1
|
Zheng R, Chen Y, Zhang J, Liu Q, Zheng Y, Wang Z. Prelimbic cortex is involved in the regulation of morphine-induced conditioned place preference in both resistant and sensitive mice. Sci Rep 2025; 15:5596. [PMID: 39955314 PMCID: PMC11829983 DOI: 10.1038/s41598-025-87084-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025] Open
Abstract
A primary behavioral pathology in drug addiction is the overpowering motivational strength and decreased ability to control the desire to obtain drugs, which shows some variation between different individuals. Here, using a morphine-induced conditioned place preference (CPP) model with footshock, we found that mice exhibited significant individual differences in morphine-induced addiction. Despite the consequences of footshock, a small percentage of mice (24%) still showed stable morphine preference, demonstrating resistant to punishment. The majority of mice (76%) were relatively sensitive to punishment and showed termination of morphine preference. As a region of advanced cognitive function in the mammalian brain, the medial prefrontal cortex (mPFC) is involved in regulating drug-induced addictive behaviors. We found that activating the pyramidal neurons in the prelimbic cortex (PrL) could effectively reverse morphine-induced CPP in resistant mice, and inhibiting pyramidal neurons in the PrL could promote morphine-induced CPP in sensitive mice. To further explore the differences between resistant and sensitive mice, we analyzed the differences in gene expression in their PrL regions through RNA-seq analysis. The results showed that compared to sensitive mice, the significantly downregulated differentially expressed genes (DEGs), such as Panx2, Tcf7l2, Htr2c, Htr5a, Orai3, Slc24a4 and Cacnb2, in resistant mice were mainly involved in synaptic formation and neurodevelopment. We speculated that there may be defects in the neuronal system of resistant mice, and caused they are more prone to morphine-induced CPP. These findings are likely to contribute to research in gene therapy, and they may also serve as potential therapeutic targets for drug addiction.
Collapse
Affiliation(s)
- Rui Zheng
- Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325200, Zhejiang, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
- Shenzhen Graduate School, Peking University, Peking University, Beijing, 100191, China
| | - Yuanyuan Chen
- Department of Anatomy and K.K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, 710032, China
| | - Jin Zhang
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Qianglin Liu
- Biomarker Technologies Ltd, Beijing, 101300, China
| | - Yanyan Zheng
- Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325200, Zhejiang, China.
| | - Zhouguang Wang
- Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325200, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
2
|
Bruni O, Breda M, Mammarella V, Mogavero MP, Ferri R. Sleep and circadian disturbances in children with neurodevelopmental disorders. Nat Rev Neurol 2025; 21:103-120. [PMID: 39779841 DOI: 10.1038/s41582-024-01052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Sleep is essential for brain development and overall health, particularly in children with neurodevelopmental disorders (NDDs). Sleep disruptions can considerably impact brain structure and function, leading to dysfunction of neurotransmitter systems, metabolism, hormonal balance and inflammatory processes, potentially contributing to the pathophysiology of NDDs. This Review examines the prevalence, types and mechanisms of sleep disturbances in children with NDDs, including autism spectrum disorder, attention-deficit hyperactivity disorder and various genetic syndromes. Common sleep disorders in these populations include insomnia, hypersomnia, circadian rhythm disorders, sleep-related breathing disorders and parasomnias, with underlying factors often involving genetic, neurobiological, environmental and neurophysiological influences. Sleep problems such as insomnia, night awakenings and sleep fragmentation are closely linked to both internalizing symptoms such as anxiety and depression, and externalizing behaviours such as hyperactivity and aggression. Assessment of sleep in children with NDDs presents unique challenges owing to communication difficulties, comorbid conditions and altered sensory processing. The Review underscores the importance of further research to unravel the complex interactions between sleep and neurodevelopment, advocating for longitudinal studies and the identification of predictive biomarkers. Understanding and addressing sleep disturbances in NDDs is crucial for improving developmental outcomes and the overall quality of life for affected individuals and their families.
