1
|
Zhang W, Huang Z, Xiao Z, Wang H, Liao Q, Deng Z, Wu D, Wang J, Li Y. NF-κB downstream miR-1262 disturbs colon cancer cell malignant behaviors by targeting FGFR1. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1819-1832. [PMID: 37867436 PMCID: PMC10686795 DOI: 10.3724/abbs.2023235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/23/2023] [Indexed: 10/24/2023] Open
Abstract
Despite substantial advancements in screening, surgery, and chemotherapy, colorectal cancer remains the second most lethal form of the disease. Nuclear factor kappa B (NF-κB) signaling is a critical driver facilitating the malignant transformation of chronic inflammatory bowel diseases. In this study, deregulated miRNAs that could play a role in colon cancer are analyzed and investigated for specific functions in vitro using cancer cells and in vivo using a subcutaneous xenograft model. miRNA downstream targets are analyzed, and predicted binding and regulation are verified. miR-1262, an antitumor miRNA, is downregulated in colon cancer tissue samples and cell lines. miR-1262 overexpression suppresses colon cancer malignant behaviors in vitro and tumor development and metastasis in a subcutaneous xenograft model and a lung metastasis mouse model in vivo. miR-1262 directly targets fibroblast growth factor receptor 1 (FGFR1) and inhibits FGFR1 expression. FGFR1 overexpression shows oncogenic functions through the regulation of cancer cell proliferation, invasion, and migration; when cotransfected, lv-FGFR1 partially attenuates the antitumor effects of agomir-1262. NF-κB binds to the miR-1262 promoter region and inhibits transcription activity. The NF-κB inhibitor CAPE exerts antitumor effects; miR-1262 inhibition partially reverses CAPE effects on colon cancer cells. Conclusively, miR-1262 serves as an antitumor miRNA in colon cancer by targeting FGFR1. The NF-κB/miR-1262/FGFR1 axis modulates colon cancer cell phenotypes, including proliferation, invasion, and migration.
Collapse
Affiliation(s)
- Weilin Zhang
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhongcheng Huang
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Zhigang Xiao
- Department of General SurgeryHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Hui Wang
- Department of Cardiovascular MedicineHunan Provincial People’s Hospital (The First Affiliated Hospital of Hunan Normal University)Changsha410005China
| | - Qianchao Liao
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Zhengru Deng
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Deqing Wu
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Junjiang Wang
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Yong Li
- The Second School of Clinical MedicineSouthern Medical UniversityGuangzhou510080China
- Department of Gastrointestinal SurgeryDepartment of General SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| |
Collapse
|
2
|
Lim SH, Chua W, Ng W, Ip E, Marques TM, Tran NT, Gama-Carvalho M, Asghari R, Henderson C, Ma Y, de Souza P, Spring KJ. Circulating Tumour Cell Associated MicroRNA Profiles Change during Chemoradiation and Are Predictive of Response in Locally Advanced Rectal Cancer. Cancers (Basel) 2023; 15:4184. [PMID: 37627212 PMCID: PMC10452825 DOI: 10.3390/cancers15164184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Locally advanced rectal cancer (LARC) has traditionally been treated with trimodality therapy consisting of neoadjuvant radiation +/- chemotherapy, surgery, and adjuvant chemotherapy. There is currently a clinical need for biomarkers to predict treatment response and outcomes, especially during neoadjuvant therapy. Liquid biopsies in the form of circulating tumour cells (CTCs) and circulating nucleic acids in particular microRNAs (miRNA) are novel, the latter also being highly stable and clinically relevant regulators of disease. We studied a prospective cohort of 52 patients with LARC, and obtained samples at baseline, during treatment, and post-treatment. We enumerated CTCs during chemoradiation at these three time-points, using the IsofluxTM (Fluxion Biosciences Inc., Alameda, CA, USA) CTC Isolation and detection platform. We then subjected the isolated CTCs to miRNA expression analyses, using a panel of 106 miRNA candidates. We identified CTCs in 73% of patients at baseline; numbers fell and miRNA expression profiles also changed during treatment. Between baseline and during treatment (week 3) time-points, three microRNAs (hsa-miR-95, hsa-miR-10a, and hsa-miR-16-1*) were highly differentially expressed. Importantly, hsa-miR-19b-3p and hsa-miR-483-5p were found to correlate with good response to treatment. The latter (hsa-miR-483-5p) was also found to be differentially expressed between good responders and poor responders. These miRNAs represent potential predictive biomarkers, and thus a potential miRNA-based treatment strategy. In this study, we demonstrate that CTCs are present and can be isolated in the non-metastatic early-stage cancer setting, and their associated miRNA profiles can potentially be utilized to predict treatment response.
