1
|
Rao MC. Physiology of Electrolyte Transport in the Gut: Implications for Disease. Compr Physiol 2019; 9:947-1023. [PMID: 31187895 DOI: 10.1002/cphy.c180011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We now have an increased understanding of the genetics, cell biology, and physiology of electrolyte transport processes in the mammalian intestine, due to the availability of sophisticated methodologies ranging from genome wide association studies to CRISPR-CAS technology, stem cell-derived organoids, 3D microscopy, electron cryomicroscopy, single cell RNA sequencing, transgenic methodologies, and tools to manipulate cellular processes at a molecular level. This knowledge has simultaneously underscored the complexity of biological systems and the interdependence of multiple regulatory systems. In addition to the plethora of mammalian neurohumoral factors and their cross talk, advances in pyrosequencing and metagenomic analyses have highlighted the relevance of the microbiome to intestinal regulation. This article provides an overview of our current understanding of electrolyte transport processes in the small and large intestine, their regulation in health and how dysregulation at multiple levels can result in disease. Intestinal electrolyte transport is a balance of ion secretory and ion absorptive processes, all exquisitely dependent on the basolateral Na+ /K+ ATPase; when this balance goes awry, it can result in diarrhea or in constipation. The key transporters involved in secretion are the apical membrane Cl- channels and the basolateral Na+ -K+ -2Cl- cotransporter, NKCC1 and K+ channels. Absorption chiefly involves apical membrane Na+ /H+ exchangers and Cl- /HCO3 - exchangers in the small intestine and proximal colon and Na+ channels in the distal colon. Key examples of our current understanding of infectious, inflammatory, and genetic diarrheal diseases and of constipation are provided. © 2019 American Physiological Society. Compr Physiol 9:947-1023, 2019.
Collapse
Affiliation(s)
- Mrinalini C Rao
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Enns CB, Harding JCS, Loewen ME. Decreased electrogenic anionic secretory response in the porcine colon following in vivo challenge with Brachyspira spp. supports an altered mucin environment. Am J Physiol Gastrointest Liver Physiol 2019; 316:G495-G508. [PMID: 30629469 DOI: 10.1152/ajpgi.00348.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Brachyspira spp. cause diarrheal disease in multiple animal species by colonization of the colon, resulting in colitis, mucus induction, and disrupted ion transport. Unique to spirochete pathogenesis is the immense production of mucus, resulting in a niche mucin environment likely favoring spirochete colonization. Mucin rheological properties are heavily influenced by anionic secretion, and loss of secretory function has been implicated in diseases such as cystic fibrosis. Here, the effects on the agonist-induced electrogenic anionic secretory response by infectious colonic spirochete bacteria Brachyspira hyodysenteriae and Brachyspira hampsonii were assessed in the proximal, apex, and distal sections of colon in Ussing chambers. Activation of secretion via isoproterenol, carbachol, and forskolin/3-isobutyl-1-methylxanthine demonstrated a significantly decreased change in short-circuit current ( Isc) in Brachyspira-infected pigs in all sections. Tissue resistances did not account for this difference, rather, it was attributed to a decrease in anionic secretion as indicated by a decrease in bumetanide inhibitable Isc. Quantitative RT-PCR and Western blot analyses determined that the major anionic channels of the epithelium were downregulated in diarrheic pigs paired with altered mucin gene expression. The investigated cytokines were not responsible for the downregulation of anion channel gene transcripts. Although IL-1α was upregulated in all segments, it did not alter cystic fibrosis transmembrane conductance regulator (CFTR) mRNA expression in Caco-2 monolayers. However, a whole cell Brachyspira hampsonii lysate significantly reduced CFTR mRNA expression in Caco-2 monolayers. Together, these findings indicate that these two Brachyspira spp. may directly cause a decreased anionic secretory response in the porcine colon, supporting an altered mucin environment likely favoring spirochete colonization. NEW & NOTEWORTHY This research demonstrates for the first time that the niche mucin environment produced by two infectious spirochete spp. is supported by a decrease in the electrogenic anionic secretory response throughout the porcine colon. Our findings suggest that the host's cytokine response is not likely responsible for the decrease in anionic secretory function. Rather, it appears that Brachyspira spp. directly impede ion channel transcription and translation, potentially altering colonic mucin rheological properties, which may favor spirochete colonization.
