1
|
Frederick AR, Lee AM, Wehrle BA, Catabay CC, Rankins DR, Clements KD, German DP. Abalone under moderate heat stress have elevated metabolic rates and changes to digestive enzyme activities. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111230. [PMID: 35537602 DOI: 10.1016/j.cbpa.2022.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 10/18/2022]
Abstract
Abalone around the world are subject to increasing frequency of marine heatwaves, yet we have a limited understanding of how acute high temperature events impact the physiology of these commercially and ecologically important species. This study examines the impact of a 5 °C temperature increase over ambient conditions for six weeks on the metabolic rates, digestive enzyme activities in the digestive gland, and digestive efficiency of Red Abalone (Haliotis rufescens) and Pāua (H. iris) on their natural diets. We test the hypothesis that abalone digestive function can keep pace with this increased metabolic demand in two separate experiments, one for each species. H. iris had higher food intake in the heat treatment. Both species had higher metabolic rates in the heat treatment with Q10 = 1.73 and Q10 = 2.46 for H. rufescens and H. iris, respectively. Apparent organic matter digestibility, protein digestibility, and carbohydrate digestibility did not differ between the heat treatment and the ambient (control) treatment in either experiment. H. rufescens exhibited higher maltase, alanine-aminopeptidase, and leucine-aminopeptidase activities in the heat treatment. Amylase, β-glucosidase, trypsin, and alkaline phosphatase activities in the digestive gland tissue did not differ between temperature treatments. H. iris exhibited lower amylase and β-glucosidase activities in the heat treatment, while maltase, trypsin, leucine-aminopeptidase, and alkaline phosphatase activities did not differ between treatments. We conclude that over six weeks of moderate heat stress both abalone species were able to maintain digestive function, but achieved this maintenance in species-specific ways.
Collapse
Affiliation(s)
- Alyssa R Frederick
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | - Ariana M Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | - Beck A Wehrle
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Caitlyn C Catabay
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA
| | - Daniel R Rankins
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| | - Kendall D Clements
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | - Donovan P German
- Department of Ecology and Evolutionary Biology, University of California, Irvine, 321 Steinhaus Hall, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Polymeropoulos ET, Milsom WK. Editorial: Untangling the oxygen transport cascade: a tribute to Peter Frappell (Frapps). J Comp Physiol B 2021; 191:973-978. [PMID: 34463812 DOI: 10.1007/s00360-021-01401-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
This collection of research articles was put together in honour of respiratory physiologist Professor Peter Frappell's (Frapps's) academic achievements. It encompasses various topics relating to the oxygen transport cascade, which was central to Frapps' career as a comparative physiologist. This issue highlights the diversity and outreach of his influence on the field and his pioneering spirit; promoting novel perspectives, methodologies and research techniques. This issue also demonstrates how Frapps' knowledge and scientific findings answered some of the fundamental questions within the field of respiratory physiology while creating and fostering a rather unique work atmosphere in the laboratories he led. We thank Frapps for the contributions he has made and the friendships he has nurtured over his career. Cheers, Frapps - we love you mate!
Collapse
Affiliation(s)
- Elias T Polymeropoulos
- Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, TAS, 7001, Australia.
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|