1
|
Liu Z, Liu D, Wang Z, Zou Y, Wang H, Li X, Zheng D, Zhou G. Association between inflammatory biomarkers and acute respiratory distress syndrome or acute lung injury risk : A systematic review and meta-analysis. Wien Klin Wochenschr 2021; 134:24-38. [PMID: 34860273 PMCID: PMC8813738 DOI: 10.1007/s00508-021-01971-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/16/2021] [Indexed: 11/29/2022]
Abstract
Background The relationship between acute respiratory distress syndrome (ARDS)/acute lung injury (ALI) and levels of certain inflammatory factors remains controversial. The purpose of this meta-analysis was to summarize the available studies evaluating the association between levels of inflammatory factors and ARDS/ALI incidence. Methods We searched the PubMed, EmBase, and Cochrane databases for studies published up to July 2017. For each inflammatory factor, a random effects model was employed to pool results from different studies. Results We identified 63 studies that included 6243 patients in our meta-analysis. Overall, the results indicated that the levels of angiopoietin (ANG)-2 (standard mean difference, SMD: 1.34; P < 0.001), interleukin (IL)-1β (SMD: 0.92; P = 0.012), IL‑6 (SMD: 0.66; P = 0.005), and tumor necrosis factor (TNF)-α (SMD: 0.98; P = 0.001) were significantly higher in patients with ARDS/ALI than in unaffected individuals. No significant differences were observed between patients with ARDS/ALI and unaffected individuals in terms of the levels of IL‑8 (SMD: 0.61; P = 0.159), IL-10 (SMD: 1.10; P = 0.231), and plasminogen activator inhibitor (PAI)-1 (SMD: 0.70; P = 0.060). Conclusions ARDS/ALI is associated with a significantly elevated levels of ANG‑2, IL-1β, IL‑6, and TNF‑α, but not with IL‑8, IL-10, and PAI‑1 levels. Supplementary Information The online version of this article (10.1007/s00508-021-01971-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhenfeng Liu
- Department of Respiratory Medicine, Zunyi Honghuagang District People's Hospital, 185 Wanli Road, HongHuagang District, 563000, Guizhou, China.,Department of Respiratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Huichuan District, 563000, Guizhou, China
| | - Daishun Liu
- Department of Respiratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Huichuan District, 563000, Guizhou, China
| | - Zhihua Wang
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China
| | - Yugang Zou
- Department of Respiratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, 98 Fenghuang Road, Huichuan District, 563000, Guizhou, China
| | - Haixia Wang
- Department of Respiratory Medicine, Suzhou Science & Technology Town Hospital, 215153, Jiangsu, China
| | - Xiao Li
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China
| | - Deliang Zheng
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China
| | - Guoqi Zhou
- Department of Respiratory Medicine, Teaching Hospital of Zunyi Medical College, 134 LinJiapo Road, HongHuagang District, 563000, Guizhou, China.
| |
Collapse
|
2
|
Yuan X, Bhat OM, Lohner H, Zhang Y, Li PL. Downregulation of Lysosomal Acid Ceramidase Mediates HMGB1-Induced Migration and Proliferation of Mouse Coronary Arterial Myocytes. Front Cell Dev Biol 2020; 8:111. [PMID: 32211403 PMCID: PMC7076051 DOI: 10.3389/fcell.2020.00111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 02/10/2020] [Indexed: 01/07/2023] Open
Abstract
High-mobility group box 1 protein (HMGB1) has been reported to trigger lysosome destabilization causing a wide of inflammatory diseases. The present study tested whether a lysosomal enzyme, acid ceramidase (AC), plays a critical role in HMGB1-induced alteration in ceramide metabolism and whether such HMGB1-AC interaction is associated with abnormal migration and proliferation of vascular smooth muscle cells (SMCs). We first observed that the expression of AC in the medial layer of mouse coronary arterial wall and colocalization of AC with a lysosome marker Lamp-1. In primary cultured coronary arterial myocytes (CAMs), AC expression and colocalization with Lamp-1 were significantly up-regulated by AC inducer, genistein, but down-regulated by AC inhibitor, N-oleoylethanolamine (NOE). HMGB1 dose-dependently decreased the colocalization of AC with Lamp-1 and reduced mRNA and protein expressions of AC in CAMs, but reversed by genistein. Consistently, HMGB1 significantly induced increases in the levels of long-chain ceramides in CAMs, which were not further enhanced by NOE but blocked by genistein. More importantly, HMGB1 promoted migration and proliferation of CAMs, which were not further increased by NOE but reduced by genistein. Lastly, CAMs isolated from smooth muscle-specific AC knockout mice (AC gene Asah1) exhibited increased ceramide levels and enhanced the migration and proliferation, which resembles the effects of HMGB1 on wild-type CAMs. Together, these results suggest that HMGB1 promotes SMC migration and proliferation via inhibition of AC expression and ceramide accumulation.
