the necessary correction equations. The correction equations were not statistically different among the three elasmobranch species within the biologically relevant range but did differ from published corrections developed using blood from temperate teleost fishes. Although the HemoCue is useful in field situations, development of species-specific calibration equations may be necessary to ensure the reliability of inter-species comparisons of blood [Hb]. Together, these data should increase confidence in haematological stress indicators in elasmobranch fishes, measurements of which are critical for understanding the impact of anthropogenic stressors on these ecologically important species.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Ian A Bouyoucos
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
- PSL Research University, EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 58 Avenue Paul Alduy, Perpignan Cedex 66860, France
| | - Kristy Potgieter
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Colin A Simpfendorfer
- Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia
| | - Richard W Brill
- Department of Fisheries Science, Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA 23062, USA
| | - Jodie L Rummer
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
5
|
Pichaud N, Ekström A, Breton S, Sundström F, Rowinski P, Blier PU, Sandblom E. Cardiac mitochondrial plasticity and thermal sensitivity in a fish inhabiting an artificially heated ecosystem. Sci Rep 2019; 9:17832. [PMID: 31780821 PMCID: PMC6883045 DOI: 10.1038/s41598-019-54165-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/06/2019] [Indexed: 12/03/2022] Open
Abstract
Some evidence suggests that cardiac mitochondrial functions might be involved in the resilience of ectotherms such as fish to environmental warming. Here, we investigated the effects of acute and chronic changes in thermal regimes on cardiac mitochondrial plasticity and thermal sensitivity in perch (Perca fluviatilis) from an artificially heated ecosystem; the “Biotest enclosure” (~25 °C), and from an adjacent area in the Baltic Sea with normal temperatures (reference, ~16 °C). We evaluated cardiac mitochondrial respiration at assay temperatures of 16 and 25 °C, as well as activities of lactate dehydrogenase (LDH) and citrate synthase (CS) in Biotest and reference perch following 8 months laboratory-acclimation to either 16 or 25 °C. While both populations exhibited higher acute mitochondrial thermal sensitivity when acclimated to their natural habitat temperatures, this sensitivity was lost when Biotest and reference fish were acclimated to 16 and 25 °C, respectively. Moreover, reference fish displayed patterns of metabolic thermal compensation when acclimated to 25 °C, whereas no changes were observed in Biotest perch acclimated to 16 °C, suggesting that cardiac mitochondrial metabolism of Biotest fish expresses local adaptation. This study highlights the adaptive responses of cardiac mitochondria to environmental warming, which can impact on fish survival and distribution in a warming climate.
Collapse
Affiliation(s)
- Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, E1 A 3E9, Canada. .,Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden. .,Department of Biology, Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1.
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Sophie Breton
- Department of Biological Sciences, Université de Montréal, Montréal, QC, H2V 2S9, Canada
| | - Fredrik Sundström
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Piotr Rowinski
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Pierre U Blier
- Department of Biology, Université du Québec à Rimouski, Rimouski, QC, Canada, G5L 3A1
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| |
Collapse
|
6
|
|
7
|
Ekström A, Sandblom E, Blier PU, Dupont Cyr BA, Brijs J, Pichaud N. Thermal sensitivity and phenotypic plasticity of cardiac mitochondrial metabolism in European perch, Perca fluviatilis. ACTA ACUST UNITED AC 2016; 220:386-396. [PMID: 27852753 DOI: 10.1242/jeb.150698] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/11/2016] [Indexed: 01/06/2023]
Abstract
Cellular and mitochondrial metabolic capacity of the heart has been suggested to limit performance of fish at warm temperatures. We investigated this hypothesis by studying the effects of acute temperature increases (16, 23, 30, 32.5 and 36°C) on the thermal sensitivity of 10 key enzymes governing cardiac oxidative and glycolytic metabolism in two populations of European perch (Perca fluviatilis) field-acclimated to 15.5 and 22.5°C, as well as the effects of acclimation on cardiac lipid composition. In both populations of perch, the activity of glycolytic (pyruvate kinase and lactate dehydrogenase) and tricarboxylic acid cycle (pyruvate dehydrogenase and citrate synthase) enzymes increased with acute warming. However, at temperatures exceeding 30°C, a drastic thermally induced decline in citrate synthase activity was observed in the cold- and warm-acclimated populations, respectively, indicating a bottleneck for producing the reducing equivalents required for oxidative phosphorylation. Yet, the increase in aspartate aminotransferase and malate dehydrogenase activities occurring in both populations at temperatures exceeding 30°C suggests that the malate-aspartate shuttle may help to maintain cardiac oxidative capacities at high temperatures. Warm acclimation resulted in a reorganization of the lipid profile, a general depression of enzymatic activity and an increased fatty acid metabolism and oxidative capacity. Although these compensatory mechanisms may help to maintain cardiac energy production at high temperatures, the activity of the electron transport system enzymes, such as complexes I and IV, declined at 36°C in both populations, indicating a thermal limit of oxidative phosphorylation capacity in the heart of European perch.
Collapse
Affiliation(s)
- Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Pierre U Blier
- Department of Biology, University of Québec, Rimouski, Québec, Canada G5L 3A1
| | | | - Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Nicolas Pichaud
- Department of Biological and Environmental Sciences, University of Gothenburg, 41390 Gothenburg, Sweden.,Department of Biology, University of Québec, Rimouski, Québec, Canada G5L 3A1.,Department of Chemistry and Biochemistry, University of Moncton, Moncton, NB, Canada E1A 3E9
| |
Collapse
|