1
|
Lucena-Padros H, Bravo-Gil N, Tous C, Rojano E, Seoane-Zonjic P, Fernández RM, Ranea JAG, Antiñolo G, Borrego S. Bioinformatics Prediction for Network-Based Integrative Multi-Omics Expression Data Analysis in Hirschsprung Disease. Biomolecules 2024; 14:164. [PMID: 38397401 PMCID: PMC10886964 DOI: 10.3390/biom14020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024] Open
Abstract
Hirschsprung's disease (HSCR) is a rare developmental disorder in which enteric ganglia are missing along a portion of the intestine. HSCR has a complex inheritance, with RET as the major disease-causing gene. However, the pathogenesis of HSCR is still not completely understood. Therefore, we applied a computational approach based on multi-omics network characterization and clustering analysis for HSCR-related gene/miRNA identification and biomarker discovery. Protein-protein interaction (PPI) and miRNA-target interaction (MTI) networks were analyzed by DPClusO and BiClusO, respectively, and finally, the biomarker potential of miRNAs was computationally screened by miRNA-BD. In this study, a total of 55 significant gene-disease modules were identified, allowing us to propose 178 new HSCR candidate genes and two biological pathways. Moreover, we identified 12 key miRNAs with biomarker potential among 137 predicted HSCR-associated miRNAs. Functional analysis of new candidates showed that enrichment terms related to gene ontology (GO) and pathways were associated with HSCR. In conclusion, this approach has allowed us to decipher new clues of the etiopathogenesis of HSCR, although molecular experiments are further needed for clinical validations.
Collapse
Affiliation(s)
- Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Nereida Bravo-Gil
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Cristina Tous
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Elena Rojano
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
| | - Pedro Seoane-Zonjic
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Juan A. G. Ranea
- Department of Molecular Biology and Biochemistry, University of Malaga, 29010 Malaga, Spain
- Biomedical Research Institute of Malaga, IBIMA, 29010 Malaga, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 29071 Malaga, Spain
- Spanish National Bioinformatics Institute (INB/ELIXIR-ES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| |
Collapse
|
2
|
Cordelli DM, Di Pisa V, Fetta A, Garavelli L, Maltoni L, Soliani L, Ricci E. Neurological Phenotype of Mowat-Wilson Syndrome. Genes (Basel) 2021; 12:genes12070982. [PMID: 34199024 PMCID: PMC8305916 DOI: 10.3390/genes12070982] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 02/01/2023] Open
Abstract
Mowat-Wilson Syndrome (MWS) (OMIM # 235730) is a rare disorder due to ZEB2 gene defects (heterozygous mutation or deletion). The ZEB2 gene is a widely expressed regulatory gene, extremely important for the proper prenatal development. MWS is characterized by a specific facial gestalt and multiple musculoskeletal, cardiac, gastrointestinal, and urogenital anomalies. The nervous system involvement is extensive and constitutes one of the main features in MWS, heavily affecting prognosis and life quality of affected individuals. This review aims to comprehensively organize and discuss the neurological and neurodevelopmental phenotype of MWS. First, we will describe the role of ZEB2 in the formation and development of the nervous system by reviewing the preclinical studies in this regard. ZEB2 regulates the neural crest cell differentiation and migration, as well as in the modulation of GABAergic transmission. This leads to different degrees of structural and functional impairment that have been explored and deepened by various authors over the years. Subsequently, the different neurological aspects of MWS (head and brain malformations, epilepsy, sleep disorders, and enteric and peripheral nervous system involvement, as well as developmental, cognitive, and behavioral features) will be faced one at a time and extensively examined from both a clinical and etiopathogenetic point of view, linking them to the ZEB2 related pathways.