Collapse
Affiliation(s)
- Xinxu Yuan
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Owais M Bhat
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Hannah Lohner
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
3
|
Ringer's ethyl pyruvate solution attenuates hypoperfusion and renal injury after multivisceral ischemia-reperfusion in rabbits. J Anesth 2020; 34:303-307. [PMID: 31916012 DOI: 10.1007/s00540-019-02730-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 12/25/2019] [Indexed: 01/28/2023]
Abstract
Ringer's ethyl pyruvate solution (REPS) has been protective against experimental renal, intestinal, and spinal ischemia and may be useful for organ protection in major vascular surgery. The purpose of this study was to investigate whether REPS attenuates organ injury in a rabbit model of supraceliac aortic cross-clamp that simulates thoracoabdominal aortic surgery. Following the Institutional Animal Care and Use Committee's approval, 20 rabbits were undergone cross-clamping of the supraceliac thoracic aorta for 30 min, and observed for 180 min after reperfusion. Either REPS (33 mg/kg/h of ethyl pyruvate) or Ringer's lactate solution were infused throughout the study period. Arterial pressure and aortic blood flow were continuously monitored. Blood lactate concentration, serum transaminase levels, neutrophil activation, and urinary N-acetyl-beta-glucosaminidase (NAG) activity were evaluated. After reperfusion, supraceliac aortic blood flow was significantly higher, and urinary NAG was significantly lower in animals that received REPS, while the other parameters were not significantly different. In conclusion, REPS attenuated the reduction of aortic blood flow and urinary NAG elevation after the cross-clamp of supraceliac aorta.
Collapse
|
4
|
Hirao S, Masumoto H, Itonaga T, Minatoya K. A Recovery Cardiopulmonary Bypass Model Without Transfusion or Inotropic Agents in Rats. J Vis Exp 2018. [PMID: 29630037 DOI: 10.3791/56986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Cardiopulmonary bypass (CPB) is indispensable in cardiovascular surgery. Despite the dramatic refinement of CPB technique and devices, multi-organ complications related to prolonged CPB still compromise the outcome of cardiovascular surgeries, and may worsen postoperative morbidity and mortality. Animal models recapitulating the clinical usage of CPB enable the clarification of the pathophysiological processes that occur during CPB, and facilitate pre-clinical studies to develop strategies protecting against these complications. Rat CPB models are advantageous because of their greater cost-effectiveness, convenient experimental processes, abundant testing methods at the genetic or protein levels, and genetic consistency. They can be used for investigating the immune system activation and synthesis of proinflammatory cytokines, compliment activation, and production of oxygen free radicals. The rat models have been refined and have gradually taken the place of large-animal models. Here, we describe a simple CPB model without transfusion and/or inotropic agents in a rat. This recovery model allows the study of the long-term multiple organ sequelae of CPB.
Collapse
Affiliation(s)
- Shingo Hirao
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University;
| | - Tatsuya Itonaga
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University
| |
Collapse
|
5
|
Hirao S, Minakata K, Masumoto H, Yamazaki K, Ikeda T, Minatoya K, Sakata R. Recombinant human soluble thrombomodulin prevents acute lung injury in a rat cardiopulmonary bypass model. J Thorac Cardiovasc Surg 2017. [PMID: 28645823 DOI: 10.1016/j.jtcvs.2017.05.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cardiopulmonary bypass (CPB) may induce systemic inflammatory responses causing acute lung injury. Recombinant human soluble thrombomodulin (rTM) is reported to attenuate the secretion of inflammatory cytokines and the high-mobility group box 1 (HMGB1) protein, which is critical in controlling systemic inflammation and apoptosis. We investigated the protective effects of rTM on CPB-induced lung injury in a rat model. METHODS Eighteen male Sprague-Dawley rats were divided into 3 groups: sham, control (CPB alone), and rTM (CPB + rTM). CPB was conducted in the control group and the rTM group. A bolus of rTM (3 mg/kg) was administered to the rTM group rats before CPB establishment. RESULTS The ratio of partial pressure of arterial oxygen to the fraction of inspired oxygen only dropped markedly from before CPB in the control group (P < .001). Serum tumor necrosis factor α, interleukin (IL) 6, and HMGB1 levels were significantly higher in the control group after CPB. Pathologic study revealed significantly more severe congestion, alveolar hemorrhage, neutrophil accumulation, and edema, and the number of lung cells expressing HMGB1 increased in the control group. The mRNA expression levels of tumor necrosis factor α, IL-6, IL-1β, and HMGB1 in the control group were significantly higher than those in other groups. According to Western blot analysis, nuclear factor-κB p65 in lung tissue was significantly downregulated in the rTM group. The number of apoptotic cells and the protein of cleaved Caspase-3 were reduced in the rTM group. CONCLUSIONS These results suggest that rTM prevents acute lung injury through attenuating inflammation and apoptosis during and after CPB in a rat model.
