1
|
Ji J, Wang Q, Li S, Chen Y, Zhang J, Yu H, Xu J, Li M, Zheng R, Lin N, Zhang Z. Transcriptomic analysis of Penaeus monodon in response to acute and chronic hypotonic stress. Front Vet Sci 2024; 11:1464291. [PMID: 39234176 PMCID: PMC11371775 DOI: 10.3389/fvets.2024.1464291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024] Open
Abstract
To investigate the different mechanisms of Penaeus monodon in response to acute and chronic hypotonic stress, RNA sequencing technology was employed to profile the gene expression patterns in the gill, hepatopancreas, and hemocyte at 0, 6, 48, and 72 h post acute hypotonic stress treatment (with salinity immediately decreased from 20 psu to 4 psu) and at 0, 2, 10, 15 days during chronic hypotonic stress treatment (with salinity gradually decreased from 20 psu to 4 psu). The control group (SC) was maintained at a constant salinity of 20 psu. Differentially expressed genes (DEGs) were identified, followed by further validation using real-time quantitative reverse transcription PCR (RT-qPCR). A total of 34,217 genes were expressed through sequencing. Compared with the control group, 8,503 DEGs were identified in the acute hypotonic stress group, comprising 3,266 up-regulated and 5,237 down-regulated genes. In the chronic hypotonic stress group, 8,900 DEGs were detected, including 3,019 up-regulated and 5,881 down-regulated genes. Gene Ontology (GO) functional annotation analysis indicated that DEGs were primarily enriched in biological processes such as cellular and metabolic processes, cellular components like membrane and other cellular components, and molecular functions including structural binding and catalytic activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis indicated that DEGs were predominantly concentrated in five major pathways: metabolism, genetic information processing, environmental information processing, cellular processes, and biological systems. These pathways encompassed antigen processing and presentation, the NOD-like receptor signaling pathway, the Toll-like receptor signaling and cell apoptosis. The RT-qPCR validation of 11 DEGs (hsp70, hsp90, nlrp3, mincle, nlrp12, tlr4, myd88, imd, casp7, casp9 and toll) demonstrated that the trends observed in the quantitative results were consistent with those from the transcriptome analysis, thereby validating the reliability of transcriptome sequencing data. This study identified that hypotonic stress triggers physiological responses in P. monodon to both acute and chronic hypotonic conditions, offering valuable insights into the expression patterns of functional genes in the gills, hepatopancreas, and hemocytes of P. monodon under such stress. These findings provide foundational data and a theoretical basis for further research into the regulatory mechanism of P. monodon in response to hypotonic stress.
Collapse
Affiliation(s)
- Jing Ji
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiaohuang Wang
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Shuigen Li
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Yanting Chen
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Jiexin Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanxiu Yu
- Fisheries College, Jimei University, Xiamen, China
| | - Jinzhen Xu
- Fisheries College, Jimei University, Xiamen, China
| | - Miaomiao Li
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
| | - Renhao Zheng
- Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nan Lin
- Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Provincial Fisheries Technology Extension Center, Fuzhou, China
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ziping Zhang
- Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Mariculture Breeding, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Mo N, Shao S, Cui Z, Bao C. Roles of eyestalk in salinity acclimatization of mud crab (Scylla paramamosain) by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101276. [PMID: 38935995 DOI: 10.1016/j.cbd.2024.101276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/29/2024]
Abstract
Salinity acclimatization refers to the physiological and behavioral adjustments made by crustaceans to adapt to varying salinity environments. The eyestalk, a neuroendocrine organ in crustaceans, plays a crucial role in salinity acclimatization. To elucidate the molecular mechanisms underlying eyestalk involvement in mud crab (Scylla paramamosain) acclimatization, we employed RNA-seq technology to analyze transcriptomic changes in the eyestalk under low (5 ppt) and standard (23 ppt) salinity conditions. This analysis revealed 5431 differentially expressed genes (DEGs), with 2372 upregulated and 3059 downregulated. Notably, these DEGs were enriched in crucial biological pathways like metabolism, osmoregulation, and signal transduction. To validate the RNA-seq data, we further analyzed 15 DEGs of interest using qRT-PCR. Our results suggest a multifaceted role for the eyestalk: maintaining energy homeostasis, regulating hormone synthesis and release, PKA activity, and downstream signaling, and ensuring proper ion and osmotic balance. Furthermore, our findings indicate that the crustacean hyperglycemic hormone (CHH) may function as a key regulator, modulating carbonic anhydrase expression through the activation of the PKA signaling pathway, thereby influencing cellular osmoregulation, and associated metabolic processes. Overall, our study provides valuable insights into unraveling the molecular mechanisms of mud crab acclimatization to low salinity environments.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
