1
|
Abstract
Bone is a highly vascularized tissue. However, despite the importance of appropriate circulation for bone health, regulation of bone blood flow remains poorly understood. Invasive animal studies suggest that sympathetic activity plays an important role in bone flow control. However, it remains unknown if bone vasculature evidences robust vasoconstriction in response to sympathoexcitatory stimuli. Here, we characterized bone blood flow in young healthy individuals [n = 13, (four females)] in response to isometric handgrip exercise (IHE) and cold pressor test (CPT). These provide a strong stimulus for active vasoconstriction in the inactive muscle, and perhaps also in the bone. During sustained IHE to fatigue and CPT, we measured blood pressure, whole leg blood flow, and tibial perfusion using near-infrared spectroscopy. Tibia perfusion was determined as oxy- and deoxyhemoglobin. For both stimuli, tibial metabolism remained constant (i.e., no change in deoxyhemoglobin) and thus tibial arterial perfusion was represented by oxyhemoglobin. During IHE, oxyhemoglobin declined (beginning -0.20 ± 1.04 μM; end -1.13 ± 3.71 μM, both P < 0.01) slower than whole leg blood flow (beginning -0.85 ± 1.02 cm/s; end -2.72 ± 1.64 cm/s, both P < 0.01). However, during CPT, both oxyhemoglobin (beginning -0.46 ± 1.43 μM; end -0.60 ± 1.59 μM, both P < 0.01) and whole leg blood flow (beginning -1.52 ± 1.63 cm/s; end -0.69 ± 1.51 cm/s, both P < 0.01) declined with a similar timecourse, even though the magnitudes of decline were smaller than during IHE. These responses are likely due to the different timecourses of sympathetically mediated vasoconstriction in bone and muscle. These results indicate that sympathetic innervation of the bone vasculature serves a functional role in the control of flow in young healthy individuals.NEW & NOTEWORTHY The current study is the first one to noninvasively investigate control of bone blood perfusion in vivo in humans, on a moment-by-moment basis. Our results indicate that tibial bone vasculature demonstrates active vasoconstriction in response to sympathoexcitatory stimuli in young healthy individuals. Compared with whole leg vasculature, bone vasoconstrictor response seems to be smaller, delayed, and more variable.
Collapse
Affiliation(s)
- Adina E Draghici
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, Massachusetts
| | - J Andrew Taylor
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, Massachusetts.,Cardiovascular Research Laboratory, Spaulding Hospital Cambridge, Cambridge, Massachusetts
| |
Collapse
|
2
|
Nyvad J, Christensen KL, Buus NH, Reinhard M. The cuffless SOMNOtouch NIBP device shows poor agreement with a validated oscillometric device during 24-h ambulatory blood pressure monitoring. J Clin Hypertens (Greenwich) 2020; 23:61-70. [PMID: 33350030 PMCID: PMC8030014 DOI: 10.1111/jch.14135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Repeated cuff‐based blood pressure (BP) measurements may cause discomfort resulting in stress and erroneous recording values. SOMNOtouch NIBP is an alternative cuff‐less BP measurement device that calculates changes in BP based on changes in pulse transit time (PTT) and a software algorithm. The device is calibrated with a single upper arm cuff‐based BP measurement. We tested the device against a validated 24‐h ambulatory BP monitoring (ABPM) device using both the previous (SomBP1) and the current software algorithm (SomBP2). In this study, 51 patients (mean age ± SD 61.5 ± 13.0 years) with essential hypertension underwent simultaneous 24‐h ABPM with the SOMNOtouch NIBP on the left arm and a standard cuff‐based oscillometric device on the right arm (OscBP). We found that mean daytime systolic BP (SBP) with OscBP was 140.8 ± 19.7 compared to 148.0 ± 25.2 (P = .008) and 146.9 ± 26.0 mmHg (P = .034) for SomBP1 and SomBP2, respectively. Nighttime SBP with OscBP was 129.5 ± 21.1 compared with 146.1 ± 25.8 (P < .0001) and 141.1 ± 27.4 mmHg (P = .001) for SomBP1 and SomBP2, respectively. Ninety‐five% limits of agreement between OscBP and SomBP1 were ± 36.6 mmHg for daytime and ± 42.6 mmHg for nighttime SBP, respectively. Agreements were not improved with SomBP2. For SBP, a nocturnal dipping pattern was found in 33% of the study patients when measured with OscBP but only in 2% and 20% with SomBP1 and ‐2, respectively. This study demonstrates that BP values obtained with the cuff‐less PTT‐based SOMNOtouch device should be interpreted with caution as these may differ substantially from what would be obtained from a validated cuff‐based BP device.