Collapse
Affiliation(s)
- Stephanie H. Lim
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Department of Medical Oncology, Macarthur Cancer Therapy Centre, Campbelltown, NSW 2560, Australia
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Wei Chua
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Weng Ng
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Emilia Ip
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- Department of Medical Oncology, Liverpool Hospital, Liverpool, NSW 2170, Australia
| | - Tania M. Marques
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (T.M.M.); (M.G.-C.)
| | - Nham T. Tran
- School Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Margarida Gama-Carvalho
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal; (T.M.M.); (M.G.-C.)
| | - Ray Asghari
- Department of Medical Oncology, Bankstown Hospital, Bankstown, NSW 2200, Australia;
| | | | - Yafeng Ma
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
| | - Paul de Souza
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| | - Kevin J. Spring
- Medical Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (W.C.); (W.N.); (E.I.); (Y.M.); (P.d.S.)
- Liverpool Clinical School, Western Sydney University, Liverpool, NSW 2170, Australia
- South West Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
| |
Collapse
|
3
|
Wang X, Han B, Dou B, Gao L, Sun F, Qi M, Zhang J, Hu J. A trio of tumor suppressor miRNA downregulates CREB5 dependent transcription to modulate neoadjuvant hormonal therapy sensitivity. Neoplasia 2023; 36:100875. [PMID: 36603462 PMCID: PMC9826888 DOI: 10.1016/j.neo.2022.100875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Neoadjuvant hormonal therapy (NHT) prior to radical prostatectomy (RP) is an approach that can potentially maximize survival outcomes in prostate cancer (PCa) patients with high-risk disease. Unfortunately, subsets of patients do not respond well to such hormonal therapy. We previously identified several pathological parameters in predicting differences in response to NHT of PCa. However, little is known about the potential role and mechanism of miRNAs mediated NHT resistance (NHT-R) in PCa. Here we demonstrate that miR-l42-3p, miR-150-5p and miR-342-3p are the top downregulated miRNAs in PCa tissues with NHT-R. Functional analysis reveals that the three miRNAs inhibit cell proliferation in vitro. Transfection of miRNAs mimics strengthens the inhibitory effects of bicalutamide and enzalutamide to PCa cells. Luciferase reporter assay reveals that CREB5 is the common target of these three miRNAs. Clinically, high expression level of CREB5 correlates with high Gleason score, advanced tumor stage and NHT-R in PCa tissues. CREB5 expression promotes antiandrogen therapy resistance in LNCaP cells and IL6 signaling pathway may be involved in this process. In all, our findings highlight an important role of miR-142-3p, miR-150-5p, and miR-342-3p in contributing NHT-R by targeting CREB5 in PCa.
Collapse
Affiliation(s)
- Xueli Wang
- Department of Pathology, Binzhou City Central Hospital, Binzhou 251700, China; The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bo Han
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baokai Dou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Lin Gao
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Feifei Sun
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mei Qi
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jing Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China.