3
|
Giffard-Mena I, Ponce-Rivas E, Sigala-Andrade HM, Uranga-Solís C, Re AD, Díaz F, Camacho-Jiménez L. Evaluation of the osmoregulatory capacity and three stress biomarkers in white shrimp Penaeus vannamei exposed to different temperature and salinity conditions: Na +/K + ATPase, Heat Shock Proteins (HSP), and Crustacean Hyperglycemic Hormones (CHHs). Comp Biochem Physiol B Biochem Mol Biol 2024; 271:110942. [PMID: 38224831 DOI: 10.1016/j.cbpb.2024.110942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 01/17/2024]
Abstract
Salinity and temperature influence growth, survival, and reproduction of crustacean species such as Penaeus vannamei where Na +/K+-ATPase plays a key role in maintaining osmotic homeostasis in different salinity conditions. This ability is suggested to be mediated by other proteins including neuropeptides such as the crustacean hyperglycemic hormones (CHHs), and heat shock proteins (HSPs). The mRNA expression of Na+/K+-ATPase, HSP60, HSP70, CHH-A, and CHH-B1, was analyzed by qPCR in shrimp acclimated to different salinities (10, 26, and 40 PSU) and temperature conditions (20, 23, 26, 29, and 32 °C) to evaluate their uses as molecular stress biomarkers. The results showed that the hemolymph osmoregulatory capacity in shrimp changed with exposure to the different salinities. From 26 to 32 °C the Na+/K+-ATPase expression increased significantly at 10 PSU relative to shrimp acclimated at 26 PSU and at 20 °C increased at similar values independently of salinity. The highest HSP expression levels were obtained by HSP70 at 20 °C, suggesting a role in protecting proteins such as Na+/K+ -ATPase under low-temperature and salinity conditions. CHH-A was not expressed in the gill under any condition, but CHH-B1 showed the highest expression at the lowest temperatures and salinities, suggesting its participation in the Na+/K+-ATPase induction. Since Na+/K+-ATPase, HSPs, and CHHs seem to participate in maintaining the osmo-ionic balance and homeostasis in P. vannamei, their expression levels may be used as a stress biomarkers to monitor marine crustacean health status when acclimated in low salinity and temperature conditions.
Collapse
Affiliation(s)
- Ivone Giffard-Mena
- Laboratorio de Ecología Molecular, Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California C.P. 22860, Mexico. https://twitter.com/igiffard28
| | - Elizabeth Ponce-Rivas
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico.
| | - Héctor M Sigala-Andrade
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico
| | - Carla Uranga-Solís
- Laboratorio de Ecología Molecular, Facultad de Ciencias Marinas, Universidad Autónoma de Baja California (UABC), Ensenada, Baja California C.P. 22860, Mexico. https://twitter.com/carla_uranga
| | - Ana Denisse Re
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico
| | - Fernando Díaz
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California C.P. 22860, Mexico
| | - Laura Camacho-Jiménez
- Laboratorio de Biología Molecular y Bioquímica, Centro de Investigación en Alimentación y Desarrollo (CIAD), A.C., Hermosillo, Sonora, Mexico
| |
Collapse
|
4
|
Mo N, Shao S, Yang Y, Bao C, Cui Z. Identifying low salinity adaptation gene expression in the anterior and posterior gills of the mud crab (Scylla paramamosain) by transcriptomic analysis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 49:101166. [PMID: 38070330 DOI: 10.1016/j.cbd.2023.101166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/04/2023] [Accepted: 11/24/2023] [Indexed: 02/15/2024]
Abstract
In the present study, BGISEQ-500 RNA-Seq technology was adopted to investigate how Scylla paramamosain adapts to salinity tolerance at the molecular level and explores changes in gene expression linked to salinity adaptation following exposure to both low salinity (5 ‰) and standard salinity (23 ‰) conditions. A total of 1100 and 520 differentially expressed genes (DEGs) were identified in the anterior and posterior gills, respectively, and their corresponding expression patterns were visualized in volcano plots and a heatmap. Further analysis highlighted significant enrichment of well-established gene functional categories and signaling pathways, including those what associated with cellular stress response, ion transport, energy metabolism, amino acid metabolism, H2O transport, and physiological stress compensation. We also selected key DEGs within the anterior and posterior gills that encode pivotal stress adaptation and tolerance modulators, including AQP, ABCA1, HSP 10, A35, CAg, NKA, VPA, CAc, and SPS. Interestingly, A35 in the gills might regulate osmolality by binding CHH in response to low salinity stress or serve as a mechanism for energy compensation. Taken together, our findings elucidated the intricate molecular mechanism employed by S. paramamosain for salinity adaptation, which involved distinct gene expression patterns in the anterior and posterior gills. These findings provide the foothold for subsequent investigations into salinity-responsive candidate genes and contribute to a deeper understanding of S. paramamosain's adaptation mechanisms in low-salinity surroundings, which is crucial for the development of low-salinity species cultivation and the establishment of a robust culture model.