Collapse
Affiliation(s)
- Cole B Enns
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| | - Matthew E Loewen
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan , Saskatoon , Canada
| |
Collapse
|
3
|
Kuwahara A, Kuwahara Y, Inui T, Marunaka Y. Regulation of Ion Transport in the Intestine by Free Fatty Acid Receptor 2 and 3: Possible Involvement of the Diffuse Chemosensory System. Int J Mol Sci 2018; 19:ijms19030735. [PMID: 29510573 PMCID: PMC5877596 DOI: 10.3390/ijms19030735] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/10/2018] [Accepted: 03/02/2018] [Indexed: 12/20/2022] Open
Abstract
The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3).
Collapse
Affiliation(s)
- Atsukazu Kuwahara
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Yuko Kuwahara
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| | - Toshio Inui
- Saisei Mirai medical corporation, 6-14-17 Kinda, Moriguchi, Osaka 570-0011, Japan.
| | - Yoshinori Marunaka
- Division of Molecular Cell Physiology, Kyoto prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan.
| |
Collapse
|
4
|
Kim NH, Park JH, Park JS, Joung YH. The Effect of Deoxycholic Acid on Secretion and Motility in the Rat and Guinea Pig Large Intestine. J Neurogastroenterol Motil 2017; 23:606-615. [PMID: 28554984 PMCID: PMC5628994 DOI: 10.5056/jnm16201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/18/2017] [Accepted: 03/12/2017] [Indexed: 02/06/2023] Open
Abstract
Background/Aims Bile acid is an important luminal factor that affects gastrointestinal motility and secretion. We investigated the effect of bile acid on secretion in the proximal and distal rat colon and coordination of bowel movements in the guinea pig colon. Methods The short-circuit current from the mucosal strip of the proximal and distal rat colon was compared under control conditions after induction of secretion with deoxycholic acid (DCA) as well as after inhibition of secretion with indomethacin, 1,2-bis (o-aminophenoxy) ethane-N,N,N′,N′-tetra-acetic acid (an intracellular calcium chelator; BAPTA), and tetrodotoxin (TTX) using an Ussing chamber. Colonic pressure patterns were also evaluated in the extracted guinea pig colon during resting, DCA stimulation, and inhibition by TTX using a newly developed pressure-sensing artificial stool. Results The secretory response in the distal colon was proportionate to the concentration of DCA. Also, indomethacin, BAPTA, and TTX inhibited chloride secretion in response to DCA significantly (P < 0.05). However, these changes were not detected in the proximal colon. When we evaluated motility, we found that DCA induced an increase in luminal pressure at the proximal, middle, and distal sensors of an artificial stool simultaneously during the non-peristaltic period (P < 0.05). In contrast, during peristalsis, DCA induced an increase in luminal pressure at the proximal sensor and a decrease in pressure at the middle and distal sensors of the artificial stool (P < 0.05). Conclusions DCA induced a clear segmental difference in electrogenic secretion. Also, DCA induced a more powerful peristaltic contraction only during the peristaltic period.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul, Korea
| | - Jung Ho Park
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University College of Medicine, Seoul, Korea
| | - Jae-Soon Park
- Department of Electronics and Control Engineering, Hanbat National University, Daejeon, Korea
| | - Yeun-Ho Joung
- Department of Electronics and Control Engineering, Hanbat National University, Daejeon, Korea
| |
Collapse
|
5
|
Involvement of the gut chemosensory system in the regulation of colonic anion secretion. BIOMED RESEARCH INTERNATIONAL 2015; 2015:403919. [PMID: 25866781 PMCID: PMC4383346 DOI: 10.1155/2015/403919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 12/26/2022]
Abstract
The primary function of the gastrointestinal (GI) tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal content for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in this content. These changes directly influence fundamental GI processes such as secretion, motility, and local blood flow via hormonal and/or neuronal pathways. Until recently, most studies examining the control of ion transport in the colon have focused on neural and hormonal regulation. However, study of the regulation of gut function by the gut chemosensory system has become increasingly important, as failure of this system causes dysfunctions in host homeostasis, as well as functional GI disorders. Furthermore, regulation of ion transport in the colon is critical for host defense and for electrolytes balance. This review discusses the role of the gut chemosensory system in epithelial transport, with a particular emphasis on the colon.