Collapse
Affiliation(s)
- Oliviero Bruni
- Department of Developmental and Social Psychology, Sapienza University of Rome, Rome, Italy.
| | - Maria Breda
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Maria Paola Mogavero
- Vita-Salute San Raffaele University, Milan, Italy
- Sleep Disorders Centre, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Raffaele Ferri
- Sleep Research Centre, Oasi Research Institute - IRCCS, Troina, Italy
| |
Collapse
|
3
|
Gupta S, Gupta AK, Mehan S, Khan Z, Gupta GD, Narula AS. Disruptions in cellular communication: Molecular interplay between glutamate/NMDA signalling and MAPK pathways in neurological disorders. Neuroscience 2025:S0306-4522(25)00023-5. [PMID: 39809360 DOI: 10.1016/j.neuroscience.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Neurological disorders significantly impact the central nervous system, contributing to a growing public health crisis globally. The spectrum of these disorders includes neurodevelopmental and neurodegenerative diseases. This manuscript reviews the crucial roles of cellular signalling pathways in the pathophysiology of these conditions, focusing primarily on glutaminase/glutamate/NMDA receptor signalling, alongside the mitogen-activated protein kinase (MAPK) pathways-ERK1/2, C-JNK, and P38 MAPK. Activation of these pathways is often correlated with neuronal excitotoxicity, apoptosis, and inflammation, leading to many other pathological conditions such as traumatic brain injury, stroke, and brain tumor. The interplay between glutamate overstimulation and MAPK signalling exacerbates neurodegenerative processes, underscoring the complexity of cellular communication in maintaining neuronal health. Dysfunctional signalling alters synaptic plasticity and neuronal survival, contributing to cognitive impairments in various neurological diseases. The manuscript emphasizes the potential of targeting these signalling pathways for therapeutic interventions, promoting neuroprotection and reducing neuroinflammation. Incorporating insights from precision medicine and innovative drug delivery systems could enhance treatment efficacy. Overall, understanding the intricate mechanisms of these pathways is essential for developing effective strategies to mitigate the impact of neurological disorders and improve patient outcomes. This review highlights the necessity for further exploration into these signalling cascades to facilitate advancements in therapeutic approaches, ensuring better prognoses for individuals affected by neurological conditions.
Collapse
Affiliation(s)
- Sumedha Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Abhishek Kumar Gupta
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India. https://mehanneuroscience.org
| | - Zuber Khan
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
4
|
Karanović J, Beraković D, Katrašnik M, Šalamon Arčan I, Pantović-Stefanović M, Radenković L, Garai N, Ivković M, Savić-Pavićević D, Zupanc T, Videtič Paska A. Genetic predisposition of suicidal behavior: variants in GRIN2B, GABRG2, and ODC1 genes in attempted and completed suicide in two Balkan populations. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01895-9. [PMID: 39297975 DOI: 10.1007/s00406-024-01895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/31/2024] [Indexed: 09/21/2024]
Abstract
Completed suicide accounts for over 700,000 deaths worldwide annually, while attempted suicide is 20 times more frequent. Genetic background is an important factor contributing to suicidal behavior, including candidate genes in glutamate, γ-aminobutyric acid (GABA), and polyamine systems. Our aim was to differentiate genetic predispositions underlying different types of suicidal behavior, attempted and completed suicide, in two Balkan populations. Analysis of variants in the genes GRIN2B (rs2268115 and rs220557), GABRG2 (rs424740), and ODC1 (rs1049500 and rs2302614) was performed on a study sample including 173 suicide attempters with comorbid psychiatric disorders, 216 non-suicidal psychiatric patients and 172 healthy controls from Serbia, and 333 suicide completers and 356 non-suicidal autopsy controls from Slovenia. CA genotype of rs220557 in GRIN2B gene increased the risk for completed suicide (P = 0.021), and violent suicide (P = 0.037), compared to controls. In ODC1 gene, CA genotype of rs2302614 decreased the risk for completed suicide compared to suicide attempt (P = 0.012). Marginally, AC haplotype for variants rs1049500-rs2302614 in ODC1 gene decreased the risk for completed suicide compared to suicide attempt (P = 0.052). Specific genetic variants of glutamate and polyamine systems are differently distributed among diverse suicidal phenotypes, providing further information on the implication of these systems in suicidality.
Collapse
Affiliation(s)
- Jelena Karanović
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia.
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444A, Belgrade, 11042, Serbia.
| | - Doroteja Beraković
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, Rijeka, 51000, Croatia
| | - Mojca Katrašnik
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia
| | - Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia
| | - Maja Pantović-Stefanović
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
| | - Lana Radenković
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Nemanja Garai
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Maja Ivković
- Clinic for Psychiatry, University Clinical Centre of Serbia, Pasterova 2, Belgrade, 11000, Serbia
- University of Belgrade-Medical School, Doktora Subotića 8, Belgrade, 11000, Serbia
| | - Dušanka Savić-Pavićević
- Center for Human Molecular Genetics, Faculty of Biology, University of Belgrade, Studentski trg 16, PO box 43, Belgrade, 11000, Serbia
| | - Tomaž Zupanc
- Institute of Forensic Medicine, Faculty of Medicine, University of Ljubljana, Korytkova ulica 2, Ljubljana, 1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, 1000, Slovenia.