Collapse
Affiliation(s)
- Shingo Hirao
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Minakata
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hidetoshi Masumoto
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Kazuhiro Yamazaki
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Ikeda
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Minatoya
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryuzo Sakata
- Department of Cardiovascular Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
6
|
Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, Huang J, Yu Y, Fan XG, Yan Z, Sun X, Wang H, Wang Q, Tsung A, Billiar TR, Zeh HJ, Lotze MT, Tang D. HMGB1 in health and disease. Mol Aspects Med 2014; 40:1-116. [PMID: 25010388 PMCID: PMC4254084 DOI: 10.1016/j.mam.2014.05.001] [Citation(s) in RCA: 705] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Complex genetic and physiological variations as well as environmental factors that drive emergence of chromosomal instability, development of unscheduled cell death, skewed differentiation, and altered metabolism are central to the pathogenesis of human diseases and disorders. Understanding the molecular bases for these processes is important for the development of new diagnostic biomarkers, and for identifying new therapeutic targets. In 1973, a group of non-histone nuclear proteins with high electrophoretic mobility was discovered and termed high-mobility group (HMG) proteins. The HMG proteins include three superfamilies termed HMGB, HMGN, and HMGA. High-mobility group box 1 (HMGB1), the most abundant and well-studied HMG protein, senses and coordinates the cellular stress response and plays a critical role not only inside of the cell as a DNA chaperone, chromosome guardian, autophagy sustainer, and protector from apoptotic cell death, but also outside the cell as the prototypic damage associated molecular pattern molecule (DAMP). This DAMP, in conjunction with other factors, thus has cytokine, chemokine, and growth factor activity, orchestrating the inflammatory and immune response. All of these characteristics make HMGB1 a critical molecular target in multiple human diseases including infectious diseases, ischemia, immune disorders, neurodegenerative diseases, metabolic disorders, and cancer. Indeed, a number of emergent strategies have been used to inhibit HMGB1 expression, release, and activity in vitro and in vivo. These include antibodies, peptide inhibitors, RNAi, anti-coagulants, endogenous hormones, various chemical compounds, HMGB1-receptor and signaling pathway inhibition, artificial DNAs, physical strategies including vagus nerve stimulation and other surgical approaches. Future work further investigating the details of HMGB1 localization, structure, post-translational modification, and identification of additional partners will undoubtedly uncover additional secrets regarding HMGB1's multiple functions.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | - Ruochan Chen
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Qiuhong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Wen Hou
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Sha Wu
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jin Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhengwen Yan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA; Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, China
| | - Xiaofang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, NY 11030, USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Allan Tsung
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Herbert J Zeh
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Michael T Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|
7
|
The spectrum of anti-chromatin/nucleosome autoantibodies: independent and interdependent biomarkers of disease. J Immunol Res 2014; 2014:368274. [PMID: 24804269 PMCID: PMC3996305 DOI: 10.1155/2014/368274] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
Autoantibodies directed to chromatin components date back to the discovery of the LE cell and the LE cell phenomenon circa 1950, and subsequent evidence that major components of that reaction were chromatin components and histones in particular. Over time, immunoassays ranging from ELISA and line immunoassays to more modern bead-based assays incorporated histone and DNA mixtures, purified histones, and purified nucleosomes leading to a more thorough understanding of the genesis and pathogenetic relationships of antibodies to chromatin components in systemic lupus erythematosus and other autoimmune conditions. More recently, interest has focussed on other components of chromatin such as high mobility group (HMG) proteins both as targets of B cell responses and pro-inflammatory mediators. This review will focus on immunoassays that utilize chromatin components, their clinical relationships, and newer evidence implicating HMG proteins and DNA neutrophil extracellular traps (NETs) as important players in systemic autoimmune rheumatic diseases.
