1
|
Sargazi S, Abghari AZ, Sarani H, Sheervalilou R, Mirinejad S, Saravani R, Eskandari E. Relationship Between CASP9 and CASP10 Gene Polymorphisms and Cancer Susceptibility: Evidence from an Updated Meta-analysis. Appl Biochem Biotechnol 2021; 193:4172-4196. [PMID: 34463927 DOI: 10.1007/s12010-021-03613-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/21/2021] [Indexed: 11/25/2022]
Abstract
Caspase-9 (CASP9) and caspase-10 (CASP10) polymorphisms were associated with human cancers; however, the results remain controversial. In this meta-analysis, we aimed to estimate the relationship among CASP9 (rs1052576, rs1052571, rs4645978, rs4645981, rs4645982, rs2308950) and CASP10 (rs13006529, rs13010627, rs3900115) polymorphisms and the overall risk of cancers. Relevant studies were obtained from Web of Science, MEDLINE, PubMed, Scopus, and Google scholar databases (updated January 1, 2021). Odds ratio (OR) and 95% confidence intervals (CIs) were measured to estimate the strength of association. Our meta-analysis included 40 studies. The rs4645981 significantly enhanced the risk of cancer under TT vs. CC (OR = 2.42), TC vs. CC (OR = 1.55), TT+ TC vs. CC (OR = 1.66), TT vs. TC + CC (OR = 1.91), and T vs. C (OR = 1.57) inheritance models. As for the rs1052571 variant, increased risk of cancer was observed under TT vs. CC (OR =1.22), TC vs. CC (OR = 1.17), and TT+ TC vs. CC (OR = 1.18) models. The stratified analysis showed a significant correlation between rs4645978 or rs4645981 polymorphisms and cancer risk, while in Asians rs4645978 conferred an increased risk of colorectal, lung, and prostate cancer. Both rs4645981 and rs1052576 polymorphisms were correlated with an enhanced risk of lung cancer. In conclusion, our meta-analysis suggested that CASP9 rs4645981 and rs1052571 polymorphisms are associated with overall cancer risk. More studies on larger populations are warranted to validate these associations.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Armin Zahedi Abghari
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hosna Sarani
- Children and Adolescent Health Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ramin Saravani
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Ebrahim Eskandari
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Caspase-10 inhibits ATP-citrate lyase-mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat Commun 2019; 10:4255. [PMID: 31534141 PMCID: PMC6751159 DOI: 10.1038/s41467-019-12194-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 08/27/2019] [Indexed: 01/18/2023] Open
Abstract
Caspase-10 belongs to the class of initiator caspases and is a close homolog of caspase-8. However, the lack of caspase-10 in mice and limited substrate repertoire restricts the understanding of its physiological functions. Here, we report that ATP-citrate lyase (ACLY) is a caspase-10 substrate. Caspase-10 cleaves ACLY at the conserved Asp1026 site under conditions of altered metabolic homeostasis. Cleavage of ACLY abrogates its enzymatic activity and suppresses the generation of acetyl-CoA, which is critical for lipogenesis and histone acetylation. Thus, caspase-10-mediated ACLY cleavage results in reduced intracellular lipid levels and represses GCN5-mediated histone H3 and H4 acetylation. Furthermore, decline in GCN5 activity alters the epigenetic profile, resulting in downregulation of proliferative and metastatic genes. Thus caspase-10 suppresses ACLY-promoted malignant phenotype. These findings expand the substrate repertoire of caspase-10 and highlight its pivotal role in inhibiting tumorigenesis through metabolic and epigenetic mechanisms. Caspases are most closely associated with cell death, but many have other cellular functions. Here, Das et al. find that upon metabolic stress, caspase-10 cleaves ACLY to regulate metabolic homeostasis and epigenetic reprogramming by altering Acetyl-CoA levels.