Collapse
Affiliation(s)
- Duccio Maria Cordelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
- Correspondence:
| | - Veronica Di Pisa
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Anna Fetta
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy;
| | - Lucia Maltoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Luca Soliani
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Neuropsichiatria dell’Età Pediatrica, 40139 Bologna, Italy; (V.D.P.); (A.F.); (L.M.); (L.S.)
| | - Emilia Ricci
- Child Neuropsychiatry Unit, Epilepsy Center, San Paolo Hospital, Department of Health Sciences, University of Milan, 20142 Milan, Italy;
| |
Collapse
|
3
|
Jakubiak A, Szczałuba K, Badura-Stronka M, Kutkowska-Kaźmierczak A, Jakubiuk-Tomaszuk A, Chilarska T, Pilch J, Braun-Walicka N, Castaneda J, Wołyńska K, Wiśniewska M, Kugaudo M, Bielecka M, Pesz K, Wierzba J, Latos-Bieleńska A, Obersztyn E, Krajewska-Walasek M, Śmigiel R. Clinical characteristics of Polish patients with molecularly confirmed Mowat-Wilson syndrome. J Appl Genet 2021; 62:477-485. [PMID: 33982229 PMCID: PMC8357696 DOI: 10.1007/s13353-021-00636-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 11/26/2022]
Abstract
Mowat-Wilson syndrome is a rare neurodevelopmental disorder caused by pathogenic variants in the ZEB2 gene, intragenic deletions of the ZEB2 gene, and microdeletions in the critical chromosomal region 2q22-23, where the ZEB2 gene is located. Mowat-Wilson syndrome is characterized by typical facial features that change with the age, severe developmental delay with intellectual disability, and multiple congenital abnormalities. The authors describe the clinical and genetic aspects of 28th patients with Mowat-Wilson syndrome diagnosed in Poland. Characteristic dysmorphic features, psychomotor retardation, intellectual disability, and congenital anomalies were present in all cases. The incidence of most common congenital anomalies (heart defect, Hirschsprung disease, brain defects) was similar to presented in literature. Epilepsy was less common compared to previously reported cases. Although the spectrum of disorders in patients with Mowat-Wilson syndrome is wide, knowledge of characteristic dysmorphic features awareness of accompanying abnormalities, especially intellectual disability, improves detection of the syndrome.
Collapse
Affiliation(s)
- Aleksandra Jakubiak
- Department of Paediatrics, Division of Paediatric Propaedeutics and Rare Disorders, Medical University, Wroclaw, Poland.
| | | | | | | | - Anna Jakubiuk-Tomaszuk
- Department of Neurology and Children Rehabilitation, Medical University, Bialystok, Poland
- Medical Genetics Unit, Mastermed Medical Center, Bialystok, Poland
| | - Tatiana Chilarska
- Department of Genetics, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Jacek Pilch
- Department of Paediatric Neurology, Medical University of Silesia, Katowice, Poland
| | | | - Jennifer Castaneda
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | | - Monika Kugaudo
- Department of Children and Adolescent Psychiatry, University Clinical Centre, Paediatric Teaching Clinical Hospital, Warsaw, Poland
| | - Monika Bielecka
- Department of Pharmaceutical Biotechnology, Medical University, Wroclaw, Poland
| | - Karolina Pesz
- Department of Genetics, Medical University, Wroclaw, Poland
| | - Jolanta Wierzba
- Department of Internal and Paediatric Nursing, Institute of Nursing and Midwifery, Medical University Gdansk, Gdansk, Poland
| | | | - Ewa Obersztyn
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | - Robert Śmigiel
- Department of Paediatrics, Division of Paediatric Propaedeutics and Rare Disorders, Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Rogac M, Kitanovski L, Writzl K. Co-occurrence of rhabdomyosarcoma and Mowat-Wilson syndrome: is there a connection? Clin Dysmorphol 2018; 26:185-186. [PMID: 28230647 DOI: 10.1097/mcd.0000000000000174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Mihael Rogac
- aUniversity Medical Centre, Clinical Institute for Medical Genetics bOncology and Haematology Unit, University Children's Hospital, University Medical Center, Ljubljana, Slovenia
| | | | | |
Collapse
|
5
|