Collapse
Affiliation(s)
- Jakob Nyvad
- Department of Renal Medicine and Clinic of Hypertension, Aarhus University Hospital, Aarhus, Denmark
| | - Kent L Christensen
- Department of Cardiology and Clinic of Hypertension, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Henrik Buus
- Department of Renal Medicine and Clinic of Hypertension, Aarhus University Hospital, Aarhus, Denmark
| | - Mark Reinhard
- Department of Renal Medicine and Clinic of Hypertension, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Au JS, Yiu BYS, So H, Chee AJY, Greaves DK, Hughson RL, Yu ACH. Ultrasound vector projectile imaging for detection of altered carotid bifurcation hemodynamics during reductions in cardiac output. Med Phys 2019; 47:431-440. [PMID: 31693196 DOI: 10.1002/mp.13905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/13/2019] [Accepted: 10/30/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Complex blood flow is commonly observed in the carotid bifurcation, although the factors that regulate these patterns beyond arterial geometry are unknown. The emergence of high-frame-rate ultrasound vector flow imaging allows for noninvasive, time-resolved analysis of complex hemodynamic behavior in humans, and it can potentially help researchers understand which physiological stressors can alter carotid bifurcation hemodynamics in vivo. Here, we seek to pursue the first use of vector projectile imaging (VPI), a dynamic form of vector flow imaging, to analyze the regulation of carotid bifurcation hemodynamics during experimental reductions in cardiac output induced via a physiological stressor called lower body negative pressure (LBNP). METHODS Seven healthy adults (age: 27 ± 4 yr, 4 men) underwent LBNP at -45 mmHg to simulate a postural hemodynamic response in a controlled environment. Using a research-grade, high-frame-rate ultrasound platform, vector flow estimation in each subject's right carotid bifurcation was performed through a multi-angle plane wave imaging (two transmission angles of 10° and -10°) formulation, and VPI cineloops were generated at a frame rate of 750 fps. Vector concentration was quantified by the resultant blood velocity vector angles within a region of interest; lower concentration indicated greater flow dispersion. Discrete concentration values during peak and late systole were compared across different segments of the carotid artery bifurcation before, and during, LBNP. RESULTS Vector projectile imaging revealed that external and internal carotid arteries exhibited regional hemodynamic changes during LBNP, which acted to reduce both the subject's cardiac output (Δ - 1.2 ± 0.5 L/min, -19%; P < 0.01) and peak carotid blood velocity (Δ - 6.30 ± 8.27 cm/s, -7%; P = 0.05). In these carotid artery branches, the vector concentration time trace before and during LBNP were observed to be different. The impact of LBNP on flow complexity in the two carotid artery branches showed variations between subjects. CONCLUSIONS Using VPI, intuitive visualization of complex hemodynamic changes can be obtained in healthy humans subjected to LBNP. This imaging tool has potential for further applications in vascular physiology to identify and quantify complex hemodynamic features in humans during different physiological stressor tests that regulate hemodynamics.