| |
Collapse
|
5
|
Wang G, Qi W, Liu QH, Guan W. GluN2A: A Promising Target for Developing Novel Antidepressants. Int J Neuropsychopharmacol 2024; 27:pyae037. [PMID: 39185814 DOI: 10.1093/ijnp/pyae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Depression is a heterogeneous disorder with high morbidity and disability rates that poses serious problems regarding mental health care. It is now well established that N-methyl D-aspartate receptor (NMDAR) modulators are being increasingly explored as potential therapeutic options for treating depression, although relatively little is known about their mechanisms of action. NMDARs are glutamate-gated ion channels that are ubiquitously expressed in the central nervous system (CNS), and they have been shown to play key roles in excitatory synaptic transmission. GluN2A, the predominant Glu2N subunit of functional NMDARs in neurons, is involved in various physiological processes in the CNS and is associated with diseases such as anxiety, depression, and schizophrenia. However, the role of GluN2A in the pathophysiology of depression has not yet been elucidated. METHODS We reviewed several past studies to better understand the function of GluN2A in depression. Additionally, we also summarized the pathogenesis of depression based on the regulation of GluN2A expression, particularly its interaction with neuroinflammation and neurogenesis, which has received considerable critical attention and is highly implicated in the onset of depression. RESULTS These evidence suggests that GluN2A overexpression impairs structural and functional synaptic plasticity, which contributes to the development of depression. Consequently, this knowledge is vital for the development of selective antagonists targeting GluN2A subunits using pharmacological and molecular methods. CONCLUSIONS Specific inhibition of the GluN2A NMDAR subunit is resistant to chronic stress-induced depressive-like behaviors, making them promising targets for the development of novel antidepressants.
Collapse
Affiliation(s)
- Gang Wang
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wang Qi
- Department of Pharmacology, The First People's Hospital of Yancheng, Yancheng, China
| | - Qiu-Hua Liu
- Department of Hepatobiliary Surgery, Zhangjiagang Hospital affiliated to Soochow University/The First People's Hospital of Zhangjiagang City, Zhangjiagang, China
| | - Wei Guan
- Department of Pharmacology, Pharmacy College, Nantong University, Nantong, China
| |
Collapse
|
6
|
Treviño-Alvarez AM, Gluck ME, McElroy SL, Cuellar-Barboza AB. The Absence of Items Addressing Increased Appetite or Weight in Depressive-Symptom Questionnaires: Implications for Understanding the Link between Major Depressive Disorder, Antidepressants, and Obesity. Brain Sci 2024; 14:841. [PMID: 39199532 PMCID: PMC11352823 DOI: 10.3390/brainsci14080841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Major depressive disorder (MDD) and obesity have a complex bidirectional relationship. However, most studies do not assess increased appetite or weight as a depressive symptom due to limitations in rating scales. Here we aimed to analyze frequently employed depressive-symptom scales and discuss the relevance of weight and appetite assessment items. To elaborate this perspective, we searched for validated questionnaires and scales evaluating depressive symptoms in English. We analyzed appetite and weight items from 20 depressive-symptoms rating scales. Only 8 of 20 rating scales assessed for increased weight or appetite. The scales reported in the literature as the most employed in antidepressants efficacy trials do not assess increased appetite or weight. The current use of rating scales limits our understanding of the relationship between MDD, antidepressants, and obesity. It is necessary to improve our weight and appetite measurements in MDD to clarify the respective impact of depressive symptoms and antidepressants on weight change.