| | - Jing Hu
- Department of Pathology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
4
|
Machado Carvalho JV, Dutoit V, Corrò C, Koessler T. Promises and Challenges of Predictive Blood Biomarkers for Locally Advanced Rectal Cancer Treated with Neoadjuvant Chemoradiotherapy. Cells 2023; 12:413. [PMID: 36766755 PMCID: PMC9913546 DOI: 10.3390/cells12030413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
The treatment of locally advanced rectal cancer (LARC) requires a multimodal approach combining neoadjuvant radiotherapy or chemoradiotherapy (CRT) and surgery. Predicting tumor response to CRT can guide clinical decision making and improve patient care while avoiding unnecessary toxicity and morbidity. Circulating biomarkers offer both the advantage to be easily accessed and followed over time. In recent years, biomarkers such as proteins, blood cells, or nucleic acids have been investigated for their predictive value in oncology. We conducted a comprehensive literature review with the aim to summarize the status of circulating biomarkers predicting response to CRT in LARC. Forty-nine publications, of which forty-seven full-text articles, one review and one systematic review, were retrieved. These studies evaluated circulating markers (CEA and CA 19-9), inflammatory biomarkers (CRP, albumin, and lymphocytes), hematologic markers (hemoglobin and thrombocytes), lipids and circulating nucleic acids (cell-free DNA [cfDNA], circulating tumor DNA [ctDNA], and microRNA [miRNA]). Post-CRT CEA levels had the most consistent association with tumor response, while cfDNA integrity index, MGMT promoter methylation, ERCC-1, miRNAs, and miRNA-related SNPs were identified as potential predictive markers. Although circulating biomarkers hold great promise, inconsistent results, low statistical power, and low specificity and sensibility prevent them from reliably predicting tumor response following CRT. Validation and standardization of methods and technologies are further required to confirm results.
Collapse
Affiliation(s)
- Joao Victor Machado Carvalho
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Valérie Dutoit
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
| | - Claudia Corrò
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Thibaud Koessler
- Translational Research Center in Onco-Hematology, Department of Medicine, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Swiss Cancer Center Léman, 1005 Lausanne, Switzerland
- Department of Oncology, Geneva University Hospital, 1205 Geneva, Switzerland
| |
Collapse
|
5
|
Cheong JK, Rajgor D, Lv Y, Chung KY, Tang YC, Cheng H. Noncoding RNome as Enabling Biomarkers for Precision Health. Int J Mol Sci 2022; 23:10390. [PMID: 36142304 PMCID: PMC9499633 DOI: 10.3390/ijms231810390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 12/06/2022] Open
Abstract
Noncoding RNAs (ncRNAs), in the form of structural, catalytic or regulatory RNAs, have emerged to be critical effectors of many biological processes. With the advent of new technologies, we have begun to appreciate how intracellular and circulatory ncRNAs elegantly choreograph the regulation of gene expression and protein function(s) in the cell. Armed with this knowledge, the clinical utility of ncRNAs as biomarkers has been recently tested in a wide range of human diseases. In this review, we examine how critical factors govern the success of interrogating ncRNA biomarker expression in liquid biopsies and tissues to enhance our current clinical management of human diseases, particularly in the context of cancer. We also discuss strategies to overcome key challenges that preclude ncRNAs from becoming standard-of-care clinical biomarkers, including sample pre-analytics standardization, data cross-validation with closer attention to discordant findings, as well as correlation with clinical outcomes. Although harnessing multi-modal information from disease-associated noncoding RNome (ncRNome) in biofluids or in tissues using artificial intelligence or machine learning is at the nascent stage, it will undoubtedly fuel the community adoption of precision population health.
