1
|
Gurunathan S, Kim JH. Graphene Oxide Enhances Biogenesis and Release of Exosomes in Human Ovarian Cancer Cells. Int J Nanomedicine 2022; 17:5697-5731. [PMID: 36466784 PMCID: PMC9717435 DOI: 10.2147/ijn.s385113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/04/2022] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Exosomes, which are nanovesicles secreted by almost all the cells, mediate intercellular communication and are involved in various physiological and pathological processes. We aimed to investigate the effects of graphene oxide (GO) on the biogenesis and release of exosomes in human ovarian cancer (SKOV3) cells. METHODS Exosomes were isolated using ultracentrifugation and ExoQuick and characterized by various analytical techniques. The expression levels of exosome markers were analyzed via quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. RESULTS Graphene oxide (10-50 μg/mL), cisplatin (2-10 μg/mL), and C6-ceramide (5-25 μM) inhibited the cell viability, proliferation, and cytotoxicity in a dose-dependent manner. We observed that graphene oxide (GO), cisplatin (CIS), and C6-Ceramide (C6-Cer) stimulated acetylcholine esterase and neutral sphingomyelinase activity, total exosome protein concentration, and exosome counts associated with increased level of apoptosis, oxidative stress and endoplasmic reticulum stress. In contrast, GW4869 treatment inhibits biogenesis and release of exosomes. We observed that the human ovarian cancer cells secreted exosomes with typical cup-shaped morphology and surface protein biomarkers. The expression levels of TSG101, CD9, CD63, and CD81 were significantly higher in GO-treated cells than in control cells. Further, cytokine and chemokine levels were significantly higher in exosomes isolated from GO-treated SKOV3 cells than in those isolated from control cells. SKOV3 cells pre-treated with N-acetylcysteine or GW4869 displayed a significant reduction in GO-induced exosome biogenesis and release. Furthermore, endocytic inhibitors decrease exosome biogenesis and release by impairing endocytic pathways. CONCLUSION This study identifies GO as a potential tool for targeting the exosome pathway and stimulating exosome biogenesis and release. We believe that the knowledge acquired in this study can be potentially extended to other exosome-dominated pathologies and model systems. Furthermore, these nanoparticles can provide a promising means to enhance exosome production in SKOV3 cells.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Jin Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| |
Collapse
|
2
|
Huang Y, Zhang H, Lv B, Tang C, Du J, Jin H. Sulfur Dioxide: Endogenous Generation, Biological Effects, Detection, and Therapeutic Potential. Antioxid Redox Signal 2022; 36:256-274. [PMID: 34538110 DOI: 10.1089/ars.2021.0213] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Previously, sulfur dioxide (SO2) was recognized as an air pollutant. However, it is found to be endogenously produced in mammalian tissues. As a new gasotransmitter, SO2 is involved in regulating the structure and function of blood vessels, heart, lung, gastrointestinal tract, nervous system, etc.Recent Advances: Increasing evidence showed that endogenous SO2 regulates cardiovascular physiological processes, such as blood pressure control, vasodilation, maintenance of the normal vascular structure, and cardiac negative inotropy. Under pathological conditions including hypertension, atherosclerosis, vascular calcification, aging endothelial dysfunction, myocardial injury, myocardial hypertrophy, diabetic myocardial fibrosis, sepsis-induced cardiac dysfunction, pulmonary hypertension, acute lung injury, colitis, epilepsy-related brain injury, depression and anxiety, and addictive drug reward memory consolidation, endogenous SO2 protects against the pathological changes via different molecular mechanisms and the disturbed SO2/aspartate aminotransferase pathway is likely involved in the mechanisms for the earlier mentioned pathologic processes. Critical Issues: A comprehensive understanding of the biological effects of endogenous SO2 is extremely important for the development of novel SO2 therapy. In this review, we summarized the biological effects, mechanism of action, SO2 detection methods, and its related prodrugs. Future Directions: Further studies should be conducted to understand the effects of endogenous SO2 in various physiological and pathophysiological processes and clarify its underlying mechanisms. More efficient and accurate SO2 detection methods, as well as specific and effective SO2-releasing systems should be designed for the treatment and prevention of clinical related diseases. The translation from SO2 basic medical research to its clinical application is also worthy of further study. Antioxid. Redox Signal. 36, 256-274.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Heng Zhang