Collapse
Affiliation(s)
- Jason S Au
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Billy Y S Yiu
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Hélène So
- Faculty of Science and Engineering, Sorbonne Université, 75005, Paris, France
| | - Adrian J Y Chee
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,University of Caen Normandy, Espl. De la Paix, 14032, Caen, France
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada
| | - Alfred C H Yu
- Schlegel-University of Waterloo Research Institute for Aging, 250 Laurelwood Dr., Waterloo, N2J0E2, Canada.,Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, N2L3G1, Canada
| |
Collapse
|
4
|
Herrington BA, Thrall SF, Mann LM, Tymko MM, Day TA. The effect of steady-state CO 2 on regional brain blood flow responses to increases in blood pressure via the cold pressor test. Auton Neurosci 2019; 222:102581. [PMID: 31654818 DOI: 10.1016/j.autneu.2019.102581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 07/08/2019] [Accepted: 08/19/2019] [Indexed: 10/26/2022]
Abstract
The pressure-passive cerebrovasculature is affected by alterations in cerebral perfusion pressure (CPP) and arterial blood gases (e.g., pressure of arterial [Pa]CO2), where acute changes in either stimulus can influence cerebral blood flow (CBF). The effect of superimposed increases in CPP at different levels of steady-state PaCO2 on regional CBF regulation is unclear. In 17 healthy participants, we simultaneously recorded continuous heart rate (electrocardiogram), blood pressure (finometer), pressure of end-tidal CO2 (PETCO2; gas analyzer), and middle (MCA) and posterior (PCA) cerebral artery blood velocity (CBV; transcranial Doppler ultrasound). Three separate CPTs were administered by passive immersion of both feet into 0-1 °C of ice water for 3-min under three randomized and coached steady-state PETCO2 conditions: normocapnia (room air), hypocapnia (-10 Torr; hyperventilation) and hypercapnia (+9 Torr; 5% inspired CO2;). CBV responses were calculated as the absolute difference (∆) between baseline and mean MCAv and PCAv during the 3-min CPT. Both the ∆MCAv and ∆PCAv responses to the CPT were larger under hypercapnic conditions. The absolute ∆MCAv response was larger than the ∆PCAv during the CPT across all three CO2 trials. Cerebrovascular CO2 reactivity (CVR) was larger in the MCA than PCA in both CPT and baseline conditions, but there were no differences in CVR between CPT and baseline conditions. Our data indicate that (a) increases in CO2 increases the CBV responses to a CPT, (b) the anterior cerebrovasculature is more responsive to a CPT-induced increases in MAP, and (c) although unchanged during a CPT, CVR is larger in the anterior cerebral circulation.
Collapse
Affiliation(s)
- Brittney A Herrington
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Scott F Thrall
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Leah M Mann
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, University of British Columbia, British Columbia, Canada
| | - Trevor A Day
- Department of Biology, Faculty of Science and Technology, Mount Royal University, Calgary, Canada.
| |
Collapse
|
5
|
Faconti L, Farukh B, McNally R, Webb A, Chowienczyk P. Arterial Stiffness Can Be Modulated by Pressure-Independent Mechanisms in Hypertension. J Am Heart Assoc 2019; 8:e012601. [PMID: 31379238 PMCID: PMC6761651 DOI: 10.1161/jaha.119.012601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/20/2019] [Indexed: 01/21/2023]
Abstract
Background Effects of short-term interventions on large-artery stiffness assessed by pulse wave velocity (PWV) have mainly been explained by concomitant changes in blood pressure (BP). However, lower body negative pressure, which increases sympathetic activity and has other hemodynamic effects, has a specific effect on PWV in healthy volunteers. Methods and Results We examined effects of lower-limb venous occlusion (LVO), a similar intervention to lower-body negative pressure that reduces BP but increases sympathetic activity and device-guided breathing (DGB), which reduces both BP and sympathetic activity, on PWV in patients with essential hypertension (n=70 after LVO, n=45 after DGB and LVO in random order). The short-acting calcium channel antagonist nifedipine was used as a control for changes in BP. LVO produced a small but significant reduction in mean arterial pressure of 1.8 (95% CI 0.3-3.4) mm Hg. Despite this, aortic and carotid-femoral PWV increased during LVO by 0.8 (0.2-1.4) m/s and 0.7 (0.3-1.05) m/s, respectively. DGB reduced PWV by 1.2 (0.9-1.4) m/s, to a greater extent than did nifedipine 10 mg (reduction of 0.7 [0.1-1.3] m/s, P<0.05 compared with reduction during DGB). This occurred despite a greater decrease in BP with nifedipine compared with DGB. Conclusions Arterial stiffness can be modulated independently of BP over the short term. The mechanism could involve alterations in sympathetic activity or other as yet uncharacterized effects of LVO and DGB.