Collapse
|
6
|
van der Post S, Hansson GC. Membrane protein profiling of human colon reveals distinct regional differences. Mol Cell Proteomics 2014; 13:2277-87. [PMID: 24889196 PMCID: PMC4159649 DOI: 10.1074/mcp.m114.040204] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The colonic epithelium is a highly dynamic system important for the regulation of ion and water homeostasis via absorption and secretion and for the maintenance of a protective barrier between the outer milieu and the inside of the body. These processes are known to gradually change along the length of the colon, although a complete characterization at the protein level is lacking. We therefore analyzed the membrane proteome of isolated human (n = 4) colonic epithelial cells from biopsies obtained via routine colonoscopy for four segments along the large intestine: ascending, transverse, descending, and sigmoid colon. Label-free quantitative proteomic analyses using high-resolution mass spectrometry were performed on enriched membrane proteins. The results showed a stable level for the majority of membrane proteins but a distinct decrease in proteins associated with bacterial sensing, cation transport, and O-glycosylation in the proximal to distal regions. In contrast, proteins involved in microbial defense and anion transport showed an opposing gradient and increased toward the distal end. The gradient of ion-transporter proteins could be directly related to previously observed ion transport activities. All individual glycosyltransferases required for the O-glycosylation of the major colonic mucin MUC2 were observed and correlated with the known glycosylation variation along the colon axis. This is the first comprehensive quantitative dataset of membrane protein abundance along the human colon and will add to the knowledge of the physiological function of the different regions of the colonic mucosa. Mass spectrometry data have been deposited to the ProteomeXchange with the identifier PXD000987.
Collapse
Affiliation(s)
- Sjoerd van der Post
- From the ‡Department of Medical Biochemistry, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- From the ‡Department of Medical Biochemistry, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
7
|
Carra GE, Ibáñez JE, Saraví FD. The effect of acute hypoxia on short-circuit current and epithelial resistivity in biopsies from human colon. Dig Dis Sci 2013; 58:2499-506. [PMID: 23695875 DOI: 10.1007/s10620-013-2711-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 05/02/2013] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS In isolated colonic mucosa, decreases in short-circuit current (ISC) and transepithelial resistivity (RTE) occur when hypoxia is either induced at both sides or only at the serosal side of the epithelium. We assessed in human colon biopsies the sensitivity to serosal-only hypoxia and mucosal-only hypoxia and whether Na, K-ATPase blockade with ouabain interacts with hypoxia. MATERIALS AND METHODS Biopsy material from patients undergoing colonoscopy was mounted in an Ussing chamber for small samples (1-mm2 window). In a series of experiments we assessed viability and the electrical response to the mucolytic, dithiothreitol (1 mmol/l). In a second series, we explored the effect of hypoxia without and with ouabain. In a third series, we evaluated the response to a cycle of hypoxia and reoxygenation induced at the serosal or mucosal side while keeping the oxygenation of the opposite side. RESULTS 1st series: Dithiothreitol significantly decreased the unstirred layer and ISC but increased RTE. 2nd series: Both hypoxia and ouabain decreased ISC, but ouabain increased RTE and this effect on RTE prevailed even during hypoxia. 3rd series: Mucosal hypoxia caused lesser decreases of ISC and RTE than serosal hypoxia; in the former, but not in the latter, recovery was complete upon reoxygenation. CONCLUSIONS In mucolytic concentration, dithiothreitol modifies ISC and RTE. Oxygen supply from the serosal side is more important to sustain ISC and RTE in biopsy samples. The different effect of hypoxia and Na, K-ATPase blockade on RTE suggests that their depressing effect on ISC involves different mechanisms.
