1
|
Liu L, Wei J, Chen C, Liang Q, Wang B, Wu W, Li G, Zheng X. Electroporation-based Easi-CRISPR yields biallelic insertions of EGFP-HiBiT cassette in immortalized chicken oviduct epithelial cells. Poult Sci 2023; 102:103112. [PMID: 37806084 PMCID: PMC10568294 DOI: 10.1016/j.psj.2023.103112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Laying hens are an excellent experimental oviduct model for studying reproduction biology. Because chicken oviduct epithelial cells (cOECs) have a crucial role in synthesizing and secreting ovalbumin, laying hens have been regarded an ideal bioreactor for producing pharmaceuticals in egg white through transgene or gene editing of the ovalbumin (OVA) gene. However, related studies in cOECs are largely limited because of the lack of immortalized model cells. In addition, the editing efficiency of conventional CRISPR-HDR knock-in in chicken cells is suboptimal (ranging from 1 to 10%) and remains elevated. Here, primary cOECs were isolated from young laying hens, then infected with a retrovirus vector of human telomerase reverse transcriptase (hTERT), and immortalized cOECs were established. Subsequently, an electroporation-based Easi-CRISPR (Efficient additions with ssDNA inserts-CRISPR) method was adopted to integrate an EGFP-HiBiT cassette into the chicken OVA locus (immediately upstream of the stop codon). The immortalized cOECs reflected the self-renewal capability and phenotype of oviduct epithelial cells. This is because these cells not only maintained stable proliferation and normal karyotype and had no potential for malignant transformation, but also expressed oviduct markers and an epithelial marker and had a morphology similar to that of primary cOECs. EGFP expression was detected in the edited cells through microscopy, flow cytometry, and HiBiT/Western blotting. The EGFP-HiBiT knock-in efficiency reached 27.9% after a single round of electroporation, which was determined through genotyping and DNA sequencing. Two single cell clones contained biallelic insertions of EGFP-HiBiT donor cassettes. In conclusion, our established immortalized cOECs could act as an in vitro cell model for gene editing in chicken, and this electroporation-based Easi-CRISPR strategy will contribute to the generation of avian bioreactors and other gene-edited (GE) birds.
Collapse
Affiliation(s)
- Lingkang Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Jinyu Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Buffalo Research Institute, Chinese Academy of Agricultural Sciences and Guangxi Zhuang Nationality Autonomous Region, Nanning 530004, China
| | - Chen Chen
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Qianxue Liang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Boyong Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Wende Wu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Gonghe Li
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Xibang Zheng
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China.
| |
Collapse
|
2
|
Cieśla J, Tomsia M. Cadaveric Stem Cells: Their Research Potential and Limitations. Front Genet 2022; 12:798161. [PMID: 35003228 PMCID: PMC8727551 DOI: 10.3389/fgene.2021.798161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
In the era of growing interest in stem cells, the availability of donors for transplantation has become a problem. The isolation of embryonic and fetal cells raises ethical controversies, and the number of adult donors is deficient. Stem cells isolated from deceased donors, known as cadaveric stem cells (CaSCs), may alleviate this problem. So far, it was possible to isolate from deceased donors mesenchymal stem cells (MSCs), adipose delivered stem cells (ADSCs), neural stem cells (NSCs), retinal progenitor cells (RPCs), induced pluripotent stem cells (iPSCs), and hematopoietic stem cells (HSCs). Recent studies have shown that it is possible to collect and use CaSCs from cadavers, even these with an extended postmortem interval (PMI) provided proper storage conditions (like cadaver heparinization or liquid nitrogen storage) are maintained. The presented review summarizes the latest research on CaSCs and their current therapeutic applications. It describes the developments in thanatotranscriptome and scaffolding for cadaver cells, summarizes their potential applications in regenerative medicine, and lists their limitations, such as donor’s unknown medical condition in criminal cases, limited differentiation potential, higher risk of carcinogenesis, or changing DNA quality. Finally, the review underlines the need to develop procedures determining the safe CaSCs harvesting and use.