- Department of Endocrinology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Li Y, Feng Y, Ye X, Peng H, Du J, Yao X, Huang Y, Jin H, Du J. Endogenous SO 2 Controls Cell Apoptosis: The State-of-the-Art. Front Cell Dev Biol 2021; 9:729728. [PMID: 34692686 PMCID: PMC8529009 DOI: 10.3389/fcell.2021.729728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
SO2, previously known as the product of industrial waste, has recently been proven to be a novel gasotransmitter in the cardiovascular system. It is endogenously produced from the metabolism pathway of sulfur-containing amino acids in mammalians. Endogenous SO2 acts as an important controller in the regulation of many biological processes including cardiovascular physiological and pathophysiological events. Recently, the studies on the regulatory effect of endogenous SO2 on cell apoptosis and its pathophysiological significance have attracted great attention. Endogenous SO2 can regulate the apoptosis of vascular smooth muscle cells, endothelial cells, cardiomyocytes, neuron, alveolar macrophages, polymorphonuclear neutrophils and retinal photoreceptor cells, which might be involved in the pathogenesis of hypertension, pulmonary hypertension, myocardial injury, brain injury, acute lung injury, and retinal disease. Therefore, in the present study, we described the current findings on how endogenous SO2 is generated and metabolized, and we summarized its regulatory effects on cell apoptosis, underlying mechanisms, and pathophysiological relevance.
Collapse
Affiliation(s)
- Yingying Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Yingjun Feng
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Xiaoyun Ye
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jiantong Du
- Department of Ophthalmology, Peking University First Hospital, Beijing, China
| | - Xiaoli Yao
- Department of Cardiovascular Medicine, Children’s Hospital Affiliated to Zhengzhou University/Children’s Hospital of Henan Province, Zhengzhou, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- Key Lab of Molecular Cardiology, Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Dalaman U, Özdoğan H, Sircan AK, Şengül SA, Yaraş N. Sulfur Dioxide Derivative Prevents the Prolongation of Action Potential During the Isoproterenol-Induced Hypertrophy of Rat Cardiomyocytes. AN ACAD BRAS CIENC 2021; 93:e20201664. [PMID: 34550202 DOI: 10.1590/0001-3765202120201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/10/2021] [Indexed: 11/22/2022] Open
Abstract
Exogenous SO2 is toxic especially to the pulmonary and cardiovascular system, similar to nitric-oxide, carbon-monoxide, and hydrogen-sulfide. Endogenous SO2 is produced in many cell types. The SO2 content of the rat heart has been observed to substantially decrease during isoproterenol-induced hypertrophy. This study sought to determine whether an SO2 derivative could inhibit the prolongation of action potentials during the isoproterenol-induced hypertrophy of rat cardiomyocytes and explore the ionic currents. Alongside electrocardiogram recordings, the voltage and current-clamped measurements were conducted in the enzymatically isolated left ventricular cardiomyocytes of Wistar rats. The consistency of the results was evaluated by the novel mathematical electrophysiology model. Our results show that SO2 significantly blocked the prolongation of QT-interval and action potential duration. Furthermore, SO2 did not substantially affect the Na+ currents and did not improve the decreased steady-state and transient outward K+ currents, but it reverted the reduced L-type Ca2+ currents (I CaL) to the physiological levels. Altered inactivation of I CaL was remarkably recovered by SO2. Interestingly, SO2 significantly increased the Ca2+ transients in hypertrophic rat hearts. Our mathematical model also confirmed the mechanism of the SO2 effect. Our findings suggest that the shortening mechanism of SO2 is related to the Ca2+ dependent inactivation kinetics of the Ca2+ current.