Collapse
Affiliation(s)
- Andrés M. Treviño-Alvarez
- Department of Psychiatry, University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, NL, Mexico;
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, Phoenix, AZ 85054, USA
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA;
| | - Marci E. Gluck
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA;
| | - Susan L. McElroy
- Lindner Center of Hope, Mason, OH 45040, USA;
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alfredo B. Cuellar-Barboza
- Department of Psychiatry, University Hospital and School of Medicine, Universidad Autonoma de Nuevo Leon, Monterrey 64460, NL, Mexico;
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
7
|
Lopes AR, Costa Silva DG, Rodrigues NR, Kemmerich Martins I, Paganotto Leandro L, Nunes MEM, Posser T, Franco J. Investigating the impact of Psidium guajava leaf hydroalcoholic extract in improving glutamatergic toxicity-induced oxidative stress in Danio rerio larvae. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:457-470. [PMID: 38576186 DOI: 10.1080/15287394.2024.2337366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Glutamate is one of the predominant excitatory neurotransmitters released from the central nervous system; however, at high concentrations, this substance may induce excitotoxicity. This phenomenon is involved in numerous neuropathologies. At present, clinically available pharmacotherapeutic agents to counteract glutamatergic excitotoxicity are not completely effective; therefore, research to develop novel compounds is necessary. In this study, the main objective was to determine the pharmacotherapeutic potential of the hydroalcoholic extract of Psidium guajava (PG) in a model of oxidative stress-induced by exposure to glutamate utilizing Danio rerio larvae (zebrafish) as a model. Data showed that treatment with glutamate produced a significant increase in oxidative stress, chromatin damage, apoptosis, and locomotor dysfunction. All these effects were attenuated by pre-treatment with the classical antioxidant N-acetylcysteine (NAC). Treatment with PG inhibited oxidative stress responsible for cellular damage induced by glutamate. However, exposure to PG failed to prevent glutamate-initiated locomotor damage. Our findings suggest that under conditions of oxidative stress, PG can be considered as a promising candidate for treatment of glutamatergic excitotoxicity and consequent neurodegenerative diseases.
Collapse
Affiliation(s)
- Andressa Rubim Lopes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Dennis Guilherme Costa Silva
- Programa de Pós-Graduação em Ciências Fisiológicas - Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Nathane Rosa Rodrigues
- Grupo de Pesquisa em Bioquímica e Toxicologia Compostos Bioativos - GBToxBio, Universidade Federal do Pampa - UNIPAMPA, Uruguaiana, Rio Grande do Sul, Brazil
| | - Illana Kemmerich Martins
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Luana Paganotto Leandro
- Departamento de Química, Programa de Pós-Graduação em Bioquímica Toxicológica - PPGBTox, Universidade Federal de Santa Maria - UFSM, Santa Maria, Rio Grande do Sul, Brazil
| | - Mauro Eugênio Medina Nunes
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Thais Posser
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| | - Jeferson Franco
- Centro Interdisciplinar de Pesquisa em Biotecnologia - CIPBiotec, Universidade Federal do Pampa - UNIPAMPA, São Gabriel, Rio Grande do Sul, Brazil
| |
Collapse
|
8
|
Miao X, Niu H, Sun M, Dong X, Hua M, Su Y, Wang J, Li D. A comparative study on the nutritional composition, protein structure and effects on gut microbiota of 5 fermented soybean products (FSPs). Food Res Int 2024; 183:114199. [PMID: 38760132 DOI: 10.1016/j.foodres.2024.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/19/2024]
Abstract
In this study, we conducted an analysis of the differences in nutrient composition and protein structure among various fermented soybean products and their impacts on the gut microbiota of rats. Conventional physicochemical analysis was employed to analyze the fundamental physicochemical composition of the samples. Additionally, we utilized high-performance liquid chromatography and ELISA techniques to quantify the presence of antinutritional compounds. Fourier infrared spectroscopy was applied to delineate the protein structure, while 16 s rRNA gene sequencing was conducted to evaluate alterations in gut microbiota abundance. Subsequently, KEGG was utilized for metabolic pathway analysis. Our findings revealed that fermented soybean products improved the nutritional profile of soybeans. Notably, Douchi exhibited the highest protein content at 52.18 g/100 g, denoting a 26.58 % increase, whereas natto showed a 24.98 % increase. Douchi and natto demonstrated the most substantial relative amino acid content, comprising 50.86 % and 49.04 % of the total samples, respectively. Moreover, the levels of antinutritional factors markedly decreased post-fermentation. Specifically, the α-helix content in doujiang decreased by 13.87 %, while the random coil content in soybean yogurt surged by 132.39 %. Rats that were fed FSP showcased notable enhancements in gut microbiota and associated metabolic pathways. A strong correlation was observed between nutrient composition, protein structure, and gut microbiota abundance. This study furnishes empirical evidence supporting the heightened nutritional attributes of FSPs.
Collapse
Affiliation(s)
- Xinyu Miao
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Honghong Niu
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Mubai Sun
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Xin Dong
- Center for Disease Control and Prevention of Hinggan League, Hinggan League 137400, China
| | - Mei Hua
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Ying Su
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China
| | - Jinghui Wang
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China.
| | - Da Li
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun 130033, China.
| |
Collapse
|
9
|
Jiang L, Liu N, Zhao F, Huang B, Kang D, Zhan P, Liu X. Discovery of GluN2A subtype-selective N-methyl-d-aspartate (NMDA) receptor ligands. Acta Pharm Sin B 2024; 14:1987-2005. [PMID: 38799621 PMCID: PMC11119548 DOI: 10.1016/j.apsb.2024.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/28/2023] [Indexed: 05/29/2024] Open
Abstract
The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.
