1
|
Karami P, Tavakoli S, Esmaeili M. Monitoring spatiotemporal impacts of changes in land surface temperature on near eastern fire salamander ( Salamandra infraimmaculata) in the Middle East. Heliyon 2023; 9:e17241. [PMID: 37360077 PMCID: PMC10285218 DOI: 10.1016/j.heliyon.2023.e17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Persistence and coexistence of many pond-breeding amphibians depend on seasonality. Temperature, as a seasonal climate component, affects numerous physical and biological processes of pond-breeding amphibians. Satellite-derived land surface temperature (LST) is the radiative skin temperature of the land surface, which has received less attention in spatiotemporal seasonal habitat monitoring. The present study aims to evaluate the increasing and decreasing effects of LST trends at two levels: (1) habitat suitability and connectivity; (2) individual population sites and their longitudinal distribution (with increasing longitude). Habitat suitability modeling was conducted based on an ensemble species distribution model (eSDM). Using electrical circuit theory, the connectivity of interior and intact habitat cores was investigated. An average seasonal LST was prepared separately for each season from 2003 to 2021 and entered into Mann-Kendall (MK) analysis to determine the spatiotemporal effects of LST changes using the Z-Score (ZMK) at two confidence levels of 95 and 99%. Based on the results, in winter, 28.12% and 70.70% of the suitable habitat were affected by an increasing trend of LST at 95% and 99% confidence levels, respectively. The highest spatial overlap of the decreasing trend of LST with the suitable habitat occurred in summer and was 6.4% at the 95% confidence level and 4.2% at the 99% confidence level. Considering population site at 95% confidence interval, the increasing trend of LST was calculated to be 20.2%, 9.5%, 4.2%, and 6.3% of localities in winter, spring, summer, and autumn, respectively. At the 99% confidence level, these percentages reduced to 8.5%, 3.1%, 1%, and 1%, respectively. During winter and summer, based on the results of the longitudinal trend, an increasing trend of LST was observed in sites. Localities of Hatay and Iica village in Turkey experienced seasonally asynchronous climate change regimes. The approach used in this study allowed us to create a link between the life cycle and seasonal changes on a micro-scale (breeding sites) and macro-scale (distribution and connectivity). Findings of this paper can be effectively used by conservation managers to preserve S. infraimmaculata's metapopulation.
Collapse
Affiliation(s)
- Peyman Karami
- Department of Environmental Sciences, Malayer University, Malayer, Iran
| | - Sajad Tavakoli
- Department of Environmental and Forest Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mina Esmaeili
- Department of Biology, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Zhu W, Zhao C, Zhao T, Chang L, Chen Q, Liu J, Li C, Xie F, Jiang J. Rising floor and dropping ceiling: organ heterogeneity in response to cold acclimation of the largest extant amphibian. Proc Biol Sci 2022; 289:20221394. [PMID: 36196548 PMCID: PMC9532983 DOI: 10.1098/rspb.2022.1394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/09/2022] [Indexed: 02/06/2023] Open
Abstract
Low temperature imposes strong selective pressure on ectotherms. To maximize their overall fitness under cold conditions, the ectotherms may either try to maintain their physiological activities through metabolic compensation or enter into metabolic depression; however, some species adopt both strategies to cope with different degrees of cold. Nevertheless, how these two seemingly opposite strategies are coordinated has rarely been elucidated. Here, we investigated the molecular strategy underlying the cold acclimation of Andrias davidianus, the largest extant amphibian, using multi-organ metabolomics and transcriptomics. The results showed remarkable organ heterogeneity in response to cold. While most organs showed transcriptional upregulation of metabolic processes, the heart exhibited downregulation. This heterogeneity explained the adaptive reorganization in resource allocation, which compensates for metabolic maintenance by compromising growth. Importantly, the cardiac function might constitute a 'ceiling' to constrain the space for compensation, especially under colder conditions. Additionally, the opposite transcriptional regulation of oxidative phosphorylation and other pathways might also shape the overall metabolic capacity under cold conditions. The heterogeneity in cold responses may have directed a shift in cold adaptive strategy from compensation to depression with a drop in temperature. These results provide a novel insight into the regulatory mechanisms underlying cold survival strategies of ectotherms.
