1
|
Ge X, Yang Y, Wang W, Tian L, Zhang G, Tian Z, Xue X. Pediatric H3K27M‑mutant diffuse midline glioma with vertebral metastasis: A case report and literature review. Oncol Lett 2024; 27:48. [PMID: 38192660 PMCID: PMC10773191 DOI: 10.3892/ol.2023.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024] Open
Abstract
H3K27M-mutant diffuse midline glioma (DMG) is a type of high-grade glial tumor, which occurs in the midline structure and develops mostly in children. Extraneural metastases (ENM) are exceedingly rare in patients with H3K27M-mutant DMG. A 9-year-old male patient presented with a headache, nausea and vomiting. Following magnetic resonance imaging and immunohistochemical molecular testing examination, the patient was diagnosed with H3K27M-mutant DMG and received chemoradiotherapy plus five cycles of chemotherapy with temozolomide intermittently as an adjuvant therapy. The treatment resulted in a slight reduction of the tumor volume. However, 2 months later, the patient was admitted to hospital with complaints of drooping of the mouth, and waist and back pain. Magnetic resonance imaging and positron-emission tomography-computed tomography revealed an unusual presentation with multiple vertebral metastases and craniospinal leptomeningeal dissemination. Following discussion between the members of a multidisciplinary medical team, the patient underwent one cycle of chemotherapy with cyclophosphamide, vincristine and cisplatin. However, the condition did not improve and the patient died 4 weeks after the diagnosis of ENM. The mechanisms underlying the development of these rare metastases remain unclear. The present case report provides insights into the clinical characteristics and potential metastasis mechanisms of this aggressive disease and may help to elucidate new pathways for the management of ENM.
Collapse
Affiliation(s)
- Xiaohui Ge
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yu Yang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Wenyan Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Zhesen Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
2
|
Chen X, Li Y, Bu H, Zou Y, He J, Liu H. Adult spinal cord diffuse midline glioma, H3 K27-altered mimics symptoms of central nervous system infection: a case report. Front Neurol 2023; 14:1097157. [PMID: 37396765 PMCID: PMC10310954 DOI: 10.3389/fneur.2023.1097157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/22/2023] [Indexed: 07/04/2023] Open
Abstract
Diffuse midline gliomas, H3 K27-altered are infiltrative growth gliomas with histone H3K27M mutations. This glioma is more common in the pediatric population, and the prognosis is usually poor. We report a case of diffuse midline gliomas, H3 K27-altered in an adult patient that mimicked symptoms of central nervous system infection. The patient was admitted due to double vision for 2 months and paroxysmal unconsciousness for 6 days. Initially, lumbar puncture showed persistent high intracranial pressure, high protein, and low chlorine. Magnetic resonance imaging showed diffuse thickening and enhancement of meninges and spinal meninges, and later, fever occurred. The initial diagnosis was meningitis. We suspected central nervous system infection, so we started anti-infection treatment, but the treatment was ineffective. The patient's condition gradually worsened, with lower limb weakness and even the consciousness became unclear. A repeat magnetic resonance imaging and positron emission tomography-computed tomography scan showed space-occupying lesions in the spinal cord, which was considered a tumor. Following neurosurgery, pathological tests identified the tumor as diffuse midline gliomas, H3 K27-altered. The patient was recommended for radiotherapy and temozolomide chemotherapy. The patient's condition improved after chemotherapy treatment, and he survived for an additional 6 months. Our case shows that diagnosing diffuse midline gliomas, H3 K27-altered in the central nervous system is complex and can be confused with the clinical characteristics of central nervous system infection. Therefore, clinicians should pay attention to such diseases to avoid misdiagnosis.
Collapse
|
3
|
Cocito C, Martin B, Giantini-Larsen AM, Valcarce-Aspegren M, Souweidane MM, Szalontay L, Dahmane N, Greenfield JP. Leptomeningeal dissemination in pediatric brain tumors. Neoplasia 2023; 39:100898. [PMID: 37011459 PMCID: PMC10124141 DOI: 10.1016/j.neo.2023.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
Leptomeningeal disease (LMD) in pediatric brain tumors (PBTs) is a poorly understood and categorized phenomenon. LMD incidence rates, as well as diagnosis, treatment, and screening practices, vary greatly depending on the primary tumor pathology. While LMD is encountered most frequently in medulloblastoma, reports of LMD have been described across a wide variety of PBT pathologies. LMD may be diagnosed simultaneously with the primary tumor, at time of recurrence, or as primary LMD without a primary intraparenchymal lesion. Dissemination and seeding of the cerebrospinal fluid (CSF) involves a modified invasion-metastasis cascade and is often the result of direct deposition of tumor cells into the CSF. Cells develop select environmental advantages to survive the harsh, nutrient poor and turbulent environment of the CSF and leptomeninges. Improved understanding of the molecular mechanisms that underlie LMD, along with improved diagnostic and treatment approaches, will help the prognosis of children affected by primary brain tumors.