Collapse
Affiliation(s)
- Luca Faconti
- King's College LondonBritish Heart Foundation CentreLondonUnited Kingdom
| | - Bushra Farukh
- King's College LondonBritish Heart Foundation CentreLondonUnited Kingdom
| | - Ryan McNally
- King's College LondonBritish Heart Foundation CentreLondonUnited Kingdom
| | - Andrew Webb
- King's College LondonBritish Heart Foundation CentreLondonUnited Kingdom
| | - Phil Chowienczyk
- King's College LondonBritish Heart Foundation CentreLondonUnited Kingdom
| |
Collapse
|
6
|
Stone RM, Ainslie PN, Kerstens TP, Wildfong KW, Tymko MM. Sex differences in the circulatory responses to an isocapnic cold pressor test. Exp Physiol 2018; 104:295-305. [PMID: 30578582 DOI: 10.1113/ep087232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do sex differences exist in the cardiorespiratory responses to an isocapnic cold pressor test (CPT)? What is the main finding and its importance? During the CPT, there were no sex differences in the respiratory response; however, females demonstrated a reduced mean arterial pressure and reduced dilatation of the common carotid artery. Given that the CPT is predictive of future cardiovascular events, these data have clinical implications for improving the utility of the CPT to determine cardiovascular health risk. Sex differences should be taken into consideration when conducting and interpreting a CPT. ABSTRACT The cold pressor test (CPT) elicits a transient increase in sympathetic nervous activity, minute ventilation ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> ), mean arterial pressure (MAP) and common carotid artery (CCA) diameter in healthy individuals. Although the extent of dilatation of the CCA in response to the CPT has been used as a clinical indicator of cardiovascular health status, the potential sex differences have yet to be explored. In response to a CPT, we hypothesized that elevations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> and MAP and dilatation of the CCA would be attenuated in females compared with males. In 20 young, healthy participants (10 females), we measured the respiratory, cardiovascular and CCA responses during a CPT, which consisted of a 3 min immersion of the right foot into 0-1 ice water. Blood pressure (via finger photoplethysmography), heart rate (via electrocardiogram) and CCA diameter and velocity (via Duplex ultrasound) were simultaneously recorded immediately before and during the CPT. During the CPT, while controlling end-tidal gases to baseline values, the main findings were as follows: (i) no sex differences were present in absolute or relative changes in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> (P = 0.801 and P = 0.179, respectively); (ii) the relative MAP and CCA diameter response were reduced in females by 51 and 55%, respectively (P = 0.008 and P = 0.029 versus males, respectively); and (iii) the relative MAP responses was positively correlated with the dilatation of the CCA in males (r = 0.42, P = 0.019), in females (r = 0.43, P = 0.019) and in males and females combined (r = 0.55, P < 0.001). Given that the CPT is used as a clinical tool to assess cardiovascular health status, sex differences should be considered in future studies.
Collapse
Affiliation(s)
- Rachel M Stone
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Thijs P Kerstens
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kevin W Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
7
|
Butlin M, Shirbani F, Barin E, Tan I, Spronck B, Avolio AP. Cuffless Estimation of Blood Pressure: Importance of Variability in Blood Pressure Dependence of Arterial Stiffness Across Individuals and Measurement Sites. IEEE Trans Biomed Eng 2018; 65:2377-2383. [DOI: 10.1109/tbme.2018.2823333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Iwamoto E, Bock JM, Casey DP. Blunted shear-mediated dilation of the internal but not common carotid artery in response to lower body negative pressure. J Appl Physiol (1985) 2018; 124:1326-1332. [DOI: 10.1152/japplphysiol.01011.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shear-mediated dilation in peripheral conduit arteries is blunted with sympathetic nervous system (SNS) activation; however, the effect of SNS activation on shear-mediated dilation in carotid arteries is unknown. We hypothesized that SNS activation reduces shear-mediated dilation in common and internal carotid arteries (CCA and ICA, respectively), and this attenuation is greater in the ICA compared with the CCA. Shear-mediated dilation in the CCA and ICA were measured in nine healthy men (24 ± 1 yr) with and without SNS activation. Shear-mediated dilation was induced by 3 min of hypercapnia (end‐tidal partial pressure of carbon dioxide +10 mmHg from individual baseline); SNS activity was increased with lower body negative pressure (LBNP; −20 mmHg). CCA and ICA measurements were made using Doppler ultrasound during hypercapnia with (LBNP) or without (Control) SNS activation. LBNP trials began with 5 min of LBNP with subjects breathing hypercapnic gas during the final 3 min. Shear-mediated dilation was calculated as the percent rise in peak diameter from baseline diameter. Sympathetic activation attenuated shear-mediated dilation in the ICA (Control vs. LBNP, 5.5 ± 0.7 vs. 1.8 ± 0.4%, P < 0.01), but not in the CCA (5.1 ± 1.2 vs. 4.2 ± 1.0%, P = 0.31). Moreover, absolute reduction in shear-mediated dilation via SNS activation was greater in the ICA than the CCA (−3.6 ± 0.7 vs. −0.9 ± 0.8%, P = 0.02). Our data indicate that shear-mediated dilation is attenuated during LBNP to a greater extent in the ICA compared with the CCA. These results potentially provide insight into the role of SNS activation on cerebral perfusion, as the ICA is a key supplier of blood to the brain. NEW & NOTEWORTHY We explored the effect of acute sympathetic nervous system (SNS) activation on shear-mediated dilation in the common and internal carotid arteries (CCA and ICA, respectively) in young healthy men. Our data demonstrate that hypercapnia-induced vasodilation of the ICA is attenuated during lower body negative pressure to a greater extent than the CCA. These data may provide novel information related to the role of SNS activation on cerebral perfusion in humans.
