Abstract
OBJECTIVE
Accurate preoperative predictions of seizure freedom following surgery for focal drug resistant epilepsy remain elusive. Our objective was to systematically evaluate all meta-analyses of epilepsy surgery with seizure freedom as the primary outcome, to identify clinical features that are consistently prognostic and should be included in the future models.
METHODS
We searched PubMed and Cochrane using free-text and Medical Subject Heading (MeSH) terms according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses. This study was registered on PROSPERO. We classified features as prognostic, non-prognostic and uncertain and into seven subcategories: 'clinical', 'imaging', 'neurophysiology', 'multimodal concordance', 'genetic', 'surgical technique' and 'pathology'. We propose a structural causal model based on these features.
RESULTS
We found 46 features from 38 meta-analyses over 22 years. The following were consistently prognostic across meta-analyses: febrile convulsions, hippocampal sclerosis, focal abnormal MRI, Single-Photon Emission Computed Tomography (SPECT) coregistered to MRI, focal ictal/interictal EEG, EEG-MRI concordance, temporal lobe resections, complete excision, histopathological lesions, tumours and focal cortical dysplasia type IIb. Severe learning disability was predictive of poor prognosis. Others, including sex and side of resection, were non-prognostic. There were limited meta-analyses investigating genetic contributions, structural connectivity or multimodal concordance and few adjusted for known confounders or performed corrections for multiple comparisons.
SIGNIFICANCE
Seizure-free outcomes have not improved over decades of epilepsy surgery and despite a multitude of models, none prognosticate accurately. Our list of multimodal population-invariant prognostic features and proposed structural causal model may serve as an objective foundation for statistical adjustments of plausible confounders for use in high-dimensional models.
PROSPERO REGISTRATION NUMBER
CRD42021185232.
Collapse