Collapse
Affiliation(s)
- Uğur Dalaman
- Akdeniz University, Medical Faculty, Department of Biophysics, Dumlupınar Blv., 07070 Antalya, Turkey
| | - Hasan Özdoğan
- Akdeniz University, Medical Faculty, Department of Biophysics, Dumlupınar Blv., 07070 Antalya, Turkey.,Antalya Bilim University, Vocational School of Health Services, Akdeniz Blv. No: 90, 07085 Antalya, Turkey
| | - Ahmed K Sircan
- Antalya Bilim University, Electrical and Computer Engineering, Akdeniz Blv. No: 90, 07085 Antalya, Turkey
| | - Sevgi A Şengül
- Antalya Bilim University, Industrial Engineering, Akdeniz Blv. No: 90, 07085 Antalya, Turkey
| | - Nazmi Yaraş
- Akdeniz University, Medical Faculty, Department of Biophysics, Dumlupınar Blv., 07070 Antalya, Turkey
| |
Collapse
|
5
|
Abstract
Sulfur dioxide (SO2) was previously known as a harmful gas in air pollution. Recently, it was reported that SO2 can be endogenously generated in cardiovascular tissues. Many studies have revealed that endogenous SO2 has important physiological and pathophysiological significance and pharmacological potential. As a novel gasotransmitter, SO2 has important regulatory effects on the heart. It has a dose-dependent negative inotropic effect on cardiac function, in which L-type calcium channels are involved. SO2 can also attenuate myocardial injury caused by various harmful stimuli and play an important role in myocardial ischemia-reperfusion injury and myocardial hypertrophy. These effects are thought to be linked to its ability to reduce inflammation and as an antioxidant. In addition, SO2 regulates cardiomyocyte apoptosis and autophagy. Therefore, endogenous SO2 plays an important role in maintaining cardiovascular system homeostasis. In the present review, the literature concerning the metabolism of endogenous SO2, its cardiac toxicological effects and physiological regulatory effects, mechanisms for SO2-mediated myocardial protection and its pharmacological applications are summarized and discussed.
Collapse
|
6
|
Yang L, Zhang H, Chen P. Sulfur dioxide attenuates sepsis-induced cardiac dysfunction via inhibition of NLRP3 inflammasome activation in rats. Nitric Oxide 2018; 81:11-20. [PMID: 30273666 DOI: 10.1016/j.niox.2018.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Sulfur dioxide (SO2) plays an important role in maintaining homeostasis of cardiovascular system. This study was aimed to investigate cardioprotective effects of SO2 on in the rat and the underlying mechanism. METHODS AND RESULTS Sepsis model induced by cecal ligation and puncture (CLP) in rats were used. SO2 donor (NaHSO3/Na2SO3, 1:3 M/M) was administered intraperitoneally at a dose of 85 mg/kg. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were stimulated with LPS (1 mg/mL) in presence or absence of different concentrations of SO2 (10, 50 and 100 μmol/L). SO2 donor could restore the decreased levels of SO2 in plasma and heart of septic rats. SO2 exhibited dramatic improvement in cardiac functions. At 24 h after CLP, SO2 treatments decreased the number of TUNEL-positive cells, Bax/Bcl-2 ratio and activity of caspase-3. Moreover CLP-induced inflammatory response was also relieved by SO2. In NRCMs, SO2 could suppress the LPS-induced myocardial injury, leading to an increase in cell viability, a decrease in LDH and apoptotic rate. Western blot showed that the expression of TLR4, NLRP3, and Caspase-1 were obviously increased in myocardial tissue of CLP group or in NRCMs of LPS group, while SO2 significantly inhibited the CLP-induced or LPS-induced TLR4, NLRP3, and Caspase-1 expression. CONCLUSION SO2 attenuated sepsis-induced cardiac dysfunction likely in association with the inhibiting inflammation via TLR4/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Lin Yang
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu, Shangqiu, 476100, China.
| | - Hui Zhang
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu, Shangqiu, 476100, China
| | - Peili Chen
- Department of Critical Care Medicine, The First People's Hospital of Shangqiu, Shangqiu, 476100, China.
