1
|
Husak JF, Lailvaux SP. Stable isotopes reveal sex- and context-dependent amino acid routing in green anole lizards (Anolis carolinensis). J Exp Biol 2024; 227:jeb248024. [PMID: 39155675 DOI: 10.1242/jeb.248024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Allocation of acquired resources to phenotypic traits is affected by resource availability and current selective context. While differential investment in traits is well documented, the mechanisms driving investment at lower levels of biological organization, which are not directly related to fitness, remain poorly understood. We supplemented adult male and female Anolis carolinensis lizards with an isotopically labelled essential amino acid (13C-leucine) to track routing in four tissues (muscle, liver, gonads and spleen) under different combinations of resource availability (high- and low-calorie diets) and exercise training (sprint training and endurance capacity). We predicted sprint training should drive routing to muscle, and endurance training to liver and spleen, and that investment in gonads should be of lower priority in each of the cases of energetic stress. We found complex interactions between training regime, diet and tissue type in females, and between tissue type and training, and tissue type and diet in males, suggesting that males and females adjust their 13C-leucine routing strategies differently in response to similar environmental challenges. Importantly, our data show evidence of increased 13C-leucine routing in training contexts not to muscle as we expected, but to the spleen, which turns over blood cells, and to the liver, which supports metabolism under differing energetic scenarios. Our results reveal the context-specific nature of long-term trade-offs associated with increased chronic activity. They also illustrate the importance of considering the costs of locomotion in studies of life-history strategies.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St Thomas, St Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
2
|
Duerwachter MA, Lewis EL, French SS, Husak JF. Sex-specific effects of immune challenges on green anole lizard metabolism. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:264-271. [PMID: 38213098 DOI: 10.1002/jez.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Immune responses can increase survival, but they can also incur a variety of costs that may lead to phenotypic trade-offs. The nature of trade-offs between immune activity and other components of the phenotype can vary and depend on the type and magnitude of immune challenge, as well as the energetic costs of simultaneously expressing other traits. There may also be sex-specific differences in both immune activity and trade-offs, particularly with regard to energy expenditure that might differ between males and females during the breeding season. Females are generally expected to invest less in nonspecific immune responses compared to males due to differences in the allocation of resources to reproduction, which may lead to sex differences in the metabolic costs of immunity. We tested for sex-specific differences in metabolic costs of different types of immune challenges in Anolis carolinensis lizards, including lipopolysaccharide (LPS) injection and wounding. We also tested for differences in immune prioritization by measuring bacterial killing ability (BKA). We predicted males would show a greater increase in metabolism after immune challenges, with combined immune challenges eliciting the greatest response. Furthermore, we predicted that metabolic costs would result in decreased BKA. LPS injection increased the resting metabolic rate (RMR) of males but not females. Wounding did not affect RMR of either sex. However, there was an inverse relationship between BKA and wound healing in LPS-injected lizards, suggesting dynamic tradeoffs among metabolism and components of the immune system.
Collapse
Affiliation(s)
| | - Erin L Lewis
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Reardon KM, Walton BN, Husak JF. How does mitochondria function contribute to aerobic performance enhancement in lizards? Front Physiol 2023; 14:1165313. [PMID: 37215170 PMCID: PMC10198381 DOI: 10.3389/fphys.2023.1165313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/13/2023] [Indexed: 05/24/2023] Open
Abstract
Aims: Aerobic exercise typically enhances endurance across vertebrates so that chronically high energy demands can be met. Some known mechanisms of doing this include increases in red blood cell numbers, angiogenesis, muscle fiber adaptions, mitochondria biogenesis, and changes to cellular metabolism and oxidative phosphorylation. We used green anole lizards (Anolis carolinensis) to test for an effect of aerobic exercise on metabolism, mitochondria densities, and mitochondrial function. Methods: We first tested the response of green anoles to endurance training and pyrroloquinoline quinone (PQQ) supplementation, which has been shown to increase mitochondria biogenesis. We also conducted a mitochondrial stress test to determine how training affected mitochondrial function in skeletal muscle fibers. Results: Aerobic exercise led to increased endurance and decreased standard metabolic rate (SMR), while PQQ did not affect endurance and increased SMR. In a second experiment, aerobic exercise increased endurance and decreased resting metabolic rate (RMR) in both male and female green anoles. Higher counts of mitochondrial gene copies in trained lizards suggested additional mitochondria adaptations to achieve increased endurance and decreased metabolism. A mitochondrial stress test revealed no effect on baseline oxygen consumption rates of muscle fibers, but untrained lizards had higher maximal oxygen consumption rates with the addition of metabolic fuel. Conclusion: It is likely that trained lizards exhibited lower maximal oxygen consumption rates by developing higher mitochondria efficiency. This adaptation allows for high ATP demand to be met by making more ATP per oxygen molecule consumed. On the other hand, it is possible that untrained lizards prioritized limiting reactive oxygen species (ROS) production at rest, while sacrificing higher levels of proton leak and higher oxygen consumption rates when working to meet high ATP demand.