Collapse
Affiliation(s)
| | | | - Fabao Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
10
|
Tejero A, León-Navarro DA, Martín M. Effect of chronic maternal L-Glu intake during gestation and/or lactation on oxidative stress markers, AMPA Glu1 receptor and adenosine A 1 signalling pathway from foetal and neonatal cerebellum. Purinergic Signal 2024; 20:181-192. [PMID: 37458955 PMCID: PMC10997561 DOI: 10.1007/s11302-023-09959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/07/2023] [Indexed: 04/06/2024] Open
Abstract
L-Glutamate (L-Glu) is an amino acid present in the diet that plays a fundamental role in the central nervous system, as the main excitatory neurotransmitter participating in learning and memory processes. In addition, the nucleoside adenosine has a crucial role in L-Glu metabolism, by regulating the liberation of this neurotransmitter through four different receptors: A1, A2A, A2B and A3, which activate (A2A and A2B) or inhibit (A1 and A3) adenylate cyclase pathway. L-Glu at high concentrations can act as a neurotoxin and induce oxidative stress. The study of the oxidative stress correlated with an excess of L-Glu consumption during maternity is key to understand its effects on foetuses and neonates. Previous studies have shown that there is a change in the receptor levels in the brain of pregnant rats and their foetuses when mothers are administered L-Glu during gestation; however, its effect on the cerebellum is unknown. Cerebellum is known to be responsible for motor, cognitive and emotional functions, so its possible involvement after L-Glu consumption is an important issue to study. Therefore, the aim of the present work was to study the effect of L-Glu exposure during gestation and lactation on oxidative stress biomarkers and neurotransmitter receptors from the cerebellum of foetuses and neonates. After maternal L-Glu intake during gestation, oxidative stress was increased, as the ionotropic L-Glu receptors, and GluR1 AMPA subunit levels were altered in foetuses. A1 adenosine receptor suffered changes after L-Glu treatment during gestation, lactation or both, in lactating neonate cerebellum, while adenylate cyclase activity remain unaltered. Further studies will be necessary to elucidate the importance of L-Glu intake and its possible excitotoxicity in the cerebellum of Wistar rats during the pregnancy period and their involvement in long-term neurodegeneration.
Collapse
Affiliation(s)
- Adrián Tejero
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real. Regional Centre of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - David Agustín León-Navarro
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real. Regional Centre of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain
| | - Mairena Martín
- Department of Inorganic and Organic Chemistry and Biochemistry, Faculty of Chemical and Technological Sciences, School of Medicine of Ciudad Real. Regional Centre of Biomedical Research (CRIB), Universidad de Castilla-La Mancha, 13071, Ciudad Real, Spain.
| |
Collapse
|
11
|
Zhang D, Hua Z, Li Z. The role of glutamate and glutamine metabolism and related transporters in nerve cells. CNS Neurosci Ther 2024; 30:e14617. [PMID: 38358002 PMCID: PMC10867874 DOI: 10.1111/cns.14617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/15/2023] [Accepted: 01/10/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Glutamate and glutamine are the most abundant amino acids in the blood and play a crucial role in cell survival in the nervous system. Various transporters found in cell and mitochondrial membranes, such as the solute carriers (SLCs) superfamily, are responsible for maintaining the balance of glutamate and glutamine in the synaptic cleft and within cells. This balance affects the metabolism of glutamate and glutamine as non-essential amino acids. AIMS This review aims to provide an overview of the transporters and enzymes associated with glutamate and glutamine in neuronal cells. DISCUSSION We delve into the function of glutamate and glutamine in the nervous system by discussing the transporters involved in the glutamate-glutamine cycle and the key enzymes responsible for their mutual conversion. Additionally, we highlight the role of glutamate and glutamine as carbon and nitrogen donors, as well as their significance as precursors for the synthesis of reduced glutathione (GSH). CONCLUSION Glutamate and glutamine play a crucial role in the brain due to their special effects. It is essential to focus on understanding glutamate and glutamine metabolism to comprehend the physiological behavior of nerve cells and to treat nervous system disorders and cancer.