| |
Collapse
|
7
|
Ashokkumar R, Jamuna S, Sakeena Sadullah M, Niranjali Devaraj S. Vitexin protects isoproterenol induced post myocardial injury by modulating hipposignaling and ER stress responses. Biochem Biophys Res Commun 2018; 496:731-737. [DOI: 10.1016/j.bbrc.2018.01.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
|
8
|
Niu M, Han Y, Li Q, Zhang J. Endogenous sulfur dioxide regulates hippocampal neuron apoptosis in developing epileptic rats and is associated with the PERK signaling pathway. Neurosci Lett 2018; 665:22-28. [DOI: 10.1016/j.neulet.2017.11.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/15/2017] [Accepted: 11/15/2017] [Indexed: 01/15/2023]
|
9
|
Olson KR, Gao Y, DeLeon ER, Arif M, Arif F, Arora N, Straub KD. Catalase as a sulfide-sulfur oxido-reductase: An ancient (and modern?) regulator of reactive sulfur species (RSS). Redox Biol 2017; 12:325-339. [PMID: 28285261 PMCID: PMC5350573 DOI: 10.1016/j.redox.2017.02.021] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/11/2017] [Accepted: 02/24/2017] [Indexed: 11/19/2022] Open
Abstract
Catalase is well-known as an antioxidant dismutating H2O2 to O2 and H2O. However, catalases evolved when metabolism was largely sulfur-based, long before O2 and reactive oxygen species (ROS) became abundant, suggesting catalase metabolizes reactive sulfide species (RSS). Here we examine catalase metabolism of H2Sn, the sulfur analog of H2O2, hydrogen sulfide (H2S) and other sulfur-bearing molecules using H2S-specific amperometric electrodes and fluorophores to measure polysulfides (H2Sn; SSP4) and ROS (dichlorofluorescein, DCF). Catalase eliminated H2Sn, but did not anaerobically generate H2S, the expected product of dismutation. Instead, catalase concentration- and oxygen-dependently metabolized H2S and in so doing acted as a sulfide oxidase with a P50 of 20mmHg. H2O2 had little effect on catalase-mediated H2S metabolism but in the presence of the catalase inhibitor, sodium azide (Az), H2O2 rapidly and efficiently expedited H2S metabolism in both normoxia and hypoxia suggesting H2O2 is an effective electron acceptor in this reaction. Unexpectedly, catalase concentration-dependently generated H2S from dithiothreitol (DTT) in both normoxia and hypoxia, concomitantly oxidizing H2S in the presence of O2. H2S production from DTT was inhibited by carbon monoxide and augmented by NADPH suggesting that catalase heme-iron is the catalytic site and that NADPH provides reducing equivalents. Catalase also generated H2S from garlic oil, diallyltrisulfide, thioredoxin and sulfur dioxide, but not from sulfite, metabisulfite, carbonyl sulfide, cysteine, cystine, glutathione or oxidized glutathione. Oxidase activity was also present in catalase from Aspergillus niger. These results show that catalase can act as either a sulfide oxidase or sulfur reductase and they suggest that these activities likely played a prominent role in sulfur metabolism during evolution and may continue do so in modern cells as well. This also appears to be the first observation of catalase reductase activity independent of peroxide dismutation.
Collapse
Affiliation(s)
- Kenneth R Olson
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA.