Collapse
Affiliation(s)
- Erika Iwamoto
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Joshua M. Bock
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
| | - Darren P. Casey
- Human Integrative and Cardiovascular Physiology Laboratory, Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
9
|
Nardone M, Incognito AV, Millar PJ. Evidence for Pressure-Independent Sympathetic Modulation of Central Pulse Wave Velocity. J Am Heart Assoc 2018; 7:JAHA.117.007971. [PMID: 29378730 PMCID: PMC5850264 DOI: 10.1161/jaha.117.007971] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Whether the sympathetic nervous system can directly alter central aortic stiffness remains controversial, mainly because of the difficulty in experimentally augmenting peripheral vasoconstrictor activity without changing blood pressure. Methods and Results To address this limitation, we utilized low‐level cardiopulmonary baroreflex loading and unloading shown previously to alter sympathetic outflow without evoking parallel hemodynamic modulation. Blood pressure and carotid‐femoral aortic pulse wave velocity (cf‐PWV) were measured in 32 healthy participants (24±2 years; women: n=15) before and during 12‐minute applications of low‐level lower body negative pressure; −7 mm Hg) and lower body positive pressure; +7 mm Hg), applied in a random order. Fibular nerve microneurography was used to collect muscle sympathetic nerve activity (MSNA) in a subset (n=8) to confirm peripheral sympathetic responses. During lower body negative pressure, heart rate, blood pressure, stroke volume, cardiac output, and total peripheral resistance were not statistically different (all P>0.05); MSNA burst frequency (+15%; P=0.007), total MSNA (+44%; P=0.006), and cf‐PWV (∆+0.3±0.2 m/s; P<0.001) increased. In total, 28 (88%) of participants observed an increase in cf‐PWV greater than the baseline typical error of measurement. During lower body positive pressure, heart rate, stroke volume, cardiac output, and total peripheral resistance were not statistically different (all P>0.05), though blood pressure increased (P<0.05) and pulse pressure decreased (P=0.01); MSNA burst frequency (−4%; P=0.37), total MSNA (−7%; P=0.89), and cf‐PWV (∆0.0±0.2 m/s; P=0.68) were not statistically different. Conclusions These findings provide evidence that acute elevations in peripheral sympathetic activity can increase central aortic PWV in young participants independent of a change in distending or pulsatile blood pressure or heart rate.
Collapse
Affiliation(s)
- Massimo Nardone
- Department of Kinesiology, University of Guelph-Humber, Toronto, Ontario, Canada
| | - Anthony V Incognito
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Philip J Millar
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada .,Toronto General Research Institute, Toronto General Hospital, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Tymko MM, Kerstens TP, Wildfong KW, Ainslie PN. Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide. Exp Physiol 2017; 102:1647-1660. [DOI: 10.1113/ep086585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/15/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Michael M. Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science; University of British Columbia; Kelowna BC Canada
| | | | - Kevin W. Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science; University of British Columbia; Kelowna BC Canada
| | - Philip N. Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science; University of British Columbia; Kelowna BC Canada
| |
Collapse
|
11
|
Flück D, Ainslie PN, Bain AR, Wildfong KW, Morris LE, Fisher JP. Extra- and intracranial blood flow regulation during the cold pressor test: influence of age. J Appl Physiol (1985) 2017; 123:1071-1080. [PMID: 28663374 DOI: 10.1152/japplphysiol.00224.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/30/2017] [Accepted: 06/26/2017] [Indexed: 11/22/2022] Open
Abstract
We determined how the extra- and intracranial circulations respond to generalized sympathetic activation evoked by a cold pressor test (CPT) and whether this is affected by healthy aging. Ten young [23 ± 2 yr (means ± SD)] and nine older (66 ± 3 yr) individuals performed a 3-min CPT by immersing the left foot into 0.8 ± 0.3°C water. Common carotid artery (CCA) and internal carotid artery (ICA) diameter, velocity, and flow were simultaneously measured (duplex ultrasound) along with middle cerebral artery and posterior cerebral artery mean blood velocity (MCAvmean and PCAvmean) and cardiorespiratory variables. The increases in heart rate (~6 beats/min) and mean arterial blood pressure (~14 mmHg) were similar in young and older groups during the CPT (P < 0.01 vs. baseline). In the young group, the CPT elicited an ~5% increase in CCA diameter (P < 0.01 vs. baseline) and a tendency for an increase in CCA flow (~12%, P = 0.08); in contrast, both diameter and flow remained unchanged in the older group. Although ICA diameter was not changed during the CPT in either group, ICA flow increased (~8%, P = 0.02) during the first minute of the CPT in both groups. Whereas the CPT elicited an increase in MCAvmean and PCAvmean in the young group (by ~20 and ~10%, respectively, P < 0.01 vs. baseline), these intracranial velocities were unchanged in the older group. Collectively, during the CPT, these findings suggest a differential mechanism(s) of regulation between the ICA compared with the CCA in young individuals and a blunting of the CCA and intracranial responses in older individuals.NEW & NOTEWORTHY Sympathetic activation evoked by a cold pressor test elicits heterogeneous extra- and intracranial blood vessel responses in young individuals that may serve an important protective role. The extra- and intracranial responses to the cold pressor test are blunted in older individuals.