Collapse
Affiliation(s)
- Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
- NUS Centre for Cancer Research, Singapore 117599, Singapore
| | | | - Yang Lv
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore 117597, Singapore
| | | | | | - He Cheng
- MiRXES Lab, Singapore 138667, Singapore
| |
Collapse
|
6
|
Pham TT, Lim S, Lin M. Predicting neoadjuvant chemoradiotherapy response with functional imaging and liquid biomarkers in locally advanced rectal cancer. Expert Rev Anticancer Ther 2022; 22:1081-1098. [PMID: 35993178 DOI: 10.1080/14737140.2022.2114457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Non-invasive predictive quantitative biomarkers are required to guide treatment individualization in patients with locally advanced rectal cancer (LARC) in order to maximise therapeutic outcomes and minimise treatment toxicity. Magnetic resonance imaging (MRI), positron emission tomography (PET) and blood biomarkers have the potential to predict chemoradiotherapy (CRT) response in LARC. AREAS COVERED This review examines the value of functional imaging (MRI and PET) and liquid biomarkers (circulating tumor cells (CTCs) and circulating tumor nucleic acid (ctNA)) in the prediction of CRT response in LARC. Selected imaging and liquid biomarker studies are presented and the current status of the most promising imaging (apparent diffusion co-efficient (ADC), Ktrans, SUVmax, metabolic tumor volume (MTV) and total lesion glycolysis (TLG) and liquid biomarkers (circulating tumor cells (CTCs), circulating tumor nucleic acid (ctNA)) is discussed. The potential applications of imaging and liquid biomarkers for treatment stratification and a pathway to clinical translation are presented. EXPERT OPINION Functional imaging and liquid biomarkers provide novel ways of predicting CRT response. The clinical and technical validation of the most promising imaging and liquid biopsy biomarkers in multi-centre studies with harmonised acquisition techniques is required. This will enable clinical trials to investigate treatment escalation or de-escalation pathways in rectal cancer.
Collapse
Affiliation(s)
- Trang Thanh Pham
- South West Sydney Clinical School, Faculty of Medicine and Health, University of New South Wales, Liverpool NSW Australia 2170.,Department of Radiation Oncology, Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool NSW Australia 2170.,Ingham Institute for Applied Medical Research, Liverpool NSW Australia 2170
| | - Stephanie Lim
- Ingham Institute for Applied Medical Research, Liverpool NSW Australia 2170.,Department of Medical Oncology, Macarthur Cancer Therapy Centre, Campbelltown Hospital, Campbelltown Australia 2560.,School of Medicine, Western Sydney University, Campbelltown, Sydney 2560
| | - Michael Lin
- South West Sydney Clinical School, Faculty of Medicine and Health, University of New South Wales, Liverpool NSW Australia 2170.,School of Medicine, Western Sydney University, Campbelltown, Sydney 2560.,Department of Nuclear Medicine, Liverpool Hospital, Liverpool NSW Australia 2170
| |
Collapse
|
7
|
Huang CM, Tsai HL, Chen YC, Huang CW, Li CC, Su WC, Chang TK, Yeh YS, Chen PJ, Huang MY, Wang JY. Role of non-coding RNAs in radiosensitivity of colorectal cancer: A narrative review. Front Oncol 2022; 12:889658. [PMID: 35936676 PMCID: PMC9354854 DOI: 10.3389/fonc.2022.889658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a global public health concern because of its high prevalence and mortality. Although radiotherapy is a key method for treating CRC, radioresistance is an obstacle to radiotherapy use. The molecular mechanisms underlying the radioresistance of CRC remain unclear. Increasing evidence has revealed the multiple regulatory functions of non-coding RNAs (ncRNAs) in numerous malignancies, including CRC. Several ncRNAs have been reported to be involved in the determination of radiosensitivity of CRC cells, and some have excellent potential to be prognostic biomarkers or therapeutic targets in CRC treatment. The present review discusses the biological functions and underlying mechanisms of ncRNAs (primarily lncRNA, miRNA, and circRNA) in the regulation of the radiosensitivity of CRC. We also evaluate studies that examined ncRNAs as biomarkers of response to radiation and as therapeutic targets for enhancing radiosensitivity.
