1
|
Norsa L, Goulet O, Alberti D, DeKooning B, Domellöf M, Haiden N, Hill S, Indrio F, Kӧglmeier J, Lapillonne A, Luque V, Moltu SJ, Saenz De Pipaon M, Savino F, Verduci E, Bronsky J. Nutrition and Intestinal Rehabilitation of Children With Short Bowel Syndrome: A Position Paper of the ESPGHAN Committee on Nutrition. Part 1: From Intestinal Resection to Home Discharge. J Pediatr Gastroenterol Nutr 2023; 77:281-297. [PMID: 37256827 DOI: 10.1097/mpg.0000000000003849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Short bowel syndrome (SBS) is the leading cause of intestinal failure (IF) in children. The mainstay of treatment for IF is parenteral nutrition (PN). The aim of this position paper is to review the available evidence on managing SBS and to provide practical guidance to clinicians dealing with this condition. All members of the Nutrition Committee of the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) contributed to this position paper. Some renowned experts in the field joined the team to guide with their experience. A systematic literature search was performed from 2005 to May 2021 using PubMed, MEDLINE, and Cochrane Database of Systematic Reviews. In the absence of evidence, recommendations reflect the expert opinion of the authors. Literature on SBS mainly consists of retrospective single-center experience, thus most of the current papers and recommendations are based on expert opinion. All recommendations were voted on by the expert panel and reached >90% agreement. The first part of this position paper focuses on the physiological mechanism of intestinal adaptation after surgical resection. It subsequently provides some clinical practice recommendations for the primary management of children with SBS from surgical resection until discharged home on PN.
Collapse
Affiliation(s)
- Lorenzo Norsa
- From the Department of Paediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Olivier Goulet
- the Department of Pediatric Gastroenterology-Hepatology-Nutrition, Necker-Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | - Daniele Alberti
- the Department of Pediatric Surgery, ASST Spedali Civili, Brescia, Italy
- the Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara DeKooning
- the Paediatric Gastroenterology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Magnus Domellöf
- the Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Nadja Haiden
- the Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Susan Hill
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Flavia Indrio
- the Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Jutta Kӧglmeier
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alexandre Lapillonne
- the Neonatal Intensive Care Unit, Necker-Enfants Malades Hospital, Paris University, Paris, France
- the CNRC, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Veronica Luque
- Serra Hunter, Universitat Rovira I Virgili, IISPV, Tarragona, Spain
| | - Sissel J Moltu
- the Department of Neonatology, Oslo University Hospital, Oslo, Norway
| | - Miguel Saenz De Pipaon
- the Department of Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Hospital Universitario La Paz - Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesco Savino
- the Dipartimento di Patologia e cura del bambino "Regina Margherita", A.U.O. Città delle Salute e della Scienza di Torino, Torino, Italy
| | - Elvira Verduci
- the Department of Pediatrics, Ospedale dei Bambini Vittore Buzzi University of Milan, Milan, Italy
| | - Jiri Bronsky
- the Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
2
|
Lim SM, Choo JM, Li H, O’Rielly R, Carragher J, Rogers GB, Searle I, Robertson SA, Page AJ, Muhlhausler B. A High Amylose Wheat Diet Improves Gastrointestinal Health Parameters and Gut Microbiota in Male and Female Mice. Foods 2021; 10:foods10020220. [PMID: 33494480 PMCID: PMC7911791 DOI: 10.3390/foods10020220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 01/02/2023] Open
Abstract
High amylose wheat (HAW) contains more resistant starch than standard amylose wheat (SAW) and may have beneficial effects on gastrointestinal health. However, it is currently unclear whether these effects differ according to the level of HAW included in the diet or between males and females. Male and female C57BL/6 mice (n = 8/group/sex) were fed SAW65 (65% SAW; control), HAW35 (35% HAW), HAW50 (50% HAW) or HAW65 (65% HAW) diet for eight weeks. Female but not male, mice consuming any amount of HAW exhibited accelerated gastric emptying compared to SAW65 group. In both sexes, relative colon weights were higher in the HAW65 group compared to SAW65 group and in females, relative weights of the small intestine and cecum were also higher in the HAW65 group. In females only, colonic expression of Pyy and Ocln mRNAs were higher in the HAW65 group compared to HAW35 and HAW50 groups. In both sexes, mice consuming higher amounts of HAW (HAW50 or HAW65) had increased fecal bacterial load and relative abundance of Bacteroidetes phylum and reduced relative abundance of Firmicutes compared to SAW65 group. These data are consistent with a beneficial impact of HAW on gastrointestinal health and indicate dose-dependent and sex-specific effects of HAW consumption.