Collapse
Affiliation(s)
- Daniela Flück
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Philip N Ainslie
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Anthony R Bain
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Kevin W Wildfong
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - Laura E Morris
- Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada; and
| | - James P Fisher
- School of Sport, Exercise, and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
12
|
Vriz O, Zito C, di Bello V, La Carrubba S, Driussi C, Carerj S, Bossone E, Antonini-Canterin F. Non-invasive one-point carotid wave intensity in a large group of healthy subjects. Heart Vessels 2014; 31:360-9. [DOI: 10.1007/s00380-014-0600-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 10/31/2014] [Indexed: 11/25/2022]
|
13
|
Phillips AA, Krassioukov AV, Ainslie PN, Cote AT, Warburton DER. Increased central arterial stiffness explains baroreflex dysfunction in spinal cord injury. J Neurotrauma 2014; 31:1122-8. [PMID: 24634993 DOI: 10.1089/neu.2013.3280] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
After cervical spinal cord injury (SCI), orthostatic hypotension and intolerance commonly ensue. The cardiovagal baroreflex plays an important role in the acute regulation of blood pressure (BP) and is associated with the onset of presyncope. The cardiovagal baroreflex is dysfunctional after SCI; however, this may be influenced by either increased stiffening of the arteries containing the stretch-receptors (which has been shown in SCI) or a more downstream neural mechanism (i.e., solitary nucleus, sinoatrial node). Identifying where along this pathway baroreflex dysfunction occurs may highlight a potential therapeutic target. This study examined the relationship between spontaneous cardiovagal baroreflex sensitivity (BRS) and common carotid artery (CCA) stiffness in those with high level SCI before and after midodrine (alpha1-agonist) administration, as well as in able-bodied controls, to evaluate: (1) the role arterial stiffening plays mediating baroreflex function after SCI and (2) the effect of normalizing BP on these parameters. Three to five min recordings of beat-by-beat BP and heart rate, as well as 30 sec duration recordings of CCA diameter were used for analysis. All participants were tested supine and during upright-tilt. Arterial stiffness (β-stiffness index) was elevated in those with SCI when upright (+12%; p<0.05). Further, β-stiffness index was negatively related to reduced BRS in those with SCI when upright (R2=0.55; p<0.05), but not in able-bodied persons. Normalizing BP did not improve BRS or CCA stiffness. This study clearly shows that reduced BRS is closely related to increased arterial stiffness in the population with SCI.