Collapse
|
4
|
Park YW, Han K, Park JE, Ahn SS, Kim EH, Kim J, Kang SG, Chang JH, Kim SH, Lee SK. Leptomeningeal metastases in glioma revisited: incidence and molecular predictors based on postcontrast fluid-attenuated inversion recovery imaging. J Neurosurg 2022:1-11. [DOI: 10.3171/2022.9.jns221659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Leptomeningeal metastases (LMs) in glioma have been underestimated given their low incidence and the lack of reliable imaging. Authors of this study aimed to investigate the real-world incidence of LMs using cerebrospinal fluid (CSF)–sensitive imaging, namely postcontrast fluid-attenuated inversion recovery (FLAIR) imaging, and to analyze molecular predictors for LMs in the molecular era.
METHODS
A total of 1405 adult glioma (World Health Organization [WHO] grade 2–4) patients underwent postcontrast FLAIR imaging at initial diagnosis and during treatment monitoring between 2001 and 2021. Collected molecular data included isocitrate dehydrogenase (IDH) mutation, 1p/19q codeletion, H3 K27 alteration, and O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation status. LM diagnosis was performed with MRI including postcontrast FLAIR sequences. Logistic regression analysis for LM development was performed with molecular, clinical, and imaging data. Overall survival (OS) was compared between patients with and those without LM.
RESULTS
LM was identified in 228 patients (16.2%), 110 (7.8%) at the initial diagnosis and 118 (8.4%) at recurrence. Among the molecular diagnostics, IDH-wildtype (OR 3.14, p = 0.001) and MGMT promoter unmethylation (OR 1.43, p = 0.034) were independent predictors of LM. WHO grade 4 (OR 10.52, p < 0.001) and nonlobar location (OR 1.56, p = 0.048) were associated with LM at initial diagnosis, whereas IDH-wildtype (OR 5.04, p < 0.001) and H3 K27 alteration (OR 3.39, p = 0.003) were associated with LM at recurrence. Patients with LM had a worse median OS than those without LM (16.7 vs 32.0 months, p < 0.001, log-rank test), which was confirmed as an independent factor on multivariable Cox analysis (p = 0.004).
CONCLUSIONS
CSF-sensitive imaging aids the diagnosis of LM, demonstrating a high incidence of LM in adult gliomas. Furthermore, molecular markers are associated with LM development in glioma, and patients with aggressive molecular markers warrant imaging surveillance for LM.
Collapse
Affiliation(s)
- Yae Won Park
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | - Kyunghwa Han
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung Soo Ahn
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | | | - Jinna Kim
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| | | | | | - Se Hoon Kim
- Pathology, Yonsei University College of Medicine, Seoul; and
| | - Seung-Koo Lee
- Departments of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science,
| |
Collapse
|
5
|
Serrallach BL, Tran BH, Bauer DF, Mohila CA, Adesina AM, McGovern SL, Lindsay HB, Huisman TAGM. Pediatric spinal cord diffuse midline glioma, H3 K27-altered with intracranial and spinal leptomeningeal spread: A case report. Neuroradiol J 2022; 35:634-639. [PMID: 34989626 PMCID: PMC9513925 DOI: 10.1177/19714009211067402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Primary spinal cord high-grade gliomas, including those histologically identified as glioblastoma (GBM), are a rare entity in the pediatric population but should be considered in the differential diagnosis of intramedullary lesions. Pediatric spinal cord high-grade gliomas have an aggressive course with poor prognosis. The aim of this case report is to present a 15-year-old female adolescent with histopathologically confirmed spinal cord GBM with H3F3A K27 M mutation consistent with a diffuse midline glioma (DMG), H3 K27-altered, CNS WHO grade 4 with leptomeningeal seeding on initial presentation. As imaging features of H3 K27-altered DMGs are non-specific and may mimic more frequently encountered neoplastic diseases as well as demyelinating disorders, severe neurological deficits at presentation with short duration, rapid progression, and early leptomeningeal seeding should however raise the suspicion for a pediatric-type diffuse high-grade glioma like DMG, H3 K27-altered.