Garavelli L, Ivanovski I, Caraffi SG, Santodirocco D, Pollazzon M, Cordelli DM, Abdalla E, Accorsi P, Adam MP, Baldo C, Bayat A, Belligni E, Bonvicini F, Breckpot J, Callewaert B, Cocchi G, Cuturilo G, Devriendt K, Dinulos MB, Djuric O, Epifanio R, Faravelli F, Formisano D, Giordano L, Grasso M, Grønborg S, Iodice A, Iughetti L, Lacombe D, Maggi M, Malbora B, Mammi I, Moutton S, Møller R, Muschke P, Napoli M, Pantaleoni C, Pascarella R, Pellicciari A, Poch-Olive ML, Raviglione F, Rivieri F, Russo C, Savasta S, Scarano G, Selicorni A, Silengo M, Sorge G, Tarani L, Tone LG, Toutain A, Trimouille A, Valera ET, Vergano SS, Zanotta N, Zollino M, Dobyns WB, Paciorkowski AR. Neuroimaging findings in Mowat-Wilson syndrome: a study of 54 patients. Genet Med 2017; 19:691-700. [PMID: 27831545 PMCID: PMC5438871 DOI: 10.1038/gim.2016.176] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/22/2016] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Mowat-Wilson syndrome (MWS) is a genetic disease characterized by distinctive facial features, moderate to severe intellectual disability, and congenital malformations, including Hirschsprung disease, genital and eye anomalies, and congenital heart defects, caused by haploinsufficiency of the ZEB2 gene. To date, no characteristic pattern of brain dysmorphology in MWS has been defined. METHODS Through brain magnetic resonance imaging (MRI) analysis, we delineated a neuroimaging phenotype in 54 MWS patients with a proven ZEB2 defect, compared it with the features identified in a thorough review of published cases, and evaluated genotype-phenotype correlations. RESULTS Ninety-six percent of patients had abnormal MRI results. The most common features were anomalies of corpus callosum (79.6% of cases), hippocampal abnormalities (77.8%), enlargement of cerebral ventricles (68.5%), and white matter abnormalities (reduction of thickness 40.7%, localized signal alterations 22.2%). Other consistent findings were large basal ganglia, cortical, and cerebellar malformations. Most features were underrepresented in the literature. We also found ZEB2 variations leading to synthesis of a defective protein to be favorable for psychomotor development and some epilepsy features but also associated with corpus callosum agenesis. CONCLUSION This study delineated the spectrum of brain anomalies in MWS and provided new insights into the role of ZEB2 in neurodevelopment.Genet Med advance online publication 10 November 2016.
Collapse
Affiliation(s)
- Livia Garavelli
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Ivan Ivanovski
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
- Department of Surgical, Medical, Dental, and Morphological Sciences with interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Daniela Santodirocco
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Marzia Pollazzon
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Duccio Maria Cordelli
- Child Neurology and Psychiatry Unit, S Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Ebtesam Abdalla
- Department of Medical Genetics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Human Genetics, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | | | - Margaret P. Adam
- Division of Genetic Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Chiara Baldo
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy
| | - Allan Bayat
- Department of Pediatrics, University Hospital of Copenhagen/Hvidovre, Copenhagen, Denmark
- Department of Clinical Genetics, Rigshospitalet, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Elga Belligni
- Department of Paediatrics, University of Torino, Torino, Italy
| | - Federico Bonvicini
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Jeroen Breckpot
- Center for Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Guido Cocchi
- Neonatology Unit, S. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | - Goran Cuturilo
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Department of Medical Genetics, University Children's Hospital, Belgrade, Serbia
| | - Koenraad Devriendt
- Center for Human Genetics, Catholic University of Leuven, Leuven, Belgium
| | - Mary Beth Dinulos
- Department of Pediatrics, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Olivera Djuric
- Clinical Genetics Unit, Department of Obstetrics and Pediatrics, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Roberta Epifanio
- Clinical Neurophysiology Unit, IRCCS, E Medea Scientific Institute, Lecco, Italy
| | - Francesca Faravelli
- Clinical Genetics, NE Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Debora Formisano
- Scientific Directorate, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Lucio Giordano
- Neurophychiatric Department, Spedali Civili Brescia, Italy
| | - Marina Grasso
- Laboratory of Human Genetics, Galliera Hospital, Genoa, Italy
| | - Sabine Grønborg
- Center for Rare Diseases, Department of Clinical Genetics, University Hospital Copenhagen, Copenhagen, Denmark