Collapse
Affiliation(s)
- Chun-Ming Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Wen Huang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Chun Li
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wei-Chih Su
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Kun Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yung-Sung Yeh
- Division of Trauma and Surgical Critical Care, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Emergency Medicine, Faculty of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Po-Jung Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Radiation Oncology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung, Taiwan
- *Correspondence: Jaw-Yuan Wang, ;
| |
Collapse
|
8
|
Li J, Sun J, Liu Z, Zeng Z, Ouyang S, Zhang Z, Ma M, Kang W. The Roles of Non-Coding RNAs in Radiotherapy of Gastrointestinal Carcinoma. Front Cell Dev Biol 2022; 10:862563. [PMID: 35517505 PMCID: PMC9065280 DOI: 10.3389/fcell.2022.862563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022] Open
Abstract
Radiotherapy (RT), or radiation therapy, has been widely used in clinical practice for the treatment of local advanced gastrointestinal carcinoma. RT causes DNA double-strand breaks leading to cell cytotoxicity and indirectly damages tumor cells by activating downstream genes. Non-coding RNA (including microRNAs, long non-coding RNAs (ncRNAs), and circular RNAs) is a type of RNA that does not encode a protein. As the field of ncRNAs increasingly expands, new complex roles have gradually emerged for ncRNAs in RT. It has been shown that ncRNAs can act as radiosensitivity regulators in gastrointestinal carcinoma by affecting DNA damage repair, cell cycle arrest, irradiation-induced apoptosis, cell autophagy, stemness, EMT, and cell pyroptosis. Here, we review the complex roles of ncRNAs in RT and gastrointestinal carcinoma. We also discuss the potential clinical significance and predictive value of ncRNAs in response to RT for guiding the individualized treatment of patients. This review can serve as a guide for the application of ncRNAs as radiosensitivity enhancers, radioresistance inducers, and predictors of response in RT of gastrointestinal carcinoma.
Collapse
|
9
|
Lang CCJ, Lloyd M, Alyacoubi S, Rahman S, Pickering O, Underwood T, Breininger SP. The Use of miRNAs in Predicting Response to Neoadjuvant Therapy in Oesophageal Cancer. Cancers (Basel) 2022; 14:1171. [PMID: 35267476 PMCID: PMC8909542 DOI: 10.3390/cancers14051171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
Oesophageal cancer (OC) is the ninth most common cancer worldwide. Patients receive neoadjuvant therapy (NAT) as standard of care, but less than 20% of patients with oesophageal adenocarcinoma (OAC) or a third of oesophageal squamous cell carcinoma (OSCC) patients, obtain a clinically meaningful response. Developing a method of determining a patient's response to NAT before treatment will allow rational treatment decisions to be made, thus improving patient outcome and quality of life. (1) Background: To determine the use and accuracy of microRNAs as biomarkers of response to NAT in patients with OAC or OSCC. (2) Methods: MEDLINE, EMBASE, Web of Science and the Cochrane library were searched to identify studies investigating microRNAs in treatment naïve biopsies to predict response to NAT in OC patients. (3) Results: A panel of 20 microRNAs were identified as predictors of good or poor response to NAT, from 15 studies. Specifically, miR-99b, miR-451 and miR-505 showed the strongest ability to predict response in OAC patients along with miR-193b in OSCC patients. (4) Conclusions: MicroRNAs are valuable biomarkers of response to NAT in OC. Research is needed to understand the effects different types of chemotherapy and chemoradiotherapy have on the predictive value of microRNAs; studies also require greater standardization in how response is defined.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stella P. Breininger
- Cancer Research UK Center, Faculty of Medicine, School of Cancer Science, University of Southampton, Southampton General Hospital, Southampton SO16 6YD, UK; (C.C.J.L.); (M.L.); (S.A.); (S.R.); (O.P.); (T.U.)
| |
Collapse
|
10
|
Kokaine L, Gardovskis A, Gardovskis J. Evaluation and Predictive Factors of Complete Response in Rectal Cancer after Neoadjuvant Chemoradiation Therapy. ACTA ACUST UNITED AC 2021; 57:medicina57101044. [PMID: 34684080 PMCID: PMC8537499 DOI: 10.3390/medicina57101044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 12/18/2022]
Abstract
The response to neoadjuvant chemoradiation therapy is an important prognostic factor for locally advanced rectal cancer. Although the majority of the patients after neoadjuvant therapy are referred to following surgery, the clinical data show that complete clinical or pathological response is found in a significant proportion of the patients. Diagnostic accuracy of confirming the complete response has a crucial role in further management of a rectal cancer patient. As the rate of clinical complete response, unfortunately, is not always consistent with pathological complete response, accurate diagnostic parameters and predictive markers of tumor response may help to guide more personalized treatment strategies and identify potential candidates for nonoperative management more safely. The management of complete response demands interdisciplinary collaboration including oncologists, radiotherapists, radiologists, pathologists, endoscopists and surgeons, because the absence of a multidisciplinary approach may compromise the oncological outcome. Prediction and improvement of rectal cancer response to neoadjuvant therapy is still an active and challenging field of further research. This literature review is summarizing the main, currently known clinical information about the complete response that could be useful in case if encountering such condition in rectal cancer patients after neoadjuvant chemoradiation therapy, using as a source PubMed publications from 2010–2021 matching the search terms “rectal cancer”, “neoadjuvant therapy” and “response”.