Collapse
Affiliation(s)
- Bettina L Serrallach
- Edward B. Singleton Department of
Radiology, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| | - Brandon H Tran
- Edward B. Singleton Department of
Radiology, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| | - David F Bauer
- Department of Neurosurgery, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| | - Carrie A Mohila
- Department of Pathology and Immunology, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| | - Adekunle M Adesina
- Department of Pathology and Immunology, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| | - Susan L McGovern
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA
- Proton Therapy Center, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA
| | - Holly B Lindsay
- Division of Pediatric Hematology and
Oncology, Department of Pediatrics, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| | - Thierry AGM Huisman
- Edward B. Singleton Department of
Radiology, Texas Children’s Hospital and Baylor College of
Medicine, Houston, TX, USA
| |
Collapse
|
6
|
Tauziède-Espariat A, Siegfried A, Uro-Coste E, Nicaise Y, Castel D, Sevely A, Gambart M, Boetto S, Hasty L, Métais A, Chrétien F, Benzakoun J, Puget S, Grill J, Dangouloff-Ros V, Boddaert N, Ebrahimi A, Varlet P. Disseminated diffuse midline gliomas, H3K27-altered mimicking diffuse leptomeningeal glioneuronal tumors: a diagnostical challenge! Acta Neuropathol Commun 2022; 10:119. [PMID: 35986414 PMCID: PMC9392342 DOI: 10.1186/s40478-022-01419-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
|
7
|
Parenrengi MA, Prastikarunia R, Suryaningtyas W. Leptomeningeal and subependymal seeding of diffuse intrinsic pontine glioma: a case report. Childs Nerv Syst 2022; 38:1643-1645. [PMID: 35290487 DOI: 10.1007/s00381-022-05482-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
DIPG (diffuse intrinsic pontine glioma) is a deadly cancerous tumor of the brainstem that spreads across the pons. The tumor's infiltrative nature, as well as the tumor's critical pathway and nuclei compression, contributes to the tumor's extremely poor prognosis and limited existing therapeutic options. A previous study revealed that in 40 patients with brainstem glioma, 13 (33%) patients had leptomeningeal spreading. In this paper, we reported a 7-year-old female patient who presented with a history of decreased consciousness and weakness of the right limb. Her magnetic resonance imaging (MRI) revealed a pontine mass. She was given 35 fractions of 54 Gy whole-brain radiotherapy. The post-radiotherapy MRI evaluation showed multiple nodules in periventricular region, and was suggestive of leptomeningeal and subependymal seeding of the pontine glioma in the lateral ventricles. This case report elucidated the leptomeningeal seeding in a pediatric patient with diffuse intrinsic pontine glioma.
Collapse
Affiliation(s)
- Muhammad Arifin Parenrengi
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia. .,Department of Neurosurgery, Soetomo General Academic Hospital, Dr, Surabaya, Indonesia.
| | - Resi Prastikarunia
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Neurosurgery, Soetomo General Academic Hospital, Dr, Surabaya, Indonesia
| | - Wihasto Suryaningtyas
- Faculty of Medicine, Airlangga University, Surabaya, Indonesia.,Department of Neurosurgery, Soetomo General Academic Hospital, Dr, Surabaya, Indonesia
| |
Collapse
|
8
|
Lim SD, Kim SI, Park JW, Won JK, Kim SK, Phi JH, Chung CK, Choi SH, Yun H, Park SH. Emerging glioneuronal and neuronal tumors: case-based review. Brain Tumor Pathol 2022; 39:65-78. [PMID: 35048219 DOI: 10.1007/s10014-021-00420-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Glioneuronal and neuronal tumors (GNTs) are rare heterogeneous central nervous system tumors characterized by slow growth and favorable outcomes, but are often associated with diagnostic difficulties. A thorough analysis of three rare and recently recognized GNTs was performed in the context of clinicopathological features and molecular genetic characterization. The current spinal diffuse leptomeningeal glioneuronal tumor (DLGNT) was characterized with oligodendroglioma-like tumor with chromosome 1p/19q codeletion without IDH mutations and KIAA1549:BRAF fusion. The current occipital multinodular and vacuolating neuronal tumor (MVNT) was characteristic of the variable-sized vague nodules consisted of gangliocytic tumor cells with intracytoplasmic and pericellular vacuolation and the next-generation sequencing (NGS) revealed MAP2K1 p.Q56_V60del. A diffuse glioneuronal tumor with oligodendroglioma-like features and nuclear clusters (DGONC) of the amygdala was characterized by oligodendroglia-like cells and nuclear clusters, and monosomy 14. From the current cases and literature review, we found that DLGNT commonly occurs in the spinal cord and can make mass and more commonly have KIAA1549:BRAF fusion; MVNT is a neoplasm rather than malformation and MAP2K1 deletion is one of the hallmarks of this tumor; although DGONC may require a methylation profile, we can reach a diagnosis through its unique histology, monosomy 14, and exclusion diagnosis without a methylation profile.