Collapse
Affiliation(s)
- Nan Mo
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Shucheng Shao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Chenchang Bao
- School of Marine Sciences, Ningbo University, Ningbo 315020, China
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo 315020, China.
| |
Collapse
|
5
|
Chen J, Wang H, Yuan H, Hu N, Zou F, Li C, Shi L, Tan B, Zhang S. Effects of dietary Clostridium autoethanogenum protein on the growth, disease resistance, intestinal digestion, immunity and microbiota structure of Litopenaeus vannamei reared at different water salinities. Front Immunol 2022; 13:1034994. [PMID: 36275652 PMCID: PMC9585349 DOI: 10.3389/fimmu.2022.1034994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
The shortage of fishmeal (FM) resources limits the healthy development of aquaculture. Developing new protein sources to replace FM in aquatic feeds is an effective measure to alleviate this situation. However, the application effect of new protein sources is greatly affected by water salinity, which is an important parameter of aquaculture. In this study, the growth, disease resistance, and intestinal digestion, immunity, and microbiota structure of Litopenaeus vannamei (initial weight: 0.38 ± 0.01 g) fed on Clostridium autoethanogenum protein (CAP) or not at three different water salinities (15 ‰, 30 ‰, and 45 ‰) were compared, aiming to explore the effects of dietary CAP on shrimp when suffering different salinity stresses. The results showed that the growth performance, feed utilization, and survival rate (SR) after pathogen challenge of L. vannamei could be significantly improved by dietary CAP when compared with the control at the same salinity and they were also significantly affected by salinity changes when L. vannamei was fed on the same protein source. With the increase in salinity, obvious upregulation was observed in the activities and gene expression of digestive enzymes both in L. vannamei fed on FM and CAP, with significantly higher levels in L. vannamei fed on CAP than in those fed on FM at the same salinity. Meanwhile, the expression levels of immune genes in the CAP group were significantly higher than those in the FM group at different salinities. The intestinal microbiota analysis showed that CAP could increase the relative abundance of beneficial bacteria and decrease the relative abundance of harmful bacteria in the intestine of L. vannamei at the phylum, family, and genus levels, and it was more affected by salinity changes when compared with FM. Besides, the changes in salinity and protein sources led to different changes in the intestinal microflora function of L. vannamei. In sum, this study indicated that CAP could improve the growth, disease resistance, digestive capacity, and intestinal microflora of L. vannamei with a much more intense immune response and enhance its ability to cope with salinity stress.
Collapse
Affiliation(s)
- Jian Chen
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hongming Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Hang Yuan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Naijie Hu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Fangqi Zou
- Technology R&D Department, Beijing Shoulang Bio-Technology Co., Ltd., Beijing, China
| | - Chongyang Li
- Technology R&D Department, Beijing Shoulang Bio-Technology Co., Ltd., Beijing, China
| | - Lili Shi
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Beiping Tan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animal Nutrition and Feed Laboratory, Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
| | - Shuang Zhang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture, Zhanjiang, China
- Aquatic Animal Nutrition and Feed Laboratory, Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, China
- *Correspondence: Shuang Zhang,
| |
Collapse
|
6
|
Kim DH, Park JC, Lee JS. G protein-coupled receptors (GPCRs) in rotifers and cladocerans: Potential applications in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109297. [PMID: 35183764 DOI: 10.1016/j.cbpc.2022.109297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/12/2022] [Indexed: 12/19/2022]
Abstract
The G protein-coupled receptor (GPCR) superfamily plays a fundamental role in both sensory functions and the regulation of homeostasis, and is highly conserved across the eukaryote taxa. Its functional diversity is related to a conserved seven-transmembrane core and invariant set of intracellular signaling mechanisms. The interplay between these properties is key to the evolutionary success of GPCR. As this superfamily originated from a common ancestor, GPCR genes have evolved via lineage-specific duplications through the process of adaptation. Here we summarized information on GPCR gene families in rotifers and cladocerans based on their evolutionary position in aquatic invertebrates and their potential application in ecotoxicology, ecophysiology, comparative endocrinology, and pharmacology. Phylogenetic analyses were conducted to examine the evolutionary significance of GPCR gene families and to provide structural insight on their role in aquatic invertebrates. In particular, most GPCR gene families have undergone sporadic evolutionary processes, but some GPCRs are highly conserved across species despite the dynamics of GPCR evolution. Overall, this review provides a better understanding of GPCR evolution in aquatic invertebrates and expand our knowledge of the potential application of these receptors in various fields.