Collapse
|
3
|
Zhu S, Jiang L, Wang L, Wang L, Zhang C, Ma Y, Huang T. Identification of key genes and specific pathways potentially involved in androgen-independent, mitoxantrone-resistant prostate cancer. Cancer Manag Res 2019; 11:419-430. [PMID: 30655694 PMCID: PMC6322516 DOI: 10.2147/cmar.s179467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Resistance to mitoxantrone (MTX), an anthracenedione antineoplastic agent used in advanced and metastatic androgen-refractory prostate cancer (PCa), seriously limits therapeutic success. Methods Xenografts from two human PCa cell lines (VCaP and CWR22) were established in male severe combined immunodeficiency mice, and MTX was administered, with or without concurrent castration, three times a week until tumors relapsed. Microarray technology was used to screen for differentially expressed genes (DEGs) in androgen-independent, MTX-resistant PCa xenografts. Gene expression profiles of MTX-treatment xenografts and their respective parental cell lines were performed using an Agilent whole human genome oligonucleotide microarray and analyzed using Ingenuity Pathway Analysis software. Results A total of 636 genes were differentially expressed (fold change ≥1.5; P<0.05) in MTX-resistant castration-resistant prostate cancer (CRPC) xenografts. Of these, 18 were selected to be validated and showed that most of these genes exhibited a transcriptional profile similar to that seen in the microarray (Pearson’s r=0.87). Western blotting conducted with a subset of genes deregulated in MTX-resistant CRPC tumors was shown through network analysis to be involved in androgen synthesis, drug efflux, ATP synthesis, and vascularization. Conclusion The present data provide insight into the genetic alterations underlying MTX resistance in androgen-independent PCa and highlight potential targets to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Sha Zhu
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Lili Jiang
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China, .,Department of Basic Medicine, School of Nursing, Zhengzhou University, Zhengzhou, Henan, China
| | - Liuyan Wang
- Department of Medicine, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Lingli Wang
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Cong Zhang
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Yu Ma
- Department of Immunology, Collaborative Innovation Center of Cancer Chemoprevention, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China,
| | - Tao Huang
- Oncological Surgery, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China,
| |
Collapse
|
4
|
Brownhill S, Cohen D, Burchill S. Proliferation index: a continuous model to predict prognosis in patients with tumours of the Ewing's sarcoma family. PLoS One 2014; 9:e104106. [PMID: 25157404 PMCID: PMC4144797 DOI: 10.1371/journal.pone.0104106] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/09/2014] [Indexed: 01/03/2023] Open
Abstract
The prognostic value of proliferation index (PI) and apoptotic index (AI), caspase-8, -9 and -10 expression have been investigated in primary Ewing's sarcoma family of tumours (ESFT). Proliferating cells, detected by immunohistochemistry for Ki-67, were identified in 91% (91/100) of tumours with a median PI of 14 (range 0-87). Apoptotic cells, identified using the TUNEL assay, were detected in 96% (76/79) of ESFT; the median AI was 3 (range 0-33). Caspase-8 protein expression was negative (0) in 14% (11/79), low (1) in 33% (26/79), medium (2) in 38% (30/79) and high (3) in 15% (12/79) of tumours, caspase-9 expression was low (1) in 66% (39/59) and high (3) in 34% (20/59), and caspase-10 protein was low (1) in 37% (23/62) and negative (0) in 63% (39/62) of primary ESFT. There was no apparent relationship between caspase-8, -9 and -10 expression, PI and AI. PI was predictive of relapse-free survival (RFS; p = 0.011) and overall survival (OS; p = <0.001) in a continuous model, whereas AI did not predict outcome. Patients with tumours expressing low levels of caspase-9 protein had a trend towards a worse RFS than patients with tumours expressing higher levels of caspase-9 protein (p = 0.054, log rank test), although expression of caspases-8, -9 and/or -10 did not significantly predict RFS or OS. In a multivariate analysis model that included tumour site, tumour volume, the presence of metastatic disease at diagnosis, PI and AI, PI independently predicts OS (p = 0.003). Consistent with previous publications, patients with pelvic tumours had a significantly worse OS than patients with tumours at other sites (p = 0.028); patients with a pelvic tumour and a PI≥20 had a 6 fold-increased risk of death. These studies advocate the evaluation of PI in a risk model of outcome for patients with ESFT.
Collapse
Affiliation(s)
- Samantha Brownhill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
- * E-mail:
| | - Dena Cohen
- Clinical Trials Research Unit, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
| | - Sue Burchill
- Children's Cancer Research Group, Leeds Institute of Cancer and Pathology, St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
5
|
Cisterne A, Baraz R, Khan NI, Welschinger R, Basnett J, Fung C, Rizos H, Bradstock KF, Bendall LJ. Silencer of death domains controls cell death through tumour necrosis factor-receptor 1 and caspase-10 in acute lymphoblastic leukemia. PLoS One 2014; 9:e103383. [PMID: 25061812 PMCID: PMC4111576 DOI: 10.1371/journal.pone.0103383] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 07/01/2014] [Indexed: 01/06/2023] Open
Abstract
Resistance to apoptosis remains a significant problem in drug resistance and treatment failure in malignant disease. NO-aspirin is a novel drug that has efficacy against a number of solid tumours, and can inhibit Wnt signaling, and although we have shown Wnt signaling to be important for acute lymphoblastic leukemia (ALL) cell proliferation and survival inhibition of Wnt signaling does not appear to be involved in the induction of ALL cell death. Treatment of B lineage ALL cell lines and patient ALL cells with NO-aspirin induced rapid apoptotic cell death mediated via the extrinsic death pathway. Apoptosis was dependent on caspase-10 in association with the formation of the death-inducing signaling complex (DISC) incorporating pro-caspase-10 and tumor necrosis factor receptor 1 (TNF-R1). There was no measurable increase in TNF-R1 or TNF-α in response to NO-aspirin, suggesting that the process was ligand-independent. Consistent with this, expression of silencer of death domain (SODD) was reduced following NO-aspirin exposure and lentiviral mediated shRNA knockdown of SODD suppressed expansion of transduced cells confirming the importance of SODD for ALL cell survival. Considering that SODD and caspase-10 are frequently over-expressed in ALL, interfering with these proteins may provide a new strategy for the treatment of this and potentially other cancers.
Collapse
Affiliation(s)
- Adam Cisterne
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Rana Baraz
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Naveed I. Khan
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Robert Welschinger
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Jordan Basnett
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Carina Fung
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Helen Rizos
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Kenneth F. Bradstock
- Blood and Marrow Transplant Service, Department of Haematology, Westmead Hospital, Sydney, New South Wales, Australia
| | - Linda J. Bendall
- Centre for Cancer Research, Westmead Millennium Institute, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|