Collapse
Affiliation(s)
- Linda Kokaine
- Department of Surgery, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; or
- Pauls Stradins Clinical University Hospital, Pilsoņu Street 13, LV-1002 Riga, Latvia
- Correspondence: (L.K.); (J.G.); Tel.: +371-2635-9472 (L.K.)
| | - Andris Gardovskis
- Department of Surgery, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; or
- Pauls Stradins Clinical University Hospital, Pilsoņu Street 13, LV-1002 Riga, Latvia
| | - Jānis Gardovskis
- Department of Surgery, Riga Stradins University, Dzirciema Street 16, LV-1007 Riga, Latvia; or
- Pauls Stradins Clinical University Hospital, Pilsoņu Street 13, LV-1002 Riga, Latvia
- Correspondence: (L.K.); (J.G.); Tel.: +371-2635-9472 (L.K.)
| |
Collapse
|
11
|
Wu F, Wu B, Zhang X, Yang C, Zhou C, Ren S, Wang J, Yang Y, Wang G. Screening of MicroRNA Related to Irradiation Response and the Regulation Mechanism of miRNA-96-5p in Rectal Cancer Cells. Front Oncol 2021; 11:699475. [PMID: 34458143 PMCID: PMC8386172 DOI: 10.3389/fonc.2021.699475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
Neoadjuvant chemoradiotherapy has been widely used in the treatment of locally advanced rectal cancer due to the excellent advantages of irradiation in cancer therapy. Unfortunately, not every patient can benefit from this treatment, therefore, it is of great significance to explore biomarkers that can predict irradiation sensitivity. In this study, we screened microRNAs (miRNAs) which were positively correlated with irradiation resistance and found that miRNA-552 and miRNA-183 families were positively correlated with the irradiation resistance of rectal cancer, and found that high expression of miRNA-96-5p enhanced the irradiation resistance of rectal cancer cells through direct regulation of the GPC3 gene and abnormal activation of the canonical Wnt signal transduction pathway. Based on the radioreactivity results of patient-derived xenograft models, this is the first screening report for radio-resistant biomarkers in rectal cancer. Our results suggest that miRNA-96-5p expression is an important factor affecting the radiation response of colorectal cancer cells.