Collapse
Affiliation(s)
- Dongyang Zhang
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhongyan Hua
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Zhijie Li
- Department of PediatricsShengjing Hospital of China Medical UniversityShenyangLiaoningChina
- Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic DiseasesShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
12
|
Ladagu AD, Olopade FE, Adejare A, Olopade JO. GluN2A and GluN2B N-Methyl-D-Aspartate Receptor (NMDARs) Subunits: Their Roles and Therapeutic Antagonists in Neurological Diseases. Pharmaceuticals (Basel) 2023; 16:1535. [PMID: 38004401 PMCID: PMC10674917 DOI: 10.3390/ph16111535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are ion channels that respond to the neurotransmitter glutamate, playing a crucial role in the permeability of calcium ions and excitatory neurotransmission in the central nervous system (CNS). Composed of various subunits, NMDARs are predominantly formed by two obligatory GluN1 subunits (with eight splice variants) along with regulatory subunits GluN2 (GluN2A-2D) and GluN3 (GluN3A-B). They are widely distributed throughout the CNS and are involved in essential functions such as synaptic transmission, learning, memory, plasticity, and excitotoxicity. The presence of GluN2A and GluN2B subunits is particularly important for cognitive processes and has been strongly implicated in neurodegenerative diseases like Parkinson's disease and Alzheimer's disease. Understanding the roles of GluN2A and GluN2B NMDARs in neuropathologies provides valuable insights into the underlying causes and complexities of major nervous system disorders. This knowledge is vital for the development of selective antagonists targeting GluN2A and GluN2B subunits using pharmacological and molecular methods. Such antagonists represent a promising class of NMDA receptor inhibitors that have the potential to be developed into neuroprotective drugs with optimal therapeutic profiles.
Collapse
Affiliation(s)
- Amany Digal Ladagu
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| | - Funmilayo Eniola Olopade
- Developmental Neurobiology Laboratory, Department of Anatomy, College of Medicine, University of Ibadan, Ibadan 200284, Nigeria
| | - Adeboye Adejare
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, Saint Joseph’s University, Philadelphia, PA 19131, USA
| | - James Olukayode Olopade
- Department of Veterinary Anatomy, University of Ibadan, Ibadan 200284, Nigeria; (A.D.L.); (J.O.O.)
| |
Collapse
|
13
|
Spagnoli C, Fusco C, Pisani F. Pediatric-Onset Epilepsy and Developmental Epileptic Encephalopathies Followed by Early-Onset Parkinsonism. Int J Mol Sci 2023; 24:ijms24043796. [PMID: 36835207 PMCID: PMC9965035 DOI: 10.3390/ijms24043796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Genetic early-onset Parkinsonism is unique due to frequent co-occurrence of hyperkinetic movement disorder(s) (MD), or additional neurological of systemic findings, including epilepsy in up to 10-15% of cases. Based on both the classification of Parkinsonism in children proposed by Leuzzi and coworkers and the 2017 ILAE epilepsies classification, we performed a literature review in PubMed. A few discrete presentations can be identified: Parkinsonism as a late manifestation of complex neurodevelopmental disorders, characterized by developmental and epileptic encephalopathies (DE-EE), with multiple, refractory seizure types and severely abnormal EEG characteristics, with or without preceding hyperkinetic MD; Parkinsonism in the context of syndromic conditions with unspecific reduced seizure threshold in infancy and childhood; neurodegenerative conditions with brain iron accumulation, in which childhood DE-EE is followed by neurodegeneration; and finally, monogenic juvenile Parkinsonism, in which a subset of patients with intellectual disability or developmental delay (ID/DD) develop hypokinetic MD between 10 and 30 years of age, following unspecific, usually well-controlled, childhood epilepsy. This emerging group of genetic conditions leading to epilepsy or DE-EE in childhood followed by juvenile Parkinsonism highlights the need for careful long-term follow-up, especially in the context of ID/DD, in order to readily identify individuals at increased risk of later Parkinsonism.
Collapse
Affiliation(s)
- Carlotta Spagnoli
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296033
| | - Carlo Fusco
- Child Neurology and Psychiatry Unit, Department of Pediatrics, Presidio Ospedaliero Santa Maria Nuova, AUSL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Francesco Pisani
- Human Neurosciences Department, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
14
|
Simmons SC, Grecco GG, Atwood BK, Nugent FS. Effects of prenatal opioid exposure on synaptic adaptations and behaviors across development. Neuropharmacology 2023; 222:109312. [PMID: 36334764 PMCID: PMC10314127 DOI: 10.1016/j.neuropharm.2022.109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
Abstract
In this review, we focus on prenatal opioid exposure (POE) given the significant concern for the mental health outcomes of children with parents affected by opioid use disorder (OUD) in the view of the current opioid crisis. We highlight some of the less explored interactions between developmental age and sex on synaptic plasticity and associated behavioral outcomes in preclinical POE research. We begin with an overview of the rich literature on hippocampal related behaviors and plasticity across POE exposure paradigms. We then discuss recent work on reward circuit dysregulation following POE. Additional risk factors such as early life stress (ELS) could further influence synaptic and behavioral outcomes of POE. Therefore, we include an overview on the use of preclinical ELS models where ELS exposure during key critical developmental periods confers considerable vulnerability to addiction and stress psychopathology. Here, we hope to highlight the similarity between POE and ELS on development and maintenance of opioid-induced plasticity and altered opioid-related behaviors where similar enduring plasticity in reward circuits may occur. We conclude the review with some of the limitations that should be considered in future investigations. This article is part of the Special Issue on 'Opioid-induced addiction'.