| | - Yan Gao
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA
| | - Eric R DeLeon
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA; Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Maaz Arif
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA
| | - Faihaan Arif
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA
| | - Nitin Arora
- Indiana University School of Medicine - South Bend, South Bend, IN 46617, USA
| | - Karl D Straub
- Central Arkansas Veteran's Healthcare System, Little Rock, AR 72205, USA; Departments of Medicine and Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| |
Collapse
|
10
|
Downregulated endogenous sulfur dioxide/aspartate aminotransferase pathway is involved in angiotensin II-stimulated cardiomyocyte autophagy and myocardial hypertrophy in mice. Int J Cardiol 2016; 225:392-401. [DOI: 10.1016/j.ijcard.2016.09.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 11/23/2022]
|
11
|
Li Z, Huang Y, Du J, Liu AD, Tang C, Qi Y, Jin H. Endogenous Sulfur Dioxide Inhibits Vascular Calcification in Association with the TGF-β/Smad Signaling Pathway. Int J Mol Sci 2016; 17:266. [PMID: 26907267 PMCID: PMC4813130 DOI: 10.3390/ijms17030266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/31/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023] Open
Abstract
The study was designed to investigate whether endogenous sulfur dioxide (SO₂) plays a role in vascular calcification (VC) in rats and its possible mechanisms. In vivo medial vascular calcification was induced in rats by vitamin D3 and nicotine for four weeks. In vitro calcification of cultured A7r5 vascular smooth muscle cells (VSMCs) was induced by calcifying media containing 5 mmol/L CaCl₂. Aortic smooth muscle (SM) α-actin, runt-related transcription factor 2 (Runx2), transforming growth factor-β (TGF-β) and Smad expression was measured. VC rats showed dispersed calcified nodules among the elastic fibers in calcified aorta with increased aortic calcium content and alkaline phosphatase (ALP) activity. SM α-actin was markedly decreased, but the osteochondrogenic marker Runx2 concomitantly increased and TGF-β/Smad signaling was activated, in association with the downregulated SO₂/aspartate aminotransferase (AAT) pathway. However, SO₂ supplementation successfully ameliorated vascular calcification, and increased SM α-actin expression, but inhibited Runx2 and TGF-β/Smad expression. In calcified A7r5 VSMCs, the endogenous SO₂/AAT pathway was significantly downregulated. SO₂ treatment reduced the calcium deposits, calcium content, ALP activity and Runx2 expression and downregulated the TGF-β/Smad pathway in A7r5 cells but increased SM α-actin expression. In brief, SO₂ significantly ameliorated vascular calcification in association with downregulation of the TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Zhenzhen Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China.
| | - Angie Dong Liu
- Department of Medical and Health Sciences, Linköping University, Linköping 58183, Sweden.
| | - Chaoshu Tang
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China.
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China.
| | - Yongfen Qi
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China.
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
12
|
Huang Y, Tang C, Du J, Jin H. Endogenous Sulfur Dioxide: A New Member of Gasotransmitter Family in the Cardiovascular System. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:8961951. [PMID: 26839635 PMCID: PMC4709694 DOI: 10.1155/2016/8961951] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023]
Abstract
Sulfur dioxide (SO2) was previously regarded as a toxic gas in atmospheric pollutants. But it has been found to be endogenously generated from metabolism of sulfur-containing amino acids in mammals through transamination by aspartate aminotransferase (AAT). SO2 could be produced in cardiovascular tissues catalyzed by its synthase AAT. In recent years, studies revealed that SO2 had physiological effects on the cardiovascular system, including vasorelaxation and cardiac function regulation. In addition, the pathophysiological effects of SO2 were also determined. For example, SO2 ameliorated systemic hypertension and pulmonary hypertension, prevented the development of atherosclerosis, and protected against myocardial ischemia-reperfusion (I/R) injury and isoproterenol-induced myocardial injury. These findings suggested that endogenous SO2 was a novel gasotransmitter in the cardiovascular system and provided a new therapy target for cardiovascular diseases.