Collapse
Affiliation(s)
- Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chunlin Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Tian Zhao
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Cheng Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Feng Xie
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chendgu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
3
|
Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm. Nat Ecol Evol 2022; 6:405-417. [PMID: 35256809 DOI: 10.1038/s41559-022-01686-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Identifying factors that influence how ectothermic animals respond physiologically to changing temperatures is of high importance given current threats of global climate change. Host-associated microbial communities impact animal physiology and have been shown to influence host thermal tolerance in invertebrate systems. However, the role of commensal microbiota in the thermal tolerance of ectothermic vertebrates is unknown. Here we show that experimentally manipulating the tadpole microbiome through environmental water sterilization reduces the host's acute thermal tolerance to both heat and cold, alters the thermal sensitivity of locomotor performance, and reduces animal survival under prolonged heat stress. We show that these tadpoles have reduced activities of mitochondrial enzymes and altered metabolic rates compared with tadpoles colonized with unmanipulated microbiota, which could underlie differences in thermal phenotypes. These results demonstrate a strong link between the microbiota of an ectothermic vertebrate and the host's thermal tolerance, performance and fitness. It may therefore be important to consider host-associated microbial communities when predicting species' responses to climate change.
Collapse
|
4
|
Clyde-Brockway CE, Ferreira CR, Flaherty EA, Paladino FV. Lipid profiling suggests species specificity and minimal seasonal variation in Pacific Green and Hawksbill Turtle plasma. PLoS One 2021; 16:e0253916. [PMID: 34280208 PMCID: PMC8289036 DOI: 10.1371/journal.pone.0253916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.
Collapse
Affiliation(s)
- Chelsea E. Clyde-Brockway
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Christina R. Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States of America
| | - Elizabeth A. Flaherty
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
| | - Frank V. Paladino
- Department of Biology, Purdue University-Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
5
|
Twining CW, Bernhardt JR, Derry AM, Hudson CM, Ishikawa A, Kabeya N, Kainz MJ, Kitano J, Kowarik C, Ladd SN, Leal MC, Scharnweber K, Shipley JR, Matthews B. The evolutionary ecology of fatty-acid variation: Implications for consumer adaptation and diversification. Ecol Lett 2021; 24:1709-1731. [PMID: 34114320 DOI: 10.1111/ele.13771] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/20/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
The nutritional diversity of resources can affect the adaptive evolution of consumer metabolism and consumer diversification. The omega-3 long-chain polyunsaturated fatty acids eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) have a high potential to affect consumer fitness, through their widespread effects on reproduction, growth and survival. However, few studies consider the evolution of fatty acid metabolism within an ecological context. In this review, we first document the extensive diversity in both primary producer and consumer fatty acid distributions amongst major ecosystems, between habitats and amongst species within habitats. We highlight some of the key nutritional contrasts that can shape behavioural and/or metabolic adaptation in consumers, discussing how consumers can evolve in response to the spatial, seasonal and community-level variation of resource quality. We propose a hierarchical trait-based approach for studying the evolution of consumers' metabolic networks and review the evolutionary genetic mechanisms underpinning consumer adaptation to EPA and DHA distributions. In doing so, we consider how the metabolic traits of consumers are hierarchically structured, from cell membrane function to maternal investment, and have strongly environment-dependent expression. Finally, we conclude with an outlook on how studying the metabolic adaptation of consumers within the context of nutritional landscapes can open up new opportunities for understanding evolutionary diversification.
Collapse
Affiliation(s)
- Cornelia W Twining
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Limnological Institute, University of Konstanz, Konstanz-Egg, Germany
| | - Joey R Bernhardt
- Department of Biology, McGill University, Montréal, QC, Canada.,Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Alison M Derry
- Département des Sciences Biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| | - Cameron M Hudson
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Asano Ishikawa
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Naoki Kabeya
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology (TUMSAT, Tokyo, Japan
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystems Research, Lunz am See, Austria
| | - Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Sarah Nemiah Ladd
- Ecosystem Physiology, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Miguel C Leal
- ECOMARE and CESAM - Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Kristin Scharnweber
- Department of Ecology and Genetics; Limnology, Uppsala University, Uppsala, Sweden.,University of Potsdam, Plant Ecology and Nature Conservation, Potsdam-Golm, Germany
| | - Jeremy R Shipley
- Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Center of Ecology, Evolution and Biochemistry, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| |
Collapse
|