Collapse
Affiliation(s)
- Aaron A Phillips
- 1 Cardiovascular Physiology and Rehabilitation Laboratory , Physical Activity Promotion and Chronic Disease Prevention Unit, University of British Columbia , Vancouver, Canada
| | | | | | | | | |
Collapse
|
14
|
Lefferts WK, Augustine JA, Heffernan KS. Effect of acute resistance exercise on carotid artery stiffness and cerebral blood flow pulsatility. Front Physiol 2014; 5:101. [PMID: 24678301 PMCID: PMC3958641 DOI: 10.3389/fphys.2014.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/28/2014] [Indexed: 01/27/2023] Open
Abstract
Arterial stiffness is associated with cerebral flow pulsatility. Arterial stiffness increases following acute resistance exercise (RE). Whether this acute RE-induced vascular stiffening affects cerebral pulsatility remains unknown. Purpose: To investigate the effects of acute RE on common carotid artery (CCA) stiffness and cerebral blood flow velocity (CBFv) pulsatility. Methods: Eighteen healthy men (22 ± 1 yr; 23.7 ± 0.5 kg·m−2) underwent acute RE (5 sets, 5-RM bench press, 5 sets 10-RM bicep curls with 90 s rest intervals) or a time control condition (seated rest) in a randomized order. CCA stiffness (β-stiffness, Elastic Modulus (Ep)) and hemodynamics (pulsatility index, forward wave intensity, and reflected wave intensity) were assessed using a combination of Doppler ultrasound, wave intensity analysis and applanation tonometry at baseline and 3 times post-RE. CBFv pulsatility index was measured with transcranial Doppler at the middle cerebral artery (MCA). Results: CCA β-stiffness, Ep and CCA pulse pressure significantly increased post-RE and remained elevated throughout post-testing (p < 0.05). No changes in MCA or CCA pulsatility index were observed (p > 0.05). There were significant increases in forward wave intensity post-RE (p < 0.05) but not reflected wave intensity (p > 0.05). Conclusion: Although acute RE increases CCA stiffness and pressure pulsatility, it does not affect CCA or MCA flow pulsatility. Increases in pressure pulsatility may be due to increased forward wave intensity and not pressure from wave reflections.
Collapse
Affiliation(s)
- Wesley K Lefferts
- Department of Exercise Science, Syracuse University Syracuse, NY, USA
| | | | - Kevin S Heffernan
- Department of Exercise Science, Syracuse University Syracuse, NY, USA
| |
Collapse
|
15
|
Zhang H, Zheng R, Qian X, Zhang C, Hao B, Huang Z, Wu T. Use of wave intensity analysis of carotid arteries in identifying and monitoring left ventricular systolic function dynamics in rabbits. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:611-621. [PMID: 24361226 DOI: 10.1016/j.ultrasmedbio.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 10/04/2013] [Accepted: 10/13/2013] [Indexed: 06/03/2023]
Abstract
Wave intensity analysis (WIA) of the carotid artery was conducted to determine the changes that occur in left ventricular systolic function after administration of doxorubicin in rabbits. Each randomly selected rabbit was subject to routine ultrasound, WIA of the carotid artery, cardiac catheterization and pathologic examination every week and was followed for 16 wk. The first positive peak (WI1) of the carotid artery revealed that left ventricular systolic dysfunction occurred earlier than conventional indexes of heart function. WI1 was highly, positively correlated with the maximum rate of rise in left ventricular pressure in cardiac catheterization (r = 0.94, p < 0.01) and moderately negatively correlated with the apoptosis index of myocardial cells, an indicator of myocardial damage (r = -0.69, p < 0.01). Ultrasound WIA of the carotid artery sensitively reflects early myocardial damage and cardiac function, and the result is highly consistent with cardiac catheterization findings and the apoptosis index of myocardial cells.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Rongqin Zheng
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China.
| | - Xiaoxian Qian
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chengxi Zhang
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Baoshun Hao
- Department of Cardiology, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zeping Huang
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| | - Tao Wu
- Department of Ultrasound, Third Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Jatoi NA, Kyvelou SM, Feely J. The acute effects of mental arithmetic, cold pressor and maximal voluntary contraction on arterial stiffness in young healthy subjects. Artery Res 2014. [DOI: 10.1016/j.artres.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
17
|
Carotid haemodynamics during sympathetic nervous system stimulation via handgrip and cold pressor testing in young healthy subjects: A feasibility study. Artery Res 2014. [DOI: 10.1016/j.artres.2014.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Heffernan KS, Lefferts WK, Kasprowicz AG, Tarzia BJ, Thijssen DH, Brutsaert TD. Manipulation of arterial stiffness, wave reflections, and retrograde shear rate in the femoral artery using lower limb external compression. Physiol Rep 2013; 1:e00022. [PMID: 24303111 PMCID: PMC3831918 DOI: 10.1002/phy2.22] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/23/2013] [Accepted: 05/29/2013] [Indexed: 11/09/2022] Open
Abstract
Exposure of the arterial wall to retrograde shear acutely leads to endothelial dysfunction and chronically contributes to a proatherogenic vascular phenotype. Arterial stiffness and increased pressure from wave reflections are known arbiters of blood flow in the systemic circulation and each related to atherosclerosis. Using distal external compression of the calf to increase upstream retrograde shear in the superficial femoral artery (SFA), we examined the hypothesis that changes in retrograde shear are correlated with changes in SFA stiffness and pressure from wave reflections. For this purpose, a pneumatic cuff was applied to the calf and inflated to 0, 35, and 70 mmHg (5 min compression, randomized order, separated by 5 min) in 16 healthy young men (23 ± 1 years of age). Doppler ultrasound and wave intensity analysis was used to measure SFA retrograde shear rate, reflected pressure wave intensity (negative area [NA]), elastic modulus (Ep), and a single-point pulse wave velocity (PWV) during acute cuff inflation. Cuff inflation resulted in stepwise increases in retrograde shear rate (P < 0.05 for main effect). There were also significant cuff pressure-dependent increases in NA, Ep, and PWV across conditions (P < 0.05 for main effects). Change in NA, but not Ep or PWV, was associated with change in retrograde shear rate across conditions (P < 0.05). In conclusion, external compression of the calf increases retrograde shear, arterial stiffness, and pressure from wave reflection in the upstream SFA in a dose-dependent manner. Wave reflection intensity, but not arterial stiffness, is correlated with changes in peripheral retrograde shear with this hemodynamic manipulation.