Collapse
Affiliation(s)
- Graciela E Carra
- Faculty of Medical Sciences, Institute of Physiology, Universidad Nacional de Cuyo, 5500, Mendoza, Argentina.
| | | | | |
Collapse
|
8
|
Li Y, Li XF, Hua Guo, Xu JD, Zhang XH, Li LS, Feng XY, Zhang Y, Duan ZP, Zhu JX. Colonic submucosal 5-HT3 receptor-mediated somatostatin-dependent secretoinhibitory pathway is suppressed in water-immersion restraint stressed rats. Eur J Pharmacol 2011; 656:94-100. [DOI: 10.1016/j.ejphar.2011.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 11/23/2010] [Accepted: 01/16/2011] [Indexed: 12/13/2022]
|
9
|
Zhang XH, Ji T, Guo H, Liu SM, Li Y, Zheng LF, Zhang Y, Zhang XF, Duan DP, Zhu JX. Expression and activation of β-adrenoceptors in the colorectal mucosa of rat and human. Neurogastroenterol Motil 2010; 22:e325-34. [PMID: 20879995 DOI: 10.1111/j.1365-2982.2010.01598.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND The functions of the distal colon are regulated by local and extrinsic neural pathways. In previous studies, we have found that dopamine (DA) and norepinephrine (NE) could evoke colonic ion transport by activating β-adrenoceptors. The present study aims to investigate the segmental differences in expression and activation of β-adrenoceptors in the distal colon in physiological and pathophysiological conditions. METHODS Real-time PCR, immunofluorescence, and Western blotting were used to detect the expression of β-adrenoceptors in the rat and human distal colon. Short-circuit current measurements (Isc) were used to assess the role of β-adrenoceptors in ion transport. KEY RESULTS DA and NE caused greater suppression of baseline Isc in distal colon adjacent to the rectum than in segments further away from the anus. These responses were inhibited by selective antagonists of β₁- and β₂-adrenoceptors, but not β₃-adrenoceptor. The expression levels of β₁- and β₂-adrenoceptors in colonic mucosa were higher in colorectum than the regions away from the anus of rats and humans. In wrap-restraint stress (2 h), DA-, NE-induced ΔIsc and the expression of β-adrenoceptors in the colorectum were significantly reduced. However, when endogenous catecholamines were depleted by 6-hydroxydopamine (75 mg kg(-1), i.p., 3 days), DA-, NE-induced ΔIsc as well as the expression of β-adrenoceptors were significantly enhanced in the rat colorectum but not in more proximal regions of the distal colon. CONCLUSIONS & INFERENCES β₁- and β₂-adrenoceptors are predominantly expressed in the colorectal mucosa. Perturbation of endogenous catecholamine levels influences the expression and activation of β-adrenoceptors in the colorectal region.
Collapse
Affiliation(s)
- X H Zhang
- Department of Physiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Role of plain abdominal radiographs in predicting type of congenital pouch colon. Pediatr Radiol 2010; 40:1603-8. [PMID: 20689945 DOI: 10.1007/s00247-010-1786-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 01/03/2010] [Accepted: 01/03/2010] [Indexed: 12/24/2022]
Abstract
BACKGROUND Congenital pouch colon (CPC) is a rare form of high ano-rectal malformation (ARM) in which part of or the entire colon is replaced by a pouch with a fistula to the genito-urinary tract. According to the Saxena-Mathur classification CPC is divided into five types. Although plain abdominal radiographs are taken in infants with suspicion of CPC to detect large dilatation of the pouch, the determination of the type of CPC is made during surgical exploration. Since large variations in the length of normal colon are present in the various types, management strategy options can be determined only at the time of surgery. OBJECTIVE The aim of this study was to review abdominal radiographs of children with congenital pouch colon (CPC) and evaluate their value in determining the type of CPC prior to surgical exploration to assist pre-operative planning. MATERIALS AND METHODS Over a 12-year period (1995-2007), CPC was documented in 80 children (52 boys and 28 girls, age range 1 day-9 years, median 2.4 days) and retrospective analysis of plain abdominal radiographs of 77 children at the time of presentation was performed. Radiographic findings were correlated with surgical findings. RESULTS Of 77 children, 5 were excluded from the study since the pouch colon was perforated. The direction of the pouch apex was correlated with surgical findings to determine the CPC type (P<0.0001, Fisher exact test). Type 1 (17/18) and type 2 CPC (18/18) were characterized by a single large pouch with the apex positioned in the left hypochondrium. In type 3 CPC (2/2) the pouch apex was directed towards the right hypochondrium. In type 4 CPC the apex of the pouch was directed towards the right hypochondrium (28/33); however in 5 children it was towards the left hypochondrium. In type 5 CPC (n=1) the radiograph was inconclusive. CONCLUSION Plain abdominal radiographs have a predictive value in determining the type of CPC and obviating the need for an invertogram.