Collapse
Affiliation(s)
- Sarah C Simmons
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Greg G Grecco
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Brady K Atwood
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fereshteh S Nugent
- Department of Pharmacology and Molecular Therapeutics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
15
|
Zegers-Delgado J, Aguilera-Soza A, Calderón F, Davidson H, Verbel-Vergara D, Yarur HE, Novoa J, Blanlot C, Bastias CP, Andrés ME, Gysling K. Type 1 Corticotropin-Releasing Factor Receptor Differentially Modulates Neurotransmitter Levels in the Nucleus Accumbens of Juvenile versus Adult Rats. Int J Mol Sci 2022; 23:ijms231810800. [PMID: 36142716 PMCID: PMC9505341 DOI: 10.3390/ijms231810800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
Adversity is particularly pernicious in early life, increasing the likelihood of developing psychiatric disorders in adulthood. Juvenile and adult rats exposed to social isolation show differences in anxiety-like behaviors and significant changes in dopamine (DA) neurotransmission in the nucleus accumbens (NAc). Brain response to stress is partly mediated by the corticotropin-releasing factor (CRF) system, composed of CRF and its two main receptors, CRF-R1 and CRF-R2. In the NAc shell of adult rats, CRF induces anxiety-like behavior and changes local DA balance. However, the role of CRF receptors in the control of neurotransmission in the NAc is not fully understood, nor is it known whether there are differences between life stages. Our previous data showed that infusion of a CRF-R1 antagonist into the NAc of juvenile rats increased DA levels in response to a depolarizing stimulus and decreased basal glutamate levels. To extend this analysis, we now evaluated the effect of a CRF-R1 antagonist infusion in the NAc of adult rats. Here, we describe that the opposite occurred in the NAc of adult compared to juvenile rats. Infusion of a CRF-R1 antagonist decreased DA and increased glutamate levels in response to a depolarizing stimulus. Furthermore, basal levels of DA, glutamate, and γ-Aminobutyric acid (GABA) were similar in juvenile animals compared to adults. CRF-R1 protein levels and localization were not different in juvenile compared to adult rats. Interestingly, we observed differences in the signaling pathways of CRF-R1 in the NAc of juveniles compared to adult rats. We propose that the function of CRF-R1 receptors is differentially modulated in the NAc according to life stage.
Collapse
|
16
|
Yan Q, Li W, Gong X, Hu R, Chen L. Transcriptomic and Phenotypic Analysis of CRISPR/Cas9-Mediated gluk2 Knockout in Zebrafish. Genes (Basel) 2022; 13:genes13081441. [PMID: 36011351 PMCID: PMC9408333 DOI: 10.3390/genes13081441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
As a subtype of kainite receptors (KARs), GluK2 plays a role in the perception of cold in the periphery sensory neuron. However, the molecular mechanism for gluk2 on the cold stress in fish has not been reported. In this article, real-time PCR assays showed that gluk2 was highly expressed in the brain and eyes of adult zebrafish. To study the functions of gluk2, gene knockout was carried out using the CRISPR/Cas9 system. According to RNA-seq analysis, we selected the differentially expressed genes (DEGs) that had significant differences in at least three tissues of the liver, gill, intestine, skin, brain, and eyes. Gene Ontology (GO) enrichment analysis revealed that cry1ba, cry2, per1b, per2, hsp70.1, hsp70.2, hsp70l, hsp90aa1.1, hsp90aa1.2, hspb1, trpv1, slc27a1b, park2, ucp3, and METRNL were significantly enriched in the ‘Response to temperature stimulus’ pathway. Through behavioral phenotyping assay, the gluk2−/− larval mutant displayed obvious deficiency in cold stress. Furthermore, TUNEL (TdT-mediated dUTP Nick-End Labeling) staining proved that the gill apoptosis of gluk2−/− mutant was increased approximately 60 times compared with the wild-type after gradient cooling to 8 °C for 15 h. Overall, our data suggested that gluk2 was necessary for cold tolerance in zebrafish.