Collapse
Affiliation(s)
- Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
7
|
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B. Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 2021; 241:108971. [PMID: 33421636 DOI: 10.1016/j.cbpc.2020.108971] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022]
Abstract
Exposure to a variety of environmental factors such as temperature, pH, oxygen and salinity may influence the oxidative status in aquatic organisms. The present review article focuses on the modulation of oxidative stress with reference to the generation of reactive oxygen species (ROS) in aquatic animals from different phyla. The focus of the review article is to explore the plausible mechanisms of physiological changes occurring in aquatic animals due to altered salinity in terms of oxidative stress. Apart from the seasonal variations in salinity, global warming and anthropogenic activities have also been found to influence oxidative health status of aquatic organisms. These effects are discussed with an objective to develop precautionary measures to protect the diversity of aquatic species with sustainable conservation. Comparative analyses among different aquatic species suggest that salinity alone or in combination with other abiotic factors are intricately associated with modulation in oxidative stress in a species-specific manner in aquatic animals. Osmoregulation under salinity stress in relation to energy demand and supply are also discussed. The literature survey of >50 years (1960-2020) indicates that oxidative stress status and comparative analysis of redox modulation have evolved from the analysis of various biotic and/or abiotic factors to the study of cellular signalling pathways in these aquatic organisms.
Collapse
Affiliation(s)
- Abhipsa Bal
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Falguni Panda
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Samar Gourav Pati
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Kajari Das
- Department of Biotechnology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Pawan Kumar Agrawal
- Main Building, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India
| | - Biswaranjan Paital
- Redox Regulation Laboratory, Department of Zoology, College of Basic Science and Humanities, Odisha University of Agriculture and Technology, Bhubaneswar-751003, India.
| |
Collapse
|
8
|
Zhang X, Pan L, Wei C, Tong R, Li Y, Ding M, Wang H. Crustacean hyperglycemic hormone (CHH) regulates the ammonia excretion and metabolism in white shrimp, Litopenaeus vannamei under ammonia-N stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138128. [PMID: 32222513 DOI: 10.1016/j.scitotenv.2020.138128] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 05/21/2023]
Abstract
To understand the adaptation of Litopenaeus vannamei to high environmental ammonia-N, RNA interference was used to investigate the function of crustacean hyperglycemic hormone (CHH) in the physiological process of neuroendocrine signaling transduction, and ammonia excretion and metabolism. The shrimp were exposed to 25 mg/L NH4Cl and injected with 20 μg/shrimp CHH dsRNA for 72 h. The results showed that hemolymph ammonia content increased under ammonia-N stress and further increased after CHH knockdown, suggesting that CHH can promote ammonia excretion. Moreover, after CHH knockdown, the levels of CHH, DA, and Wnts decreased significantly, the expression of receptor GC, DA1R, Frizzled and LRP 5/6 also decreased, while DA4R increased remarkably. Moreover, PKA and PKG decreased, while PKC markedly increased, and nuclear transcription factors (CREB and TCF) as well as effector proteins (β-catenin, FXYD2, and 14-3-3) were significantly downregulated. Furthermore, ammonia transporters Na+/K+-ATPase (NKA), K+channel, Rh protein, AQP, V-ATPase, and VAMP decreased significantly, while Na+/H+ exchangers (NHE) and Na+/K+/2Cl- cotransporter (NKCC) increased significantly. These results suggest that CHH regulates ammonia excretion in three ways: 1) by mainly regulating ion channels via PKA, PKC, and PKG signaling pathways; 2) by activating related proteins primarily through Wnt signaling pathway; and 3) by exocytosis, mostly induced by the PKA signaling pathway. In addition, the levels of Gln, uric acid, and urea increased in accordance with the activities of GDH/GS, XDH, and arginase, respectively, suggesting that ammonia excretion was inhibited but ammonia metabolism was slightly enhanced. This study deepens our understanding of the mechanism by which crustaceans respond to high environmental ammonia-N.