Collapse
|
4
|
Marks JR, Beatty AE, Husak JF, Schwartz TS, Lailvaux SP. Sprint training interacts with body mass to affect hepatic insulin-like growth factor expression in female green anoles (Anolis carolinensis). Gen Comp Endocrinol 2022; 327:114067. [PMID: 35640679 DOI: 10.1016/j.ygcen.2022.114067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/04/2022]
Abstract
Locomotor performance is a key predictor of fitness in many animal species. As such, locomotion integrates the output of a number of morphological, physiological, and molecular levels of organization, yet relatively little is known regarding the major molecular pathways that bolster locomotor performance. One potentially relevant pathway is the insulin and insulin-like signaling (IIS) network, a significant regulator of physiological processes such as reproduction, growth, and metabolism. Two primary hormones of this network, insulin-like growth factor 1 (IGF1) and insulin-like growth factor 2 (IGF2) are important mediators of these processes and, consequently, of life-history strategies. We sprint-trained green anole (Anolis carolinensis) females to test the responsiveness of IGF1 and IGF2 hepatic gene expression to exercise training. We also tested how sprint training would affect glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and eukaryotic elongation factor 2 (EEF2). The former is a crucial enzyme for glycolytic function in a cell, and the latter is necessary for protein synthesis. Resistance exercise forces animals to increase investment of resources towards skeletal muscle growth. Because IGF1 and IGF2 are important hormones for growth, and GAPDH and EEF2 are crucial for proper cellular function, we hypothesized that these four genes would be affected by sprint training. We found that sprint training affects IGF and EEF2 expression, such that larger sprint-trained lizards express hepatic IGF1, IGF2, and EEF2 to a lesser extent than similarly sized untrained lizards. These results demonstrate that the IIS, and pathways connected to it, can react in a size-dependent manner and are implicated in the exercise response in reptiles.
Collapse
Affiliation(s)
- Jamie R Marks
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA.
| | - Abby E Beatty
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St Paul, MN 55105, USA
| | - Tonia S Schwartz
- Department of Biological Sciences, Auburn University, 101 Rouse Life Sciences Bldg, Auburn, AL 36849, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA 70148, USA
| |
Collapse
|
5
|
Simon MN, Cespedes AM, Lailvaux SP. Sex-specific multivariate morphology/performance relationships in Anolis carolinensis. J Exp Biol 2022; 225:275160. [PMID: 35363299 DOI: 10.1242/jeb.243471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/25/2022] [Indexed: 11/20/2022]
Abstract
Animals rely on their ability to perform certain tasks sufficiently well to survive, secure mates, and reproduce. Performance traits depend on morphology, and so morphological traits should predict performance, yet this relationship is often confounded by multiple competing performance demands. Males and females experience different selection pressures on performance, and the consequent sexual conflict over performance expression can either constrain performance evolution or drive sexual dimorphism in both size and shape. Furthermore, change in a single morphological trait may benefit some performance traits at the expense of others, resulting in functional trade-offs. Identifying general or sex-specific relationships between morphology and performance at the organismal level thus requires a multivariate approach, as individuals are products both of an integrated phenotype and the ecological environment in which they have developed and evolved. We estimated the multivariate morphology→performance gradient in wild-caught, green anoles (Anolis carolinensis) by measuring external morphology and fore- and hindlimb musculature, and mapping these morphological traits to seven measured performance traits that cover the broad range of ecological challenges faced by these animals (sprint speed, endurance, exertion distance, climbing power, jump power, cling force, and bite force). We demonstrate that males and females differ in their multivariate mapping of traits on performance, indicating that sex-specific ecological demands likely shape these relationships, but do not differ in performance integration.
Collapse
Affiliation(s)
| | - Ann M Cespedes
- Biology Department, Delgado Community College, 615 City Park Avenue, New Orleans, LA 70119, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, The University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| |
Collapse
|
6
|
Husak JF, Lailvaux SP. Conserved and convergent mechanisms underlying performance-life-history trade-offs. J Exp Biol 2022; 225:274252. [PMID: 35119073 DOI: 10.1242/jeb.243351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phenotypic trade-offs are inevitable in nature, but the mechanisms driving them are poorly understood. Movement and oxygen are essential to all animals, and as such, the common ancestor to all living animals passed on mechanisms to acquire oxygen and contract muscle, sometimes at the expense of other activities or expression of traits. Nevertheless, convergent pathways have also evolved to deal with critical trade-offs that are necessary to survive ubiquitous environmental challenges. We discuss how whole-animal performance traits, such as locomotion, are important to fitness, yet costly, resulting in trade-offs with other aspects of the phenotype via specific conserved and convergent mechanistic pathways across all animals. Specifically, we discuss conserved pathways involved in muscle structure and signaling, insulin/insulin-like signaling, sirtuins, mitochondria and hypoxia-inducible factors, as well as convergent pathways involved in energy regulation, development, reproductive investment and energy storage. The details of these mechanisms are only known from a few model systems, and more comparative studies are needed. We make two main recommendations as a framework for future studies of animal form and function. First, studies of performance should consider the broader life-history context of the organism, and vice versa, as performance expression can require a large portion of acquired resources. Second, studies of life histories or mechanistic pathways that measure performance should do so in meaningful and standardized ways. Understanding proximate mechanisms of phenotypic trade-offs will not only better explain the phenotypes of the organisms we study, but also allow predictions about phenotypic variation at the evolutionary scale.
Collapse
Affiliation(s)
- Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN 55105, USA
| | - Simon P Lailvaux
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
7
|
|