1
|
Ludwig HC, Dreha-Kulaczewski S, Bock HC. Paediatric pineal region cysts: enigma or impaired neurofluid system? Childs Nerv Syst 2023; 39:3457-3466. [PMID: 37261536 PMCID: PMC10684616 DOI: 10.1007/s00381-023-06000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/18/2023] [Indexed: 06/02/2023]
Abstract
PURPOSE Pineal region cysts (PCs) may affect the tectum and aqueduct and cause deep central vein congestion. Beside headaches, PC often causes a broad range of symptoms, leading to prolonged diagnosis and therapy. The aims of this study are to reveal parameters that might explain the ambiguity of the symptoms and to identify factors in association with the respiration-driven neurofluid system. METHODS This retrospective study included 28 paediatric patients (mean age 11.6 years) who received surgical treatment and 18 patients (mean age 11.3 years) who were followed conservatively. Symptoms, time to diagnosis, cyst size, ventricular indices, head circumference and postoperative outcome, were analysed. Four patients were investigated for CSF dynamics with real-time MRI. The mean follow-up time was 1.6 years. RESULTS The most common early onset symptoms were headaches (92%), blurred vision (42.8%), sleep disturbances (39.3%) and vertigo (32.1%). Tectum contact was observed in 82% of patients, and MRI examinations revealed that imaging flow void signals were absent in 32.1% of patients. The maximal cyst diameters were 13.7 × 15.6 mm (mean). Together with a postoperative flow void signal, 4 patients recovered their respiration-driven CSF aqueductal upward flow, which was not detectable preoperatively. After surgery the main symptoms improved. CONCLUSION Despite proximity to the aqueduct with frequently absent flow void signals, hydrocephalus was never detected. Data from real-time MRI depicted a reduced preoperative filling of the ventricular CSF compartments, indicating a diminished fluid preload, which recovered postoperatively.
Collapse
Affiliation(s)
- Hans C Ludwig
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany.
| | - Steffi Dreha-Kulaczewski
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| | - Hans Christoph Bock
- Department of Neurosurgery, Division of Pediatric Neurosurgery, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
2
|
Kollmeier JM, Gürbüz-Reiss L, Sahoo P, Badura S, Ellebracht B, Keck M, Gärtner J, Ludwig HC, Frahm J, Dreha-Kulaczewski S. Deep breathing couples CSF and venous flow dynamics. Sci Rep 2022; 12:2568. [PMID: 35173200 PMCID: PMC8850447 DOI: 10.1038/s41598-022-06361-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Venous system pathologies have increasingly been linked to clinically relevant disorders of CSF circulation whereas the exact coupling mechanisms still remain unknown. In this work, flow dynamics of both systems were studied using real-time phase-contrast flow MRI in 16 healthy subjects during normal and forced breathing. Flow evaluations in the aqueduct, at cervical level C3 and lumbar level L3 for both the CSF and venous fluid systems reveal temporal modulations by forced respiration. During normal breathing cardiac-related flow modulations prevailed, while forced breathing shifted the dominant frequency of both CSF and venous flow spectra towards the respiratory component and prompted a correlation between CSF and venous flow in the large vessels. The average of flow magnitude of CSF was increased during forced breathing at all spinal and intracranial positions. Venous flow in the large vessels of the upper body decreased and in the lower body increased during forced breathing. Deep respiration couples interdependent venous and brain fluid flow—most likely mediated by intrathoracic and intraabdominal pressure changes. Further insights into the driving forces of CSF and venous circulation and their correlation will facilitate our understanding how the venous system links to intracranial pressure regulation and of related forms of hydrocephalus.