| | - Alessandro Iodice
- Neuropsychiatric Department, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Didier Lacombe
- Génétique Médicale, CHU, Bordeaux, France
- INSERM U1211, Univ. Bordeaux, Bordeaux, France
| | - Massimo Maggi
- Neuroradiology Unit, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Baris Malbora
- Department of Pediatric Hematology & Oncology, Tepecik Training and Research Hospital, Izmir, Turkey
| | | | - Sebastien Moutton
- Génétique Médicale, CHU, Bordeaux, France
- CHU Bordeaux, Centre de Référence des Anomalies du Développement Embryonnaire, Service de Génétique Médicale, Bordeaux, France
| | - Rikke Møller
- Danish Epilepsy Centre, Dianalund, Denmark
- Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Petra Muschke
- Institute for Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Manuela Napoli
- Neuroradiology Unit, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Chiara Pantaleoni
- Developmental Neurology Department, IRCCS Fondazione Istituto Neurologico “C. Besta,” Milan, Italy
| | - Rosario Pascarella
- Neuroradiology Unit, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | - Alessandro Pellicciari
- Child Neurology and Psychiatry Unit, S Orsola Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | - Federico Raviglione
- Clinical Neurophysiology and Epilepsy Center, Carlo Besta Neurological Institute, IRCCS, Milano, Italy
| | | | - Carmela Russo
- Neuroradiology Unit, Arcispedale Santa Maria Nuova–IRCCS, Reggio Emilia, Italy
| | | | | | - Angelo Selicorni
- Department of Pediatrics, Hospital S. Gerardo, University of Milano–Bicocca, Monza, Italy
- Department of Pediatrics, ASST Lariana, Como, Italy
| | | | - Giovanni Sorge
- Department of Pediatrics and Medical sciences, ‘‘Vittorio Emanuele” Hospital, University of Catania, Catania, Italy
| | - Luigi Tarani
- Department of Pediatrics, University ‘‘La Sapienza,'' Rome, Italy
| | - Luis Gonzaga Tone
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Annick Toutain
- Department of Genetics, Tours University Hospital, Tours, France
| | | | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Samantha Schrier Vergano
- Department of Pediatrics, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Division of Medical Genetics and Metabolism, Children's Hospital of The King's Daughters, Norfolk, Virginia, USA
| | - Nicoletta Zanotta
- Clinical Neurophysiology Unit, IRCCS, E Medea Scientific Institute, Lecco, Italy
| | - Marcella Zollino
- Institute of Genomic Medicine, Catholic University, Gemelli Hospital Foundation, Roma, Italy
| | - William B Dobyns
- Department of Pediatrics and Department of Neurology, University of Washington, Seattle, Washington, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Alex R Paciorkowski
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
- Center for Neural Development and Disease, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Packiasabapathy S, Chandiran R, Batra RK, Agarwala S. Difficult airway in Mowat-Wilson syndrome. J Clin Anesth 2016; 34:151-3. [DOI: 10.1016/j.jclinane.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/06/2015] [Accepted: 04/02/2016] [Indexed: 10/21/2022]
|
7
|
Moavero R, Folgiero V, Carai A, Miele E, Ferretti E, Po A, Diomedi Camassei F, Lepri FR, Vigevano F, Curatolo P, Valeriani M, Colafati GS, Locatelli F, Tornesello A, Mastronuzzi A. Metastatic Group 3 Medulloblastoma in a Patient With Tuberous Sclerosis Complex: Case Description and Molecular Characterization of the Tumor. Pediatr Blood Cancer 2016; 63:719-22. [PMID: 26626406 DOI: 10.1002/pbc.25851] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/27/2015] [Accepted: 10/27/2015] [Indexed: 01/23/2023]
Abstract
Medulloblastoma is the most common pediatric brain tumor. We describe a child with tuberous sclerosis complex that developed a Group 3, myc overexpressed, metastatic medulloblastoma (MB). Considering the high risk of treatment-induced malignancies, a tailored therapy, omitting radiation, was given. Based on the evidence of mammalian target of rapamycin mTORC, mTOR Complex; RAS, Rat sarcoma; RAF, rapidly accelerated fibrosarcoma (mTOR) pathway activation in the tumor, targeted therapy was applied resulting in complete remission of disease. Although the PI3K/AKT/mTOR signaling pathway plays a role in MB, we did not find TSC1/TSC2 (TSC, tuberous sclerosis complex) mutation in our patient. We speculate that a different pathway resulting in mTOR activation is the basis of both TSC and MB in this child; H&E, haematoxilin and eosin; Gd, gadolinium.