Collapse
|
8
|
Nuclear antigens and auto/alloantibody responses: friend or foe in transplant immunology. Clin Dev Immunol 2013; 2013:267156. [PMID: 23690821 PMCID: PMC3649457 DOI: 10.1155/2013/267156] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/19/2013] [Indexed: 02/07/2023]
Abstract
In addition to cellular immune responses, humoral immune responses, mediated by natural antibodies, autoantibodies, and alloantibodies, have increasingly been recognized as causes of organ transplant rejection. In our previous studies, we have demonstrated the induction of antinuclear antibodies against histone H1 and high-mobility group box 1 (HMGB1), in both experimental and clinical liver transplant tolerance. The active induction of antinuclear antibodies is usually an undesirable phenomenon, but it is often observed after liver transplantation. However, the release of nuclear antigens and its suppression by neutralizing antibodies are proposed to be important in the initiation and regulation of immune responses. In this review article, we summarize the current understanding of nuclear antigens and corresponding antinuclear regulatory antibodies (Abregs) on infection, injury, inflammation, transplant rejection, and tolerance induction and discuss the significance of nuclear antigens as diagnostic and therapeutic targets.
Collapse
|
9
|
Outcomes following endovascular or open repair for ruptured abdominal aortic aneurysm in a Chinese population. Heart Vessels 2013; 29:71-7. [DOI: 10.1007/s00380-012-0320-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 12/21/2012] [Indexed: 10/27/2022]
|
10
|
Itoh T, Iwahashi S, Kanak MA, Shimoda M, Takita M, Chujo D, Tamura Y, Rahman AM, Chung WY, Onaca N, Coates PTH, Dennison AR, Naziruddin B, Levy MF, Matsumoto S. Elevation of high-mobility group box 1 after clinical autologous islet transplantation and its inverse correlation with outcomes. Cell Transplant 2012; 23:153-65. [PMID: 23211332 DOI: 10.3727/096368912x658980] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A major problem after clinical autologous islet transplantation (AIT) is the difficulty in achieving insulin independence. To follow up on our demonstration in a murine model that high-mobility group box 1 (HMGB1) was released from islets and involved in early loss of transplanted islets, we tested the role of HMGB1 in clinical AIT. Serum HMGB1 levels from 15 AIT patients were significantly elevated during islet infusion (7.6 ± 1.2 ng/ml) and 24 h after infusion (8.0 ± 1.4 ng/ml) compared to admission levels (2.4 ± 0.6 ng/ml). The first elevation of HMGB1 was associated with islet damage, but the later elevation was not. The change in the HMGB1 level from admission to first peak (ΔHMGB1) was significantly higher in the AIT group (8.1 ± 1.1 ng/ml) than in the pancreatectomy-only control (2.2 ± 0.5 ng/ml) (p < 0.05). Circulating serum levels of soluble receptor for advanced glycation end products (sRAGE) were also elevated during islet infusion. In vitro studies demonstrated that damaged human islets released HMGB1 but not sRAGE. In terms of outcomes, the insulin-free group showed significantly lower ΔHMGB1 (5.2 ± 0.6 ng/ml) and higher ΔsRAGE (2.3 ± 0.6 ng/ml) than the insulin-dependent group (10.6 ± 1.9 ng/ml and 0.7 ± 0.2 ng/ml, respectively). The ΔHMGB1 correlated with the number of white blood cell, IP-10, EGF, and eotaxin. In conclusion, serum HMGB1 was elevated in AIT and could be associated with inflammatory reactions that deteriorate islet engraftment. Therefore, anti-HMGB1 therapy might be a candidate for further improving the outcomes of clinical AIT.
Collapse
|
11
|
Karper JC, Ewing MM, Jukema JW, Quax PHA. Future potential biomarkers for postinterventional restenosis and accelerated atherosclerosis. Biomark Med 2012; 6:53-66. [DOI: 10.2217/bmm.11.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
New circulating and local arterial biomarkers may help the clinician with risk stratification or diagnostic assessment of patients and selecting the proper therapy for a patient. In addition, they may be used for follow-up and testing efficacy of therapy, which is not possible with current biomarkers. Processes leading to postinterventional restenosis and accelerated atherosclerosis are complex due to the many biological variables mediating the specific inflammatory and immunogenic responses involved. Adequate assessment of these processes requires different and more specific biomarkers. Postinterventional remodeling is associated with cell stress and tissue damage causing apoptosis, release of damage-associated molecular patterns and upregulation of specific cytokines/chemokines that could serve as suitable clinical biomarkers. Furthermore, plasma titers of pathophysiological process-related (auto)antibodies could aid in the identification of restenosis risk or lesion severity. This review provides an overview of a number of potential biomarkers selected on the basis of their role in the remodeling process.
Collapse
Affiliation(s)
- Jacco C Karper
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark M Ewing
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - J Wouter Jukema
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Paul HA Quax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|