Collapse
Affiliation(s)
- Kevin S Heffernan
- Department of Exercise Science, Syracuse University Syracuse, New York
| | | | | | | | | | | |
Collapse
|
19
|
Charach G, Shochat M, Argov O, Weintraub M, Charach L, Rabinovich A, Ayzenberg O, George J. Seasonal changes in blood pressure: Cardiac and cerebrovascular morbidity and mortality. World J Hypertens 2013; 3:1-8. [DOI: 10.5494/wjh.v3.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/10/2013] [Accepted: 01/24/2013] [Indexed: 02/06/2023] Open
Abstract
Cold is a seasonal and circadian risk factor for cardio- and cerebrovascular morbidity and mortality. Colder temperatures have been associated with higher blood pressure (BP), based on studies which show that BP levels measured during the summer months are generally lower than those measured during the winter months. Residents in geographic areas which have greater seasonal temperature differences show greater fluctuation in BP. Surprisingly, atmospheric pressure, rainfall, and humidity were not related to BP levels. The increased sympathetic nervous activity due to cold, as evidenced by elevated BP and by plasma and urinary catecholamines, has been proposed as being the underlying etiology. Patients with heart failure may experience, in cold conditions, endothelial dysfunction and produce fewer endogenous vasodilators (e.g., nitric oxide, prostaglandins) and more endogenous vasoconstrictors (e.g., endothelin), thus increasing afterload. Arterial stiffness is also related to seasonal BP changes. Increased BP, arterial stiffness and endothelial dysfunction could predispose to increased coronary and cerebrovascular events. Improved protection against lower temperatures or increased doses of existing medications or the addition of newer medications could lead to a reduction in increased cardiovascular mortality in winter. Here, we briefly review findings from existing literature and provide an update on seasonal long-term variation in BP along with the related complications.
Collapse
|
20
|
Phillips AA, Bredin SSD, Cote AT, Drury CT, Warburton DER. Aortic distensibility is reduced during intense lower body negative pressure and is related to low frequency power of systolic blood pressure. Eur J Appl Physiol 2012; 113:785-92. [DOI: 10.1007/s00421-012-2489-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/29/2012] [Indexed: 12/18/2022]
|
21
|
Effects of the left ventricular assist device on the compliance and distensibility of the carotid artery. Heart Vessels 2012; 28:377-84. [DOI: 10.1007/s00380-012-0271-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 06/29/2012] [Indexed: 10/28/2022]
|
22
|
Takaya Y, Taniguchi M, Sugawara M, Nobusada S, Kusano K, Akagi T, Ito H. Evaluation of exercise capacity using wave intensity in chronic heart failure with normal ejection fraction. Heart Vessels 2012; 28:179-87. [DOI: 10.1007/s00380-011-0224-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
23
|
Physical activity, adiponectin, and cardiovascular structure and function. Heart Vessels 2011; 28:91-100. [DOI: 10.1007/s00380-011-0215-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 12/02/2011] [Indexed: 02/02/2023]
|
24
|
Bia D, Cabrera-Fischer EI, Zócalo Y, Armentano RL. Intra-aortic balloon pumping reduces the increased arterial load caused by acute cardiac depression, modifying central and peripheral load determinants in a time- and flow-related way. Heart Vessels 2011; 27:517-27. [DOI: 10.1007/s00380-011-0203-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 09/30/2011] [Indexed: 11/24/2022]
|