Collapse
Affiliation(s)
- Romina Moavero
- Neuroscience and Neurorehabilitation Department, Neurology Unit, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy.,Systems Medicine Department, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
| | - Valentina Folgiero
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Neurosurgery Unit, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Molecular Medicine, Sapienza University, Rome, Italy.,Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | | | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Francesca Romana Lepri
- Department of Laboratories, Medical Genetics laboratory, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| | - Federico Vigevano
- Neuroscience and Neurorehabilitation Department, Neurology Unit, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| | - Paolo Curatolo
- Systems Medicine Department, Child Neurology and Psychiatry Unit, Tor Vergata University Hospital of Rome, Rome, Italy
| | - Massimiliano Valeriani
- Neuroscience and Neurorehabilitation Department, Neurology Unit, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| | - Giovanna S Colafati
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy.,Department of Pediatric Science, University of Pavia, Italy
| | - Assunta Tornesello
- Department of Pediatrics, "Università Cattolica del Sacro Cuore,", Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology and Stem Cell Transplantation, Bambino Gesù Children's Hospital, , IRCCS, Rome, Italy
| |
Collapse
|
8
|
Moore SW, Fieggen K, Honey E, Zaahl M. Novel Zeb2 gene variation in the Mowat Wilson syndrome (MWS). J Pediatr Surg 2016; 51:268-71. [PMID: 26852091 DOI: 10.1016/j.jpedsurg.2015.10.070] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Mowat Wilson syndrome (MWS) is an uncommon association of Hirschsprung's disease (HSCR). Phenotypic features may develop with time, causing initial difficulties in diagnosis. MWS results from haploinsufficiency of the Zinc finger E-box-binding homeobox 2 (ZEB2) gene, and molecular diagnosis of ZEB2 mutation is required to confirm the diagnosis. We report the first confirmed cases of MWS in three children with the typical facial features, mental retardation, absent corpus callosum, epilepsy, and HSCR and novel Zeb2 variations on DNA analysis. METHODOLOGY Clinical features were monitored. DNA extracted from peripheral blood was subjected to bidirectional sequencing analysis following PCR DNA amplification. ZEB2 gene results were compared to the ZEB2 reference sequence (ENS00000169554) for variation. Bioinformatic investigation of novel gene variants was via the "Blastx" program function available via the National Center for Biotechnology Information (http://www.bioinfo.org/NPInter/blast/blast_link.cgi). RESULTS Clinical follow-up showed that the phenotypic features were not all present at birth but developed with time in 2 surviving patients. Several Zeb2 variations were detected in the promoter region of the ZEB2 gene of which 2 were novel (-56A/T 1174 11A/12A). In addition, a novel heterozygous single nucleotide insertion in exon 2 of ZEB2 in one patient results in a frameshift causing deletion of the first 8 amino acids of the ZEB2 protein and an alteration of amino acids 9 (G9A), 11 (R11G), and 12 (C12A). In the third patient, a novel single nucleotide deletion exon 8 (1784delC Het) results in a frameshift at amino acid 595 of translated protein. This shortens protein from 1214 to 594 amino acids and affects the functionality of the critical ZEB2 protein. CONCLUSIONS MWS is an important link to recognise clinically. It underlines the functionality of the Zeb2 gene in certain syndromic Hirschsprung's disease. These variations probably contribute to the clinical features of the Mowat Wilson phenotype in Hirschsprung's disease but should be confirmed in further research.
Collapse
Affiliation(s)
- Sam W Moore
- Division of Paediatric Surgery, University of Stellenbosch, Tygerberg, Western Cape Tygerberg.
