1
|
Liu S, Yu L. Role of genetics and the environment in the etiology of congenital diaphragmatic hernia. WORLD JOURNAL OF PEDIATRIC SURGERY 2024; 7:e000884. [PMID: 39183805 PMCID: PMC11340715 DOI: 10.1136/wjps-2024-000884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a congenital malformation characterized by failure of diaphragm closure during embryonic development, leading to pulmonary hypoplasia and pulmonary hypertension, which contribute significantly to morbidity and mortality. The occurrence of CDH and pulmonary hypoplasia is theorized to result from both abnormalities in signaling pathways of smooth muscle cells in pleuroperitoneal folds and mechanical compression by abdominal organs within the chest cavity on the developing lungs. Although, the precise etiology of diaphragm maldevelopment in CDH is not fully understood, it is believed that interplay between genes and the environment contributes to its onset. Approximately 30% of patients with CDH possess chromosomal or single gene defects and these patients tend to have inferior outcomes compared with those without genetic associations. At present, approximately 150 gene variants have been linked to the occurrence of CDH. The variable expression of the CDH phenotype in the presence of a recognized genetic predisposition can be explained by an environmental effect on gene penetrance and expression. The retinoic acid pathway is thought to play an essential role in the interactions of genes and environment in CDH. However, apart from the gradually maturing retinol hypothesis, there is limited evidence implicating other environmental factors in CDH occurrence. This review aims to describe the pathogenesis of CDH by summarizing the genetic defects and potential environmental influences on CDH development.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Cardiac & Thoracic Surgery, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Lan Yu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Li A, Gu L, Mu J, Li Y, Wang X, Jiang J, Bai Y, Yang M, He C, Xiao R, Liao J, Jin X, Xiao M, Xiao Y, Zhang X, Tan T, Peng M, Xu L, Guo S. GATA6 triggers fibroblast activation and tracheal fibrosis through the Wnt/β-catenin pathway. Cell Signal 2023; 105:110593. [PMID: 36682592 DOI: 10.1016/j.cellsig.2023.110593] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/21/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Tracheal fibrosis is a key abnormal repair process leading to fatal stenosis, characterized by excessive fibroblast activation and extracellular matrix (ECM) deposition. GATA6, a zinc finger-containing transcription factor, is involved in fibroblast activation, while its role in tracheal fibrosis remains obscure. The present study investigated the potential role of GATA6 as a novel regulator of tracheal fibrosis. It was found that GATA6 and α-smooth muscle actin (α-SMA) were obviously increased in tracheal fibrotic granulations and in TGFβ1-treated primary tracheal fibroblasts. GATA6 silencing inhibited TGFβ1-stimulated fibroblast proliferation and ECM synthesis, promoted cell apoptosis, and inactivated Wnt/β-catenin pathway, whereas GATA6 overexpression showed the reverse effects. SKL2001, an agonist of Wnt/β-catenin signaling, restored collagen1a1 and α-SMA expression which was suppressed by GATA6 silencing. Furthermore, in vivo, knockdown of GATA6 ameliorated tracheal fibrosis, as manifested by reduced tracheal stenosis and ECM deposition. GATA6 inhibition in rat tracheas also impaired granulation proliferation, increased apoptosis, and inactivated Wnt/β-catenin pathway. In conclusion, our findings indicate that GATA6 triggers fibroblast activation, cell proliferation, and apoptosis resistance in tracheal fibrosis via the Wnt/β-catenin signaling pathway. Targeting GATA6 may represent a promising therapeutic approach for tracheal fibrosis.
Collapse
Affiliation(s)
- Anmao Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhao Mu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yishi Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohui Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyue Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Bai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjin Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunyan He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rui Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaxin Liao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingxing Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Meiling Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Xiao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tairong Tan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mingyu Peng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Shuliang Guo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Genetics of diaphragmatic hernia. Eur J Hum Genet 2021; 29:1729-1733. [PMID: 34621023 PMCID: PMC8632982 DOI: 10.1038/s41431-021-00972-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 01/14/2023] Open
Abstract
Congenital diaphragmatic hernia (CDH) is a life-threatening malformation characterised by failure of diaphragmatic development with lung hypoplasia and persistent pulmonary hypertension of the newborn (PPHN). The incidence is 1:2000 corresponding to 8% of all major congenital malformations. Morbidity and mortality in affected newborns are very high and at present, there is no precise prenatal or early postnatal prognostication parameter to predict clinical outcome in CDH patients. Most cases occur sporadically, however, genetic causes have long been discussed to explain a proportion of cases. These range from aneuploidy to complex chromosomal aberrations and specific mutations often causing a complex phenotype exhibiting multiple malformations along with CDH. This review summarises the genetic variations which have been observed in syndromic and isolated cases of congenital diaphragmatic hernia.
Collapse
|
4
|
Abstract
Congenital diaphragmatic hernia (CDH) is a common birth defect that is associated with significant morbidity and mortality, especially when associated with additional congenital anomalies. Both environmental and genetic factors are thought to contribute to CDH. The genetic contributions to CDH are highly heterogeneous and incompletely defined. No one genetic cause accounts for more than 1-2% of CDH cases. In this review, we summarize the known genetic causes of CDH from chromosomal anomalies to individual genes. Both de novo and inherited variants contribute to CDH. Genes causing CDH are increasingly identified from animal models and from genomic strategies including exome and genome sequencing in humans. CDH genes are often transcription factors, genes involved in cell migration or the components of extracellular matrix. We provide clinical genetic testing strategies in the clinical evaluation that can identify a genetic cause in up to ∼30% of patients with non-isolated CDH and can be useful to refine prognosis, identify associated medical and neurodevelopmental issues to address, and inform family planning options.