Collapse
|
17
|
AL-Nasser MN, Mellor IR, Carter WG. Is L-Glutamate Toxic to Neurons and Thereby Contributes to Neuronal Loss and Neurodegeneration? A Systematic Review. Brain Sci 2022; 12:577. [PMID: 35624964 PMCID: PMC9139234 DOI: 10.3390/brainsci12050577] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
L-glutamate (L-Glu) is a nonessential amino acid, but an extensively utilised excitatory neurotransmitter with critical roles in normal brain function. Aberrant accumulation of L-Glu has been linked to neurotoxicity and neurodegeneration. To investigate this further, we systematically reviewed the literature to evaluate the effects of L-Glu on neuronal viability linked to the pathogenesis and/or progression of neurodegenerative diseases (NDDs). A search in PubMed, Medline, Embase, and Web of Science Core Collection was conducted to retrieve studies that investigated an association between L-Glu and pathology for five NDDs: Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). Together, 4060 studies were identified, of which 71 met eligibility criteria. Despite several inadequacies, including small sample size, employment of supraphysiological concentrations, and a range of administration routes, it was concluded that exposure to L-Glu in vitro or in vivo has multiple pathogenic mechanisms that influence neuronal viability. These mechanisms include oxidative stress, reduced antioxidant defence, neuroinflammation, altered neurotransmitter levels, protein accumulations, excitotoxicity, mitochondrial dysfunction, intracellular calcium level changes, and effects on neuronal histology, cognitive function, and animal behaviour. This implies that clinical and epidemiological studies are required to assess the potential neuronal harm arising from excessive intake of exogenous L-Glu.
Collapse
Affiliation(s)
- Maryam N. AL-Nasser
- Department of Biological Sciences, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia;
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| | - Ian R. Mellor
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Wayne G. Carter
- School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Derby DE22 3DT, UK
| |
Collapse
|
18
|
Neonatal Anesthesia and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11040787. [PMID: 35453473 PMCID: PMC9026345 DOI: 10.3390/antiox11040787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Neonatal anesthesia, while often essential for surgeries or imaging procedures, is accompanied by significant risks to redox balance in the brain due to the relatively weak antioxidant system in children. Oxidative stress is characterized by concentrations of reactive oxygen species (ROS) that are elevated beyond what can be accommodated by the antioxidant defense system. In neonatal anesthesia, this has been proposed to be a contributing factor to some of the negative consequences (e.g., learning deficits and behavioral abnormalities) that are associated with early anesthetic exposure. In order to assess the relationship between neonatal anesthesia and oxidative stress, we first review the mechanisms of action of common anesthetic agents, the key pathways that produce the majority of ROS, and the main antioxidants. We then explore the possible immediate, short-term, and long-term pathways of neonatal-anesthesia-induced oxidative stress. We review a large body of literature describing oxidative stress to be evident during and immediately following neonatal anesthesia. Moreover, our review suggests that the short-term pathway has a temporally limited effect on oxidative stress, while the long-term pathway can manifest years later due to the altered development of neurons and neurovascular interactions.
Collapse
|
19
|
Montanari M, Martella G, Bonsi P, Meringolo M. Autism Spectrum Disorder: Focus on Glutamatergic Neurotransmission. Int J Mol Sci 2022; 23:ijms23073861. [PMID: 35409220 PMCID: PMC8998955 DOI: 10.3390/ijms23073861] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022] Open
Abstract
Disturbances in the glutamatergic system have been increasingly documented in several neuropsychiatric disorders, including autism spectrum disorder (ASD). Glutamate-centered theories of ASD are based on evidence from patient samples and postmortem studies, as well as from studies documenting abnormalities in glutamatergic gene expression and metabolic pathways, including changes in the gut microbiota glutamate metabolism in patients with ASD. In addition, preclinical studies on animal models have demonstrated glutamatergic neurotransmission deficits and altered expression of glutamate synaptic proteins. At present, there are no approved glutamatergic drugs for ASD, but several ongoing clinical trials are currently focusing on evaluating in autistic patients glutamatergic pharmaceuticals already approved for other conditions. In this review, we provide an overview of the literature concerning the role of glutamatergic neurotransmission in the pathophysiology of ASD and as a potential target for novel treatments.
Collapse
Affiliation(s)
- Martina Montanari
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Department of Systems Neuroscience, University Tor Vergata, 00133 Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| | - Maria Meringolo
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (M.M.); (G.M.)
- Correspondence: (P.B.); (M.M.)
| |
Collapse
|