| | - Karen Fieggen
- Division of Clinical Genetics, University of Cape Town, Western Cape Red Cross Children's
| | - Engela Honey
- Department Genetics, Division Human Genetics, University of Pretoria, Gauteng
| | - Monique Zaahl
- Division of Paediatric Surgery, University of Stellenbosch, Tygerberg, Western Cape Tygerberg
| |
Collapse
|
9
|
Coyle D, Puri P. Hirschsprung's disease in children with Mowat-Wilson syndrome. Pediatr Surg Int 2015; 31:711-7. [PMID: 26156877 DOI: 10.1007/s00383-015-3732-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hirschsprung's disease (HSCR) is cited as a classical component in the constellation of features found in children with Mowat-Wilson syndrome (MWS), which is caused by a mutation of the ZEB2 gene. The prevalence and phenotype of HSCR in those with MWS has yet to be determined. Similarly, it is not known if children with MWS who undergo a curative pull-through operation experience similar functional outcomes. We aimed to delineate the clinical features of those with MWS and HSCR and to determine if these patients experience unfavourable outcomes following pull-through surgery. METHODS A systematic review of the literature using the key search term "Mowat Wilson" was performed using three online databases. Clinical data were collected on all patients with a diagnosis of MWS confirmed by ZEB2 analysis. Data regarding bowel function in children with biopsy-proven HSCR were recorded where available. Statistical analysis was performed using SPSS (v. 20.0). RESULTS Fifty-two articles were reviewed in the final analysis, incorporating data on 256 patients with a diagnosis of MWS. HSCR was diagnosed in 111 patients (43.4%). Males with HSCR had a slightly increased risk of genital tract anomalies (e.g. hypospadias) compared to those without HSCR (RR 1.79, p = 0.05). Data pertaining to disease phenotype and functional outcome were only available on 42 and 13 patients, respectively. Rectosigmoid aganglionosis was the most common sub-type of HSCR, being described 26 patients (66.7%), albeit accounting for a lower proportion than would normally be expected in an HSCR population. Only two patients (15.4%) were described as having normal bowel function at follow-up with the remainder having terminal stomas, or experiencing troublesome persistent bowel symptoms and recurrent enterocolitis. CONCLUSION Hirschsprung's disease is present in approximately 45% of patients diagnosed with MWS. Although there is a relative lack of data available on the clinical phenotype of HSCR in this group and their functional outcome following pull-through operation, our data suggest an increased prevalence of long-segment aganglionosis and an increased risk of clinically significant persistent bowel symptoms following pull-through surgery, in many cases necessitating terminal stoma formation.
Collapse
Affiliation(s)
- David Coyle
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin Rd., Dublin 12, Ireland
| | | |
Collapse
|
10
|
Abstract
Mowat-Wilson syndrome is a recently delineated multiple congenital anomaly syndrome characterized by a distinctive facial appearance in association with intellectual disability, microcephaly, agenesis of the corpus callosum, seizures, congenital heart disease, Hirschsprung disease, short stature, and genitourinary anomalies. We report a 2-year-10-month-old white female with this syndrome caused by mutations in the ZEB2 gene, and in addition a duplication of the 22q11.23, a previously undocumented occurrence.
Collapse
Affiliation(s)
- Ersida Buraniqi
- Istanbul School of Medicine, Istanbul University, Istanbul, Turkey
| | - Manikum Moodley
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Paz JAD, Kim CA, Goossens M, Giurgea I, Marques-Dias MJ. Mowat-Wilson syndrome: neurological and molecular study in seven patients. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:12-7. [PMID: 25608121 DOI: 10.1590/0004-282x20140182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 09/30/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To present a seven-cases serie of Mowat-Wilson syndrome (MWS). METHOD All patients with positive mutation for the ZEB2 were evaluated by a geneticist and a neurologist, with clinical and laboratorial characterization. RESULTS A peculiar facies and mental retardation were present in all patients. The Denver II scale showed intense delay in all aspects, especially fine motor and adaptive. Acquired microcephaly was observed in five patients. Only one patient did not present epilepsy. Epilepsy was focal and predominating in sleep, with status epilepticus in three patients. The initial seizure was associated with fever in most patients (4/6). The EEG showed epileptic focal activity (5/7). The imaging studies revealed total agenesis (4/7) and partial agenesis of the corpus callosum (1/7). CONCLUSION Physicians who care for patients with mental retardation and epilepsy should be aware of SMW.
Collapse
Affiliation(s)
- José Albino da Paz
- Unidade de Neurologia e Genética, Instituto da Criança, Hospital das Clínicas, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Chong Ae Kim
- Unidade de Neurologia e Genética, Instituto da Criança, Hospital das Clínicas, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Michael Goossens
- Service de Biochimie Génétique, Hôpital Henri Mondor, Créteil, France
| | - Irina Giurgea
- Service de Biochimie Génétique, Hôpital Henri Mondor, Créteil, France
| | | |
Collapse
|
12
|
TGF-β1, Ghrelin, Neurexin, and Neuroligin are Predictive Biomarkers for Postoperative Prognosis of Laparoscopic Surgery in Children with Hirschsprung Disease. Cell Biochem Biophys 2014; 71:1249-54. [DOI: 10.1007/s12013-014-0338-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|