Collapse
Affiliation(s)
- Julia Cieśla
- School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marcin Tomsia
- Department of Forensic Medicine and Forensic Toxicology, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Chowdhury S, Ghosh S. Sources, Isolation and culture of stem cells? Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Sp N, Kang DY, Kim DH, Lee HG, Park YM, Kim IH, Lee HK, Cho BW, Jang KJ, Yang YM. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp Ther Med 2019; 19:214-222. [PMID: 31853292 PMCID: PMC6909739 DOI: 10.3892/etm.2019.8196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating SDHA, HPRT1 and p53 expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between p53 and SDHA/HPRT1 expression at a transcriptional level, horse gene sequences of SDHA and HPRT1 were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Do Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Il Ho Kim
- Nara Biotech Co., Ltd., Jeonju, Jeollabuk 54852, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| |
Collapse
|
5
|
Wu Y, Kang YG, Cho H, Kim IG, Chung EJ, Shin JW. Combinational effects of mechanical forces and substrate surface characteristics on esophageal epithelial differentiation. J Biomed Mater Res A 2018; 107:552-560. [DOI: 10.1002/jbm.a.36571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/11/2018] [Accepted: 10/27/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yanru Wu
- Department of Health Science and Technology; Inje University; Gimhae Republic of Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering; Inje University; Gimhae Republic of Korea
| | - Hana Cho
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - In Gul Kim
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Eun-Jae Chung
- Department of Otorhinolaryngology-Head and Neck Surgery; Seoul National University Hospital; Seoul Republic of Korea
| | - Jung-Woog Shin
- Department of Health Science and Technology; Inje University; Gimhae Republic of Korea
- Department of Biomedical Engineering; Inje University; Gimhae Republic of Korea
- Cardiovascular and Metabolic Disease Center/Institute of Aged Life Redesign/UHARC, Inje University; Gimhae Republic of Korea
| |
Collapse
|
6
|
Razumovsky AY, Alkhasov AB, Mokrushina OG, Chundokova MA, Kulikova NV, Gebekov AG, Gebekova SA. [Complications and long-term results of delayed esophagoezophagostomy for esophageal atresia]. Khirurgiia (Mosk) 2017:36-41. [PMID: 28514381 DOI: 10.17116/hirurgia2017536-41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To evaluate complications and long-term results of delayed esophagoesophagostomy in children with esophageal atresia (EA). MATERIAL AND METHODS 165 EA children were operated at the Filatov Municipal Children's Hospital #13 for the period 2006-2016. Primary esophageal anastomosis was performed in 136 (82.4%) children with tracheoesophageal fistula. In 5 (3%) neonates with non-fistulous EA esophago- and gastrostomy were made for further coloesophagoplasty. Other 24 (14.5%) children underwent gastrostomy for delayed esophagoesophagostomy. 6 (25%) of them died within 12 days after admission. 18 survivors with gastrostomy subsequently underwent delayed esophagoesophagostomy. RESULTS Postoperative complications occurred in 16 (88.9%) children. Esophageal anastomosis failure occurred in 4 (22.2%) patients, stenosis of anastomosis in 11 (61.1%) children, gastroesophageal reflux in 14 (77.8%) children. Early postoperative mortality was 16.7% (3 children). In remote period 92.3% of children were not adapted to normal diet and only in 7.7% of patients eating behavior corresponds to the age. 11 children underwent prolonged esophageal bougienage. 9 children underwent re-operation after delayed anastomosis. Esophageal extirpation was made in 4 children. CONCLUSION Esophago- and gastrostomy provides 100% survival if primary esophageal anastomosis is impossible. Herewith, in children without esophagostomy mortality rate was 25%. We still can not confirm that delayed esophageal anastomosis is a good alternative for children with esophageal atresia. In view of our results the number of candidates for delayed esophageal anastomosis should be reduced.
Collapse
Affiliation(s)
- A Yu Razumovsky
- Chair of Pediatric Surgery of Pirogov Russian Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; Filatov Children's City Clinical Hospital #13, Moscow, Russia
| | - A B Alkhasov
- Chair of Pediatric Surgery of Pirogov Russian Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; Filatov Children's City Clinical Hospital #13, Moscow, Russia
| | - O G Mokrushina
- Chair of Pediatric Surgery of Pirogov Russian Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; Filatov Children's City Clinical Hospital #13, Moscow, Russia
| | - M A Chundokova
- Chair of Pediatric Surgery of Pirogov Russian Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia; Filatov Children's City Clinical Hospital #13, Moscow, Russia
| | - N V Kulikova
- Filatov Children's City Clinical Hospital #13, Moscow, Russia
| | - A G Gebekov
- District Clinical Hospital, Makhachkala, Russia
| | - S A Gebekova
- Chair of Pediatric Surgery of Pirogov Russian Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
7
|
Lee E, Milan A, Urbani L, De Coppi P, Lowdell MW. Decellularized material as scaffolds for tissue engineering studies in long gap esophageal atresia. Expert Opin Biol Ther 2017; 17:573-584. [PMID: 28303723 DOI: 10.1080/14712598.2017.1308482] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Esophageal atresia refers to an anomaly in foetal development in which the esophagus terminates in a blind end. Whilst surgical correction is achievable in most patients, when a long gap is present it still represents a major challenge associated with higher morbidity and mortality. In this context, tissue engineering could represent a successful alternative to restore oesophageal function and structure. Naturally derived biomaterials made of decellularized tissues retain native extracellular matrix architecture and composition, providing a suitable bed for the anchorage and growth of relevant cell types. Areas covered: This review outlines the various strategies and challenges in esophageal tissue engineering, highlighting the evolution of ideas in the development of decellularized scaffolds for clinical use. It explores the interplay between clinical needs, ethical dilemmas, and manufacturing challenges in the development of a tissue engineered decellularized scaffold for oesophageal atresia. Expert opinion: Current progress on oesophageal tissue engineering has enabled effective repair of patch defects, whilst the development of a full circumferential construct remains a challenge. Despite the different approaches available and the improvements achieved, a gold standard for fully functional tissue engineered oesophageal constructs has not been defined yet.
Collapse
Affiliation(s)
- Esmond Lee
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK.,b Institute for Stem Cell Biology and Regenerative Medicine , Stanford University , Stanford , CA , USA.,c Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR) , Singapore
| | - Anna Milan
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Luca Urbani
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Paolo De Coppi
- d Stem Cells and Regenerative Medicine Section , UCL Great Ormond Street Institute of Child Health , London , UK
| | - Mark W Lowdell
- a Centre for Cell, Gene & Tissue Therapeutics , Royal Free Hospital , London , UK
| |
Collapse
|
8
|
Wu XD. Diagnosis and treatment of congenital esophageal atresia with tracheoesophageal fistula. Shijie Huaren Xiaohua Zazhi 2016; 24:4537-4541. [DOI: 10.11569/wcjd.v24.i34.4537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is a congenital life-threatening malformation which requires surgical repair, but it is still a challenge for patients and surgeons because of EA itself, possible combined severe deformities, and surgical risk. Thanks to the development and improvement of diagnostic and therapeutic methods and techniques, especially the progress achieved in preoperative EA diagnosis, successful surgery for long-gap EA/TEF, and the application of thoracoscopic technology, the survival rate after surgery has reached 95%. However, the possible postoperative complications and its managements should not be ignored.
Collapse
|