Collapse
Affiliation(s)
- Lan Yu
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Rebecca R. Hernan
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Julia Wynn
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
5
|
Wagner R, Montalva L, Zani A, Keijzer R. Basic and translational science advances in congenital diaphragmatic hernia. Semin Perinatol 2020; 44:151170. [PMID: 31427115 DOI: 10.1053/j.semperi.2019.07.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Congenital Diaphragmatic Hernia (CDH) is a birth defect that is characterized by lung hypoplasia, pulmonary hypertension and a diaphragmatic defect that allows herniation of abdominal organs into the thoracic cavity. Although widely unknown to the public, it occurs as frequently as cystic fibrosis (1:2500). There is no monogenetic cause, but different animal models revealed various biological processes and epigenetic factors involved in the pathogenesis. However, the pathobiology of CDH is not sufficiently understood and its mortality still ranges between 30 and 50%. Future collaborative initiatives are required to improve our basic knowledge and advance novel strategies to (prenatally) treat the abnormal lung development. This review focusses on the genetic, epigenetic and protein background and the latest advances in basic and translational aspects of CDH research.
Collapse
Affiliation(s)
- Richard Wagner
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada; Department of Pediatric Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Louise Montalva
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada; Department of Pediatric Surgery, Hospital Robert Debré, Paris, France
| | - Augusto Zani
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Canada and Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology & Pathophysiology (Adjunct), University of Manitoba and Children's Hospital Research Institute of Manitoba, Biology of Breathing Theme, Winnipeg, Manitoba, Canada.
| |
Collapse
|
6
|
Lignelli E, Palumbo F, Myti D, Morty RE. Recent advances in our understanding of the mechanisms of lung alveolarization and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2019; 317:L832-L887. [PMID: 31596603 DOI: 10.1152/ajplung.00369.2019] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is the most common cause of morbidity and mortality in preterm infants. A key histopathological feature of BPD is stunted late lung development, where the process of alveolarization-the generation of alveolar gas exchange units-is impeded, through mechanisms that remain largely unclear. As such, there is interest in the clarification both of the pathomechanisms at play in affected lungs, and the mechanisms of de novo alveoli generation in healthy, developing lungs. A better understanding of normal and pathological alveolarization might reveal opportunities for improved medical management of affected infants. Furthermore, disturbances to the alveolar architecture are a key histopathological feature of several adult chronic lung diseases, including emphysema and fibrosis, and it is envisaged that knowledge about the mechanisms of alveologenesis might facilitate regeneration of healthy lung parenchyma in affected patients. To this end, recent efforts have interrogated clinical data, developed new-and refined existing-in vivo and in vitro models of BPD, have applied new microscopic and radiographic approaches, and have developed advanced cell-culture approaches, including organoid generation. Advances have also been made in the development of other methodologies, including single-cell analysis, metabolomics, lipidomics, and proteomics, as well as the generation and use of complex mouse genetics tools. The objective of this review is to present advances made in our understanding of the mechanisms of lung alveolarization and BPD over the period 1 January 2017-30 June 2019, a period that spans the 50th anniversary of the original clinical description of BPD in preterm infants.
Collapse
Affiliation(s)
- Ettore Lignelli
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Francesco Palumbo
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Despoina Myti
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, member of the German Center for Lung Research, Giessen, Germany
| |
Collapse
|
7
|
Assessment of the nitrofen model of congenital diaphragmatic hernia and of the dysregulated factors involved in pulmonary hypoplasia. Pediatr Surg Int 2019; 35:41-61. [PMID: 30386897 DOI: 10.1007/s00383-018-4375-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE To study pulmonary hypoplasia (PH) associated with congenital diaphragmatic hernia (CDH), investigators have been employing a fetal rat model based on nitrofen administration to dams. Herein, we aimed to: (1) investigate the validity of the model, and (2) synthesize the main biological pathways implicated in the development of PH associated with CDH. METHODS Using a defined strategy, we conducted a systematic review of the literature searching for studies reporting the incidence of CDH or factors involved in PH development. We also searched for PH factor interactions, relevance to lung development and to human PH. RESULTS Of 335 full-text articles, 116 reported the incidence of CDH after nitrofen exposure or dysregulated factors in the lungs of nitrofen-exposed rat fetuses. CDH incidence: 54% (27-85%) fetuses developed a diaphragmatic defect, whereas the whole litter had PH in varying degrees. Downregulated signaling pathways included FGF/FGFR, BMP/BMPR, Sonic Hedgehog and retinoid acid signaling pathway, resulting in a delay in early epithelial differentiation, immature distal epithelium and dysfunctional mesenchyme. CONCLUSIONS The nitrofen model effectively reproduces PH as it disrupts pathways that are critical for lung branching morphogenesis and alveolar differentiation. The low CDH rate confirms that PH is an associated phenomenon rather than the result of mechanical compression alone.
Collapse
|