Collapse
Affiliation(s)
- Jost M Kollmeier
- Biomedizinische NMR, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, 37077, Göttingen, Germany
| | - Lukas Gürbüz-Reiss
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Prativa Sahoo
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Simon Badura
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Ben Ellebracht
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Mathilda Keck
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Hans-Christoph Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Jens Frahm
- Biomedizinische NMR, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, 37077, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
3
|
Ludwig HC, Bock HC, Gärtner J, Schiller S, Frahm J, Dreha-Kulaczewski S. Hydrocephalus Revisited: New Insights into Dynamics of Neurofluids on Macro- and Microscales. Neuropediatrics 2021; 52:233-241. [PMID: 34192788 DOI: 10.1055/s-0041-1731981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
New experimental and clinical findings question the historic view of hydrocephalus and its 100-year-old classification. In particular, real-time magnetic resonance imaging (MRI) evaluation of cerebrospinal fluid (CSF) flow and detailed insights into brain water regulation on the molecular scale indicate the existence of at least three main mechanisms that determine the dynamics of neurofluids: (1) inspiration is a major driving force; (2) adequate filling of brain ventricles by balanced CSF upsurge is sensed by cilia; and (3) the perivascular glial network connects the ependymal surface to the pericapillary Virchow-Robin spaces. Hitherto, these aspects have not been considered a common physiologic framework, improving knowledge and therapy for severe disorders of normal-pressure and posthemorrhagic hydrocephalus, spontaneous intracranial hypotension, and spaceflight disease.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jutta Gärtner
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Stina Schiller
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Frahm
- Biomedical NMR, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Ludwig HC, Dreha-Kulaczewski S, Bock HC. Neurofluids-Deep inspiration, cilia and preloading of the astrocytic network. J Neurosci Res 2021; 99:2804-2821. [PMID: 34323313 DOI: 10.1002/jnr.24935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023]
Abstract
With the advent of real-time MRI, the motion and passage of cerebrospinal fluid can be visualized without gating and exclusion of low-frequency waves. This imaging modality gives insights into low-volume, rapidly oscillating cardiac-driven movement as well as sustained, high-volume, slowly oscillating inspiration-driven movement. Inspiration means a spontaneous or artificial increase in the intrathoracic dimensions independent of body position. Alterations in thoracic diameter enable the thoracic and spinal epidural venous compartments to be emptied and filled, producing an upward surge of cerebrospinal fluid inside the spine during inspiration; this surge counterbalances the downward pooling of venous blood toward the heart. Real-time MRI, as a macroscale in vivo observation method, could expand our knowledge of neurofluid dynamics, including how astrocytic fluid preloading is adjusted and how brain buoyancy and turgor are maintained in different postures and zero gravity. Along with these macroscale findings, new microscale insights into aquaporin-mediated fluid transfer, its sensing by cilia, and its tuning by nitric oxide will be reviewed. By incorporating clinical knowledge spanning several disciplines, certain disorders-congenital hydrocephalus with Chiari malformation, idiopathic intracranial hypertension, and adult idiopathic hydrocephalus-are interpreted and reviewed according to current concepts, from the basics of the interrelated systems to their pathology.
Collapse
Affiliation(s)
- Hans C Ludwig
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| | - Steffi Dreha-Kulaczewski
- Division of Pediatric Neurology, Department of Pediatrics and Adolescent Medicine, University Medical Center Göttingen, Göttingen, Germany
| | - Hans C Bock
- Division of Pediatric Neurosurgery, Department of Neurosurgery, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Thomale UW. Integrated understanding of hydrocephalus - a practical approach for a complex disease. Childs Nerv Syst 2021; 37:3313-3324. [PMID: 34114082 PMCID: PMC8578093 DOI: 10.1007/s00381-021-05243-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Most of childhood hydrocephalus are originating during infancy. It is considered to be a complex disease since it is developed on the basis of heterogeneous pathophysiological mechanisms and different pathological conditions as well as during different age groups. Hence, it is of relevant importance to have a practical concept in mind, how to categorize hydrocephalus to surgically better approach this disease. The current review should offer further basis of discussion on a disease still most frequently seen in Pediatric Neurosurgery. Current literature on pathophysiology and classification of pediatric hydrocephalus has been reviewed to integrate the different published concepts of hydrocephalus for pediatric neurosurgeons. The current understanding of infant and childhood hydrocephalus pathophysiology is summarized. A simplified concept based on seven factors of CSF dynamics is elaborated and discussed in the context of recent discussions. The seven factors such as pulsatility, CSF production, major CSF pathways, minor CSF pathways, CSF absorption, venous outflow, and respiration may have different relevance and may also overlap for the individual hydrocephalic condition. The surgical options available for pediatric neurosurgeons to approach hydrocephalus must be adapted to the individual condition. The heterogeneity of hydrocephalus causes mostly developing during infancy warrant a simplified overview and understanding for an everyday approach. The proposed guide may be a basis for further discussion and may serve for a more or less simple categorization to better approach hydrocephalus as a pathophysiological complex disease.