Collapse
Affiliation(s)
- Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Centre, Beijing 100191, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
- Key Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
13
|
Ge HW, Hu WW, Ma LL, Kong FJ. Endoplasmic reticulum stress pathway mediates isoflurane-induced neuroapoptosis and cognitive impairments in aged rats. Physiol Behav 2015; 151:16-23. [DOI: 10.1016/j.physbeh.2015.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/07/2015] [Accepted: 07/06/2015] [Indexed: 12/16/2022]
|
14
|
Wang XB, Du JB, Cui H. Sulfur dioxide, a double-faced molecule in mammals. Life Sci 2014; 98:63-7. [DOI: 10.1016/j.lfs.2013.12.027] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Revised: 12/07/2013] [Accepted: 12/20/2013] [Indexed: 12/31/2022]
|
15
|
Zhao Q, Hu X, Shao L, Wu G, Du J, Xia J. LipoxinA4 attenuates myocardial ischemia reperfusion injury via a mechanism related to downregulation of GRP-78 and caspase-12 in rats. Heart Vessels 2013; 29:667-78. [PMID: 24129401 PMCID: PMC4160563 DOI: 10.1007/s00380-013-0418-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 09/27/2013] [Indexed: 01/21/2023]
Abstract
This study aims to determine the effect of Lipoxin (LX)A4 on myocardial ischemia reperfusion injury (MIRI) in rats and the related molecular mechanisms. Male SD rats were divided into six groups. The sham operation groups (groups C1, C2) were injected with 2 ml/kg normal saline before and after coronary artery threading, respectively. The MIRI group (groups I/R1, I/R2) were injected with normal saline before and after MIRI, respectively. The LXA4 groups (groups LX1, LX2) were injected with LXA4 before and after MIRI treatment, respectively. The hematoxylin–eosin staining and ultrastructural changes of cardiac muscle were observed. The serum levels of interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor (TNF) α and cardiac troponin I (cTnI) were measured before open-chest operation and at the end of the experiment. The mRNA and protein levels of GRP-78 and caspase-12 were determined in each group. The myocardial cell apoptosis, myeloperoxidase (MPO), superoxide dismutase (SOD), and malondialdehyde (MDA) contents were detected. The mRNA and protein levels of GRP-78 and caspase-12, the apoptosis, the serum IL-1β, IL-6, IL-10, TNF-α, and cTnI concentrations, MPO, SOD, MDA contents were significantly increased in groups I/R1, I/R2, LX1, and LX2 compared with those in groups C1 and C2 (P < 0.05). The mRNA and protein expression levels of GRP-78 and caspase-12 in groups LX1 and LX2 were lower than those in groups I/R1 and I/R2. Compared with group I/R1 and I/R2, the myocardial neutrophil infiltration and ultrastructure damage were significantly less in groups LX1 and LX2. GRP-78 and IL-10 are expressed both extracellularly and intracellularly, but are mainly expressed in the cytoplasms. In the absence of MIRI, LXA4 has no detectable effect on GRP-78 and caspase-12 expression. Before and after MIRI, application of LXA4 significantly inhibits neutrophil activation, and attenuates myocardial inflammatory injury and oxidative stress. LXA4 downregulates the mRNA and protein expression of GRP-78 and caspase-12. LXA4 could play a role in myocardial protection via a mechanism related to downregulation of GRP-78 and caspase-12, and inhibition of apoptosis.
Collapse
Affiliation(s)
- Qifeng Zhao
- Department of Cardiovascular and Thoracic Surgery, The 2nd Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 College Western Road, Wenzhou, 325027, People's Republic of China,
| | | | | | | | | | | |
Collapse
|
16
|
Jin H, Liu AD, Holmberg L, Zhao M, Chen S, Yang J, Sun Y, Chen S, Tang C, Du J. The role of sulfur dioxide in the regulation of mitochondrion-related cardiomyocyte apoptosis in rats with isopropylarterenol-induced myocardial injury. Int J Mol Sci 2013; 14:10465-82. [PMID: 23698774 PMCID: PMC3676849 DOI: 10.3390/ijms140510465] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/24/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023] Open
Abstract
The authors investigated the regulatory effects of sulfur dioxide (SO2) on myocardial injury induced by isopropylarterenol (ISO) hydrochloride and its mechanisms. Wistar rats were divided into four groups: control group, ISO group, ISO plus SO2 group, and SO2 only group. Cardiac function was measured and cardiomyocyte apoptosis was detected. Bcl-2, bax and cytochrome c (cytc) expressions, and caspase-9 and caspase-3 activities in the left ventricular tissues were examined in the rats. The opening status of myocardial mitochondrial permeability transition pore (MPTP) and membrane potential were analyzed. The results showed that ISO-treated rats developed heart dysfunction and cardiac injury. Furthermore, cardiomyocyte apoptosis in the left ventricular tissues was augmented, left ventricular tissue bcl-2 expression was down-regulated, bax expression was up-regulated, mitochondrial membrane potential was significantly reduced, MPTP opened, cytc release from mitochondrion into cytoplasm was significantly increased, and both caspase-9 and caspase-3 activities were increased. Administration of an SO2 donor, however, markedly improved heart function and relieved myocardial injury of the ISO-treated rats; it lessened cardiomyocyte apoptosis, up-regulated myocardial bcl-2, down-regulated bax expression, stimulated mitochondrial membrane potential, closed MPTP, and reduced cytc release as well as caspase-9 and caspase-3 activities in the left ventricular tissue. Hence, SO2 attenuated myocardial injury in association with the inhibition of apoptosis in myocardial tissues, and the bcl-2/cytc/caspase-9/caspase-3 pathway was possibly involved in this process.
