1
|
Zhang Y, Zhang QJ, Xu WB, Zou W, Xiang XL, Gong ZJ, Cai YJ. The Multifaceted Effects of Short-Term Acute Hypoxia Stress: Insights into the Tolerance Mechanism of Propsilocerus akamusi (Diptera: Chironomidae). INSECTS 2023; 14:800. [PMID: 37887812 PMCID: PMC10607839 DOI: 10.3390/insects14100800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Plenty of freshwater species, especially macroinvertebrates that are essential to the provision of numerous ecosystem functions, encounter higher mortality due to acute hypoxia. However, within the family Chironomidae, a wide range of tolerance to hypoxia/anoxia is displayed. Propsilocerus akamusi depends on this great tolerance to become a dominant species in eutrophic lakes. To further understand how P. akamusi responds to acute hypoxic stress, we used multi-omics analysis in combination with histomorphological characteristics and physiological indicators. Thus, we set up two groups-a control group (DO 8.4 mg/L) and a hypoxic group (DO 0.39 mg/L)-to evaluate enzyme activity and the transcriptome, metabolome, and histomorphological characteristics. With blue-black chromatin, cell tightness, cell membrane invagination, and the production of apoptotic vesicles, tissue cells displayed typical apoptotic features in the hypoxic group. Although lactate dehydrogenase (LDH), alcohol dehydrogenase (ADH), catalase (CAT), and Na+/K+ -ATPase (NKA) activities were dramatically enhanced under hypoxic stress, glycogen content, and superoxide dismutase (SOD) activities were significantly reduced compared to the control group. The combined analysis of the transcriptome and metabolome, which further demonstrated, in addition to carbohydrates, including glycogen, the involvement of energy metabolism pathways, including fatty acid, protein, trehalose, and glyoxylate cycles, provided additional support for the aforementioned findings. Lactate is the end product of glycogen degradation, and HIF-1 plays an important role in promoting glycogenolysis in acute hypoxic conditions. However, we discovered that the ethanol tested under hypoxic stress likely originates from the symbiodinium of P. akamusi. These results imply that some parameters related to energy metabolism, antioxidant enzyme activities, and histomorphological features may be used as biomarkers of eutrophic lakes in Chironomus riparius larvae. The study also provides a scientific reference for assessing toxicity and favoring policies to reduce their impact on the environment.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China;
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Qing-Ji Zhang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210023, China;
| | - Wen-Bin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Wei Zou
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
| | - Xian-Ling Xiang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China;
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Zhi-Jun Gong
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| | - Yong-Jiu Cai
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; (Y.Z.); (W.Z.); (Z.-J.G.)
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Wuhu 241002, China
| |
Collapse
|
2
|
Editorial Expression of Concern to: Hypoxia attenuate ionic transport in the isolated gill epithelium of Carcinus maenas. J Comp Physiol B 2021; 191:971. [PMID: 34259918 DOI: 10.1007/s00360-021-01383-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|