Collapse
Affiliation(s)
- See Meng Lim
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Centre for Community Health Studies (ReaCH), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jocelyn M. Choo
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Hui Li
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - Rebecca O’Rielly
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - John Carragher
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
| | - Geraint B. Rogers
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
| | - Iain Searle
- School of Biological Sciences, The University of Adelaide, Adelaide 5005, Australia;
| | - Sarah A. Robertson
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
- Robinson Research Institute, The University of Adelaide, Adelaide 5000, Australia
| | - Amanda J. Page
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Adelaide Medical School, The University of Adelaide, Adelaide 5000, Australia;
| | - Beverly Muhlhausler
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond 5064, Australia; (S.M.L.); (J.C.)
- South Australian Health and Medical Research Institute, Adelaide 5000, Australia; (J.M.C.); (H.L.); (R.O.); (G.B.R.); (A.J.P.)
- Commonwealth Scientific and Industrial Research Organisation, Adelaide 5000, Australia
- Correspondence: ; Tel.: +61-08-8305-0697
| |
Collapse
|
3
|
Covasa M, Stephens RW, Toderean R, Cobuz C. Intestinal Sensing by Gut Microbiota: Targeting Gut Peptides. Front Endocrinol (Lausanne) 2019; 10:82. [PMID: 30837951 PMCID: PMC6390476 DOI: 10.3389/fendo.2019.00082] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 01/30/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 2 billion overweight and obese individuals worldwide, surpassing for the first time, the number of people affected by undernutrition. Obesity and its comorbidities inflict a heavy burden on the global economies and have become a serious threat to individuals' wellbeing with no immediate cure available. The causes of obesity are manifold, involving several factors including physiological, metabolic, neural, psychosocial, economic, genetics and the environment, among others. Recent advances in genome sequencing and metagenomic profiling have added another dimension to this complexity by implicating the gut microbiota as an important player in energy regulation and the development of obesity. As such, accumulating evidence demonstrate the impact of the gut microbiota on body weight, adiposity, glucose, lipid metabolism, and metabolic syndrome. This also includes the role of microbiota as a modulatory signal either directly or through its bioactive metabolites on intestinal lumen by releasing chemosensing factors known to have a major role in controlling food intake and regulating body weight. The importance of gut signaling by microbiota signaling is further highlighted by the presence of taste and nutrient receptors on the intestinal epithelium activated by the microbial degradation products as well as their role in release of peptides hormones controlling appetite and energy homeostasis. This review present evidence on how gut microbiota interacts with intestinal chemosensing and modulates the release and activity of gut peptides, particularly GLP-1 and PYY.
Collapse
Affiliation(s)
- Mihai Covasa
- Department of Health and Human Development, University of Suceava, Suceava, Romania
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
- *Correspondence: Mihai Covasa
| | - Richard W. Stephens
- Department of Basic Medical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Pomona, CA, United States
| | - Roxana Toderean
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| | - Claudiu Cobuz
- Department of Health and Human Development, University of Suceava, Suceava, Romania
| |
Collapse
|
4
|
Morphological and functional changes in the colon after massive small bowel resection. J Pediatr Surg 2010; 45:1581-90. [PMID: 20713204 DOI: 10.1016/j.jpedsurg.2010.02.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 02/03/2010] [Accepted: 02/03/2010] [Indexed: 12/17/2022]
Abstract
PURPOSE Anecdotal evidence suggests that the colon plays an important role after small bowel resection (SBR). However, colonic changes have not previously been studied. The aim of this study was to characterize morphological and functional changes within the colon after SBR and elucidate the influence of diet complexity on adaptation. METHOD In study 1, 4-week-old piglets underwent a 75% SBR or sham operation and were studied at 2, 4, and 6 weeks postoperation to allow analysis of early and late adaptation responses. Piglets received a polymeric infant formula (PIF). In study 2, SBR piglets received an elemental diet and were studied at 6 weeks postoperation and compared with SBR + PIF piglets from study 1. For both studies, immunohistochemistry was used to quantitate intestinal cell types. Changes in functional proteins were measured by Western blot, enteroendocrine/peptide YY (PYY), enterocyte/liver fatty acid binding protein (L-FABP), and goblet cells/trefoil factor 3 (TFF3). RESULTS In study 1, early and late adaptation-related changes were observed after SBR. Early adaptation included increased numbers of enterocytes (P = .0001), whereas late adaptation included increased proliferative cell numbers (P = .02). Enteroendocrine, goblet, and apoptotic cells numbers were significantly elevated in the resected group at all time-points studied (P < .05). Functional changes included increased levels of L-FABP (P = .04) and PYY (P = .03). There was no change in TFF3 expression. In study 2, feeding with an elemental diet resulted in suboptimal adaptation as evidenced by reduced rate of weight gain and significant reductions in total cell numbers (P = .0001), proliferative (P = .0001) and apoptotic cells (P = .04), enteroendocrine cells (P = .001), and PYY expression (P .004). CONCLUSION These findings indicate that significant morphological and functional changes occur in the colon after massive SBR and that these occur as early and late adaptation responses. Elemental diet was associated with suboptimal adaptation suggesting an effect of diet complexity on colonic adaptation.
Collapse
|