Collapse
Affiliation(s)
- Xin Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Luqing Pan
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| | - Cun Wei
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Ruixue Tong
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yufen Li
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Min Ding
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Hongdan Wang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
9
|
Sun S, Zhu M, Pan F, Feng J, Li J. Identifying Neuropeptide and G Protein-Coupled Receptors of Juvenile Oriental River Prawn ( Macrobrachium nipponense) in Response to Salinity Acclimation. Front Endocrinol (Lausanne) 2020; 11:623. [PMID: 33013701 PMCID: PMC7506046 DOI: 10.3389/fendo.2020.00623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Neuropeptides and their G protein-coupled receptors (GPCRs) from the central nervous system regulate the physiological responses of crustaceans. However, in crustaceans, our knowledge regarding GPCR expression patterns and phylogeny is limited. Thus, the present study aimed to analyze the eyestalk transcriptome of the oriental river prawn Macrobrachium nipponense in response to salinity acclimation. We obtained 162,250 unigenes after de novo assembly, and 1,392 and 1,409 differentially expressed genes were identified in the eyestalk of prawns in response to low and high salinity, respectively. We used combinatorial bioinformatic analyses to identify M. nipponense genes encoding GPCRs and neuropeptides. The mRNA levels of seven neuropeptides and one GPCR were validated in prawns in response to salinity acclimation using quantitative real-time reverse transcription polymerase chain reaction. A total of 148 GPCR-encoding transcripts belonging to three classes were identified, including 77 encoding GPCR-A proteins, 52 encoding GPCR-B proteins, and 19 encoding other GPCRs. The results increase our understanding of molecular basis of neural signaling in M. nipponense, which will promote further research into salinity acclimation of this crustacean.
Collapse
Affiliation(s)
- Shengming Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
- *Correspondence: Shengming Sun
| | - Mengru Zhu
- Wuxi Fishery College, Nanjing Agricultural University, Wuxi, China
| | - Fangyan Pan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
| | - Jianbin Feng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| | - Jiale Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
De Novo assembly and characterisation of the greentail prawn (Metapenaeus bennettae) hepatopancreas transcriptome – identification of stress response and detoxification transcripts. Mar Genomics 2019; 47:100677. [DOI: 10.1016/j.margen.2019.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/15/2019] [Accepted: 04/05/2019] [Indexed: 11/19/2022]
|
11
|
Sun D, Lv J, Gao B, Liu P, Li J. Crustacean hyperglycemic hormone of Portunus trituberculatus: evidence of alternative splicing and potential roles in osmoregulation. Cell Stress Chaperones 2019; 24:517-525. [PMID: 30767165 PMCID: PMC6527729 DOI: 10.1007/s12192-019-00980-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 01/07/2023] Open
Abstract
The crustacean hyperglycemic hormone (CHH) gene of Portunus trituberculatus (Pt-CHH) consists of four exons and three introns spanning 3849 bp in size and generating two mature mRNA, Pt-CHH1, and Pt-CHH2. The primary gene transcript produces a cDNA encoding for the putative Pt-CHH2 from exons 1, 2, 3, and 4 and an alternative transcript encodes for a putative Pt-CHH1 peptide from exons 1, 2, and 4. A promoter fragment of about 3 kb was obtained by genomic walking. The tissue-specific expression pattern is examined by reverse transcriptase chain reaction, and the results show that Pt-CHH1 is detected in the eyestalk, brain, muscle, and blood. However, Pt-CHH2 is detected in the ganglia thoracalis and gill. The results indicate that the expression of Pt-CHH2 in the gill might suggest a potential role in osmoregulation. The Pt-CHH transcript level in the gill increases when the crab is exposed to low salinity. The injection of dsRNA for Pt-CHH causes a significant reduction in Pt-CHH2 transcript level and the activity of Na+/K+-ATPase, and carbonic anhydrase (CA) show a serious decrease. In conclusion, this study provides molecular evidence to support the osmoregulatory function of Pt-CHH2.
Collapse
Affiliation(s)
- Dongfang Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China.