Collapse
Affiliation(s)
- U. W. Thomale
- grid.6363.00000 0001 2218 4662Pediatric Neurosurgery, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
6
|
Kerscher SR, Schweizer LL, Haas-Lude K, Bevot A, Schuhmann MU. Changes of third ventricle diameter (TVD) mirror changes of the entire ventricular system at acute shunt failure and after shunt revision in pediatric hydrocephalus. Childs Nerv Syst 2020; 36:2033-2039. [PMID: 32215715 DOI: 10.1007/s00381-020-04570-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/06/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE In hydrocephalic children, regular investigations of the ventricles are important for initial diagnosis and after initial treatment. Our recent study showed that changes of the third ventricle diameter (TVD) reliably reflect changes of the entire ventricular system at diagnosis and following initial therapy. This study compares changes of TVD with changes of ventricle indices at acute shunt failure and after shunt revision in hydrocephalic children. METHODS A total of 117 children with hydrocephalus were included in this study. MRI/CT images of 30 children were evaluated at the time of acute shunt dysfunction and after subsequent shunt revision. Measurements included axial TVD and three standard measures of lateral ventricles (Evans index, frontal occipital horn ratio (FOHR), and cella media index (CMI)). In 97 children, correlation between axial and coronal/diagonal TVD was evaluated at the time of initial diagnosis of hydrocephalus. RESULTS At acute shunt dysfunction, the best linear correlation was found between TVD and CMI (r = 0.702, p < 0.01). Changes of TVD correlated very well to changes of FOHR (r = 0.74, p < 0.01) after shunt revision. The correlation between axial and coronal/diagonal TVD was outstanding (r = 0.995, p < 0.01). CONCLUSION TVD showed a significant correlation with all lateral ventricle indices at acute shunt dysfunction and after shunt revision. It is therefore not only an excellent mirror of ventricular changes at initial hydrocephalus diagnosis and therapy, but it can also reliably reflect changes of the ventricular system in relevant clinical situations associated with the lifelong treatment of pediatric hydrocephalus.
Collapse
Affiliation(s)
- Susanne R Kerscher
- Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany. .,Department of Neurosurgery, University Hospital of Tuebingen, Tübingen, Germany.
| | - Louise L Schweizer
- Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany
| | - Karin Haas-Lude
- Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tuebingen, Tübingen, Germany
| | - Andrea Bevot
- Department of Pediatric Neurology and Developmental Medicine, Children's Hospital, University of Tuebingen, Tübingen, Germany
| | - Martin U Schuhmann
- Pediatric Neurosurgery, Department of Neurosurgery, University Hospital of Tuebingen, Hoppe-Seyler-Str.3, 72076, Tübingen, Germany.,Department of Neurosurgery, University Hospital of Tuebingen, Tübingen, Germany
| |
Collapse
|
7
|
Breathing drives CSF: Impact on spaceflight disease and hydrocephalus. Proc Natl Acad Sci U S A 2019; 116:20263-20264. [PMID: 31530729 PMCID: PMC6789739 DOI: 10.1073/pnas.1910305116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|