Collapse
Affiliation(s)
- Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Angie Dong Liu
- Department of Medical and Health Sciences, Linköping University, Linköping 58183, Sweden; E-Mails: (A.D.L.); (L.H.)
| | - Lukas Holmberg
- Department of Medical and Health Sciences, Linköping University, Linköping 58183, Sweden; E-Mails: (A.D.L.); (L.H.)
| | - Manman Zhao
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Siyao Chen
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Jinyan Yang
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Yan Sun
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Shanshan Chen
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
| | - Chaoshu Tang
- Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China; E-Mail:
- Department of Physiology and Pathophysiology, Health Sciences Center, Peking University, Beijing 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Xi’an Men Str. No. 1, West District, Beijing 100034, China; E-Mails: (H.J.); (M.Z.); (S.C.); (J.Y.); (Y.S.); (S.C.)
- Laboratory of Molecular Cardiology, Ministry of Education, Beijing 100191, China; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-10-8357-3238; Fax: +86-10-6653-0532
| |
Collapse
|
17
|
Luo L, Liu D, Tang C, Du J, Liu AD, Holmberg L, Jin H. Sulfur dioxide upregulates the inhibited endogenous hydrogen sulfide pathway in rats with pulmonary hypertension induced by high pulmonary blood flow. Biochem Biophys Res Commun 2013; 433:519-25. [PMID: 23524260 DOI: 10.1016/j.bbrc.2013.03.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 03/06/2013] [Indexed: 11/20/2022]
Abstract
Pulmonary hypertension (PH) is an important pathophysiological process in the development of many diseases. However, the mechanism responsible for the development of PH remains unknown. The objective of the study was to explore the possible impact of sulfur dioxide (SO2) on the endogenous hydrogen sulfide (H2S) pathway in rats with PH induced by high pulmonary blood flow. Compared with sham group, the systolic pulmonary artery pressure (SPAP) in the shunt group was significantly increased, along with the increased percentage of muscularized arteries and partially muscularized arteries of small pulmonary arteries. Compared with the shunt group, SPAP in the shunt+SO2 group was significantly decreased, and the percentage of muscularized pulmonary arteries was also decreased. Additionally, rats that developed PH had significantly lower levels of SO2 concentration, aspartate aminotransferase (AAT) activity, protein and mRNA expressions of AAT2 in pulmonary tissues. Administration of an SO2 donor could alleviate the elevated pulmonary arterial pressure and decrease the muscularization of pulmonary arteries. At the same time, it increased the H2S production, protein expression of cystathionine-γ-lyase (CSE), mRNA expression of CSE, mercaptopyruvate transsulphurase (MPST) and cystathionine-β-synthase (CBS) in the pulmonary tissue of the rats. The results suggested that endogenous SO2/AAT2 pathway and the endogenous H2S production were downregulated in rats with PH induced by high pulmonary blood flow. However, SO2 could reduce pulmonary arterial pressure and improve the pulmonary vascular pathological changes in association with upregulating endogenous H2S pathway.
Collapse
Affiliation(s)
- Liman Luo
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | | | |
Collapse
|