Collapse
Affiliation(s)
- So Dug Lim
- Department of Pathology, KonKuk University School of Medicine, Seoul, 05029, Republic of Korea
| | - Seong Ik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jin Woo Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jae Kyung Won
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Ki Kim
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ji Hoon Phi
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Chun-Kee Chung
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Seung-Hong Choi
- Department of Radiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hongseok Yun
- Department of Genomic Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Institute of Neuroscience, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Nadkarni T, Hamilton K, Niazi F, Ward M, Okakpu U, Castellani RJ, Prisneac I, Sener U. Histone-mutant glioma presenting as diffuse leptomeningeal disease. CNS Oncol 2021; 10:CNS75. [PMID: 34469205 PMCID: PMC8461753 DOI: 10.2217/cns-2021-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glioblastoma multiforme is the most common malignant primary brain tumor in adults. Histone H3 mutations have been identified in pediatric and adult gliomas, with H3K27M mutations typically associated with a posterior fossa midline tumor location and poor prognosis. Leptomeningeal disease is a known complication of histone-mutant glioma, but uncommon at the time of initial diagnosis. We describe a case of glioblastoma with H3K27M mutation that initially presented with progressive vision loss due to diffuse leptomeningeal disease in the absence of a mass lesion other than a small cerebellar area of enhancement and with cerebrospinal fluid cytology negative for malignant cells on two occasions, highlighting the importance of including primary CNS malignancies in the differential of diffuse radiographic leptomeningeal enhancement. Glioblastoma multiforme (GBM) is the most common malignant primary brain tumor in adults. Histones are molecules around which DNA winds. GBM and other gliomas sometimes have genetic alterations called mutations in histone genes. Of these, a specific alteration in histone 3 called H3K27M has been described in a variety of primary brain tumors. In adult gliomas, the H3K27M mutation is typically associated with tumors located within the brainstem or other structures in the midline of the central nervous system and a poor prognosis. Although previously reported, involvement of the leptomeninges (the thin membranes covering the brain and spinal cord) is uncommon at the time of initial diagnosis of gliomas harboring H3K27M mutations. We describe a case of GBM that initially presented with vision loss due to diffuse leptomeningeal involvement. Imaging and laboratory studies, including two cerebrospinal fluid analyses by lumbar puncture, did not establish a diagnosis. Brain biopsy confirmed the presence of a tumor, and genetic testing performed on the tumor tissue identified the histone mutation. This case highlights the importance of including primary central nervous system malignancies as a possible diagnosis when there is diffuse radiographic leptomeningeal enhancement.
Collapse
Affiliation(s)
- Tanvi Nadkarni
- Department of Neurology, West Virginia University, Morgantown, WV 26506, USA
| | - Kimberly Hamilton
- Department of Neurosurgery, West Virginia University, Morgantown, WV, USA
| | - Faraze Niazi
- Department of Neurology, West Virginia University, Morgantown, WV 26506, USA
| | - Melanie Ward
- Department of Neurology, West Virginia University, Morgantown, WV 26506, USA
| | - Uchenna Okakpu
- School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Rudolph J Castellani
- Department of Pathology, Anatomy, & Laboratory Medicine, West Virginia University, Morgantown, WV, USA
| | - Ion Prisneac
- Department of Pathology, Anatomy, & Laboratory Medicine, West Virginia University, Morgantown, WV, USA
| | - Ugur Sener
- Department of Neurology, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|