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, China.
| | - Jian Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
- Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Jimo, Qingdao, China
| |
Collapse
|
12
|
Si L, Pan L, Zhang X, Wang H, Wei C. Evidence that dopamine is involved in neuroendocrine regulation, gill intracellular signaling pathways and ion regulation in Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.204073. [DOI: 10.1242/jeb.204073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/27/2019] [Indexed: 01/24/2023]
Abstract
The transport of ions and ammonia in the gills may be regulated by neuroendocrine factors, in order to explore the regulation mechanism of dopamine (DA), hemolymph neuroendocrine hormones, gill intracellular signaling pathways, ion and ammonia transporters, as well as hemolymph osmolality and ammonia concentration were investigated in Litopenaeus vannamei after 10−7 and 10−6 mol shrimp−1 DA injection. The data displayed a significant increase in crustacean hyperglycemic hormone (CHH) concentration at 1-12 h and a transient significant decrease in corticotrophin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH) and cortisol concentrations under DA stimulation. The up-regulation of guanylyl cyclase (GC) mRNA, cyclic guanosine monophosphate (cGMP) and protein kinase G (PKG) concentrations, together with down-regulation of DA receptor D4 mRNA and up-regulation of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), diacylglycerol (DAG) and protein kinase C (PKC) concentrations suggested an activation of complicated intracellular signaling pathway. The expression of cyclic AMP response element-binding protein (CREB), FXYD2 and 14-3-3 protein mRNA was significantly increased by PKA regulation. The increase in Na+/K+-ATPase (NKA) activity and the stabilization of V-type H+-ATPase (V-ATPase) activity are accompanied by an up-regulation of K+-channel, Na+/K+/2Cl− cotransporter (NKCC), Rh protein and vesicle associated membrane protein (VAMP) mRNA, resulting in an increase in hemolymph osmolality and a decrease in hemolymph ammonia concentration. These results suggest that DA stimulates the secretion of CHH and inhibits the release of cortisol, which activates intracellular signaling factors to facilitate ion and ammonia transport across the gills, and may not affect intracellular acidification.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Cun Wei
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|
13
|
Si L, Pan L, Wang H, Zhang X. Ammonia-N exposure alters neurohormone levels in the hemolymph and mRNA abundance of neurohormone receptors and associated downstream factors in the gills of Litopenaeus vannamei. J Exp Biol 2019; 222:jeb.200204. [DOI: 10.1242/jeb.200204] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/30/2022]
Abstract
Effects of ammonia-N (0.05, 2, 10 and 20 mg L−1) on the neuroendocrine regulation of ammonia transport were investigated in Litopenaeus vannamei. The results showed that corticotrophin-releasing hormone, adrenocorticotropic hormone, dopamine, noradrenaline and 5-hydroxytryptamine concentration in all ammonia-N groups increased significantly between 3-12 h. Cortisol increased significantly between 3-24 h. All hormones except crustacean hyperglycemic hormone were reduced to control levels. mRNA abundance of guanylyl cyclase increased significantly during the experiment. Dopamine receptor D4 and α2 adrenergic receptor mRNA abundance in treatments decreased significantly at the beginning, and eventually returned to the control level, whereas mRNA abundance of 5-HT7 receptor increased significantly only within the first 12 h. Changes of protein kinases (PKA, PKG) mRNA abundance were similar to the patterns of biogenic amines and crustacean hyperglycemic hormone, peaking at 6 h and 12 h respectively, while PKC decreased within 24 h. 14-3-3 protein, FXYD2 and cAMP-response element binding protein mRNA abundance of treatments increased significantly and peaked at 6 h. β-catenin and T-cell factor mRNA abundance increased significantly throughout the experiment and peaked at 12 h. The up-regulation of Rh protein, K+-channel, Na+/K+-ATPase, V-type H+-ATPase and vesicle associated membrane protein (VAMP) mRNA, together with down-regulation of Na+/K+/2Cl− cotransporter mRNA indicated an adjustment of general branchial ion-/ammonia-regulatory mechanisms. Meanwhile, hemolymph ammonia concentration was significantly increased in most ammonia-N exposure groups. Histological investigation revealed the hepatopancreatic damage caused by ammonia-N. The results suggest hormones, biogenic amines and Wnt/β-catenin play a principal role in adapting to ammonia-N exposure and facilitating ammonia transport.
Collapse
Affiliation(s)
- Lingjun Si
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Luqing Pan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Hongdan Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| | - Xin Zhang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Qingdao 266003, PR China
| |
Collapse
|