Collapse
|
11
|
Lee JW, Park JH, Park DIL, Park JH, Kim HJ, Cho YK, Sohn CIL, Jeon WK, Kim BI. Subjects with diarrhea-predominant IBS have increased rectal permeability responsive to tryptase. Dig Dis Sci 2010; 55:2922-8. [PMID: 20087660 DOI: 10.1007/s10620-009-1094-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 12/04/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Patients with diarrhea-predominant irritable bowel syndrome (IBS-D) appear to have increased intestinal permeability; it has been suggested that activation of protease-activated receptor-2 (PAR-2) receptors is responsible for this alteration. The aims of this study are to evaluate (1) if rectal (large bowel) permeability is increased in IBS-D and (2) if tryptase plays a critical role in the altered permeability. METHODS Rectal biopsies from 20 patients with IBS-D and 30 subjects without the condition (normal controls) were assessed for macromolecular permeability using horseradish peroxidase in Ussing chambers in the basal state and after addition of drugs to the basolateral side. Reverse-transcription polymerase chain reaction (RT-PCR) was performed using colonic biopsy tissues from patients with IBS-D and normal subjects. RESULTS When tryptase was added to the basolateral (not mucosal) side of normal rectal biopsy tissues, permeability appeared to be proportional to the increase in tryptase concentration (P < 0.05) and was abolished by the addition of tryptase inhibitor (100 μM nafamostat; 1.568 ± 0.874 ng/2 h/mm(2) to 0.766 ± 0.661 ng/2 h/mm(2), n = 14, respectively, P < 0.01). Intestinal permeability in patients with IBS-D was significantly increased compared with controls (0.848 ± 0.0.600 ng/2 h/mm(2), n = 21, P < 0.01). Nafamostat significantly reduced the enhanced permeability in IBS-D (0.934 ± 0.589 ng/2 h/mm(2) to 0.247 ± 0.263 ng/2 h/mm(2), n = 14, respectively, P < 0.05). Transcription levels of PAR2 measured by RT-PCR did not differ between IBS-D and normal subjects. CONCLUSION Tryptase seems to play an important role in the control of human colonic mucosal permeability, and enhanced tryptase activity was responsible for the increased permeability of rectal mucosa in IBS patients.
Collapse
Affiliation(s)
- Jae Woong Lee
- Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Collins D, Winter DC, Hogan AM, Schirmer L, Baird AW, Stewart GS. Differential protein abundance and function of UT-B urea transporters in human colon. Am J Physiol Gastrointest Liver Physiol 2010; 298:G345-51. [PMID: 19926813 PMCID: PMC3774180 DOI: 10.1152/ajpgi.00405.2009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Accepted: 11/14/2009] [Indexed: 01/31/2023]
Abstract
Facilitative UT-B urea transporters enable the passage of urea across cell membranes. Gastrointestinal urea transporters are thought to play a significant role in the urea nitrogen salvaging process that occurs between mammalian hosts and their gut bacteria. This study investigated the expression of UT-B urea transporters in different segments of human colon. Immunoblot analysis showed that human colon expressed a 35-kDa glycosylated UT-B protein in the colonic mucosa. The 35-kDa UT-B transporter was predominantly located in plasma membrane-enriched samples (P < 0.001; n = 6), and its expression was greater in the ascending colon compared with the descending colon (P < 0.01; n = 3). At the cellular level, UT-B transporters were located throughout colonocytes situated in the upper portion of the colonic crypts. Bidirectional trans-epithelial urea transport was significantly greater in the ascending colon than the descending colon (P < 0.05; n = 6). In addition, the facilitative urea transporter inhibitor 1,3,dimethylurea significantly reduced urea transport in the ascending colon (P < 0.05; n = 6) but had no effect in the descending colon (NS; n = 6). These results illustrate differential protein abundance of functional UT-B protein in different sections of the human colon, strongly correlating to regions that contain the largest populations of intestinal bacteria. This study suggests an important role for UT-B urea transporters in maintaining the symbiotic relationship between humans and their gut bacteria.
Collapse
Affiliation(s)
- D Collins
- Center for Pain Research, Department of Anesthesiology, University of Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Kaji I, Karaki SI, Fukami Y, Terasaki M, Kuwahara A. Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am J Physiol Gastrointest Liver Physiol 2009; 296:G971-81. [PMID: 19179623 DOI: 10.1152/ajpgi.90514.2008] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Taste transduction molecules, such as Galpha(gust), and taste receptor families for bitter [taste receptor type 2 (T2R)], sweet, and umami, have previously been identified in taste buds and the gastrointestinal (GI) tract; however, their physiological functions in GI tissues are still unclear. Here, we investigated the physiological function and expression of T2R in human and rat large intestine using various physiological and molecular biological techniques. To study the physiological function of T2R, the effect of a bitter compound, 6-n-propyl-2-thiouracil (6-PTU), on transepithelial ion transport was investigated using the Ussing chamber technique. In mucosal-submucosal preparations, mucosal 6-PTU evoked Cl(-) and HCO(3)(-) secretions in a concentration-dependent manner. In rat middle colon, levels of 6-PTU-evoked anion secretion were higher than in distal colon, but there was no such difference in human large intestine. The response to 6-PTU was greatly reduced by piroxicam, but not by tetrodotoxin. Additionally, prostaglandin E(2) concentration-dependently potentiated the response to 6-PTU. Transcripts of multiple T2Rs (putative 6-PTU receptors) were detected in both human and rat colonic mucosa by RT-PCR. In conclusion, these results suggest that the T2R ligand, 6-PTU, evokes anion secretion, and such response is regulated by prostaglandins. This luminal bitter sensing mechanism may be important for host defense in the GI tract.
Collapse
Affiliation(s)
- Izumi Kaji
- Laboratory of Physiology, Graduate School of Nutrition and Environmental Sciences, Institute for Environmental Science, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | |
Collapse
|
14
|
Osbak PS, Bindslev N, Poulsen SS, Kaltoft N, Tilotta MC, Hansen MB. Colonic epithelial ion transport is not affected in patients with diverticulosis. BMC Gastroenterol 2007; 7:37. [PMID: 17888183 PMCID: PMC2064914 DOI: 10.1186/1471-230x-7-37] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 09/23/2007] [Indexed: 11/10/2022] Open
Abstract
Background Colonic diverticular disease is a bothersome condition with an unresolved pathogenesis. It is unknown whether a neuroepithelial dysfunction is present. The aim of the study was two-fold; (1) to investigate colonic epithelial ion transport in patients with diverticulosis and (2) to adapt a miniaturized Modified Ussing Air-Suction (MUAS) chamber for colonic endoscopic biopsies. Methods Biopsies were obtained from the sigmoid part of the colon. 86 patients were included. All patients were referred for colonoscopy on suspicion of neoplasia and they were without pathological findings at colonoscopy (controls) except for diverticulosis in 22 (D-patients). Biopsies were mounted in MUAS chambers with an exposed area of 5 mm2. Electrical responses to various stimulators and inhibitors of ion transport were investigated together with histological examination. The MUAS chamber was easy to use and reproducible data were obtained. Results Median basal short circuit current (SCC) was 43.8 μA·cm-2 (0.8 – 199) for controls and 59.3 μA·cm-2 (3.0 – 177.2) for D-patients. Slope conductance was 77.0 mS·cm-2 (18.6 – 204.0) equal to 13 Ω·cm2 for controls and 96.6 mS·cm-2 (8.4 – 191.4) equal to 10.3 Ω·cm2 for D-patients. Stimulation with serotonin, theophylline, forskolin and carbachol induced increases in SCC in a range of 4.9 – 18.6 μA·cm-2, while inhibition with indomethacin, bumetanide, ouabain and amiloride decreased SCC in a range of 6.5 – 27.4 μA·cm-2, and all with no significant differences between controls and D-patients. Histological examinations showed intact epithelium and lamina propria before and after mounting for both types of patients. Conclusion We conclude that epithelial ion transport is not significantly altered in patients with diverticulosis and that the MUAS chamber can be adapted for studies of human colonic endoscopic biopsies.
Collapse
Affiliation(s)
- Philip S Osbak
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| | - Niels Bindslev
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Denmark
| | - Steen S Poulsen
- Department of Anatomy B, Panum Institute, University of Copenhagen, Denmark
| | - Nicolai Kaltoft
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| | - Maria C Tilotta
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| | - Mark B Hansen
- Department of Gastrointestinal Surgery K, Bispebjerg University Hospital of Copenhagen, Denmark
| |
Collapse
|