Collapse
Affiliation(s)
- Fengpeng Wu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bingyue Wu
- Department of Oncology, Hebei Provincial People's Hospital, Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Xiaoxiao Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Congrong Yang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaoxi Zhou
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuguang Ren
- Laboratory Animal Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yafan Yang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guiying Wang
- Department of General Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, China.,Department of General Surgery, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
12
|
Machackova T, Trachtova K, Prochazka V, Grolich T, Farkasova M, Fiala L, Sefr R, Kiss I, Skrovina M, Dosoudil M, Berindan-Neagoe I, Svoboda M, Slaby O, Kala Z. Tumor microRNAs Identified by Small RNA Sequencing as Potential Response Predictors in Locally Advanced Rectal Cancer Patients Treated With Neoadjuvant Chemoradiotherapy. Cancer Genomics Proteomics 2020; 17:249-257. [PMID: 32345666 DOI: 10.21873/cgp.20185] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIM Rectal cancer accounts for approximately one-third of all colorectal cancers. Currently, the standard treatment for locally advanced rectal cancer (LARC) is neoadjuvant chemoradiotherapy (CRT) with capecitabine or 5-fluorouracil followed by curative surgery. Unfortunately, only 20% of patients with LARC present complete pathological response after CRT, whereas in 20-40% cases the response is poor or absent. The aim of our study was to evaluate whether microRNAs (miRNAs) in tumor biopsy specimen have the potential to predict therapeutic response in LARC patients. PATIENTS AND METHODS In total 87 LARC patients treated by CRT were enrolled in our prospective study. To identify predictive miRNAs, we used small RNA sequencing in 40 tumor biopsy samples of LARC patients (20 responders, 20 non-responders) and qPCR validation of selected miRNA candidates. RESULTS In the discovery phase of the study, we identified 69 miRNAs to have significantly different expression between the group of responders (TRG 1,2) and a group of non-responders (TRG 4,5) to neoadjuvant CRT. Among these miRNAs, 48 showed a lower expression and 21 showed higher expression in tumor tissues from poorly responding LARC patients. Five miRNAs were selected for validation, but only miR-487a-3p was confirmed to have a significantly higher expression in the tumor biopsy specimens of non-responders to neoadjuvant CRT (p<0.0006, AUC=0.766). Gene Ontology (GO) clustering and pathway enrichment analysis of the miR-487a-3p mRNA targets, revealed potential mechanisms behind miR-487a-3p roles in chemoradioresistance (e.g. TGF-beta signaling pathway, protein kinase activity, double-stranded DNA binding, or microRNAs in cancer). CONCLUSION By combination of miRNA expression profiling and integrative computational biology we identified miR-487a-3p as a potential predictive biomarker of CRT response in LARC patients.
Collapse
Affiliation(s)
- Tana Machackova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karolina Trachtova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Vladimir Prochazka
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomas Grolich
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martina Farkasova
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lukas Fiala
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Roman Sefr
- Department of Surgical Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Matej Skrovina
- Department of Surgery, Hospital & Oncological Centre Novy Jicin, Novy Jicin, Czech Republic.,Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, Olomouc, Czech Republic
| | - Michal Dosoudil
- Department of Surgery, Hospital & Oncological Centre Novy Jicin, Novy Jicin, Czech Republic
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, Cluj-Napoca, Romania
| | - Marek Svoboda
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic .,Department of Pathology, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Zdenek Kala
- Department of Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
13
|
Ourô S, Mourato C, Velho S, Cardador A, Ferreira MP, Albergaria D, Castro RE, Maio R, Rodrigues CMP. Potential of miR-21 to Predict Incomplete Response to Chemoradiotherapy in Rectal Adenocarcinoma. Front Oncol 2020; 10:577653. [PMID: 33194696 PMCID: PMC7653406 DOI: 10.3389/fonc.2020.577653] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Patients with locally advanced rectal adenocarcinoma (LARC) are treated with neoadjuvant chemoradiotherapy (CRT). However, biomarkers for patient selection are lacking, and the association between miRNA expression and treatment response and oncological outcomes is unclear. Objectives: To investigate miRNAs as predictors of response to neoadjuvant CRT and its association with oncological outcomes. Methods: This retrospective study analyzed miRNA expression (miR-16, miR-21, miR-135b, miR-145, and miR-335) in pre- and post-chemoradiation rectal adenocarcinoma tissue and non-neoplastic mucosa in 91 patients treated with neoadjuvant CRT (50.4 Gy) and proctectomy. Two groups were defined: a pathological complete responders group (tumor regression grade—TRG 0) and a pathological incomplete responders group (TRG 1, 2, and 3). Results: miR-21 and miR-135b were upregulated in tumor tissue of incomplete responders comparing with non-neoplastic tissue (p = 0.008 and p < 0.0001, respectively). Multivariate analysis showed significant association between miR-21 in pre-CRT tumor tissue and response, with a 3.67 odds ratio (OR) of incomplete response in patients with higher miR-21 levels (p = 0.04). Although with no significance, patients treated with 5-fluorouracil (5-FU) presented reduced odds of incomplete response compared with those treated with capecitabine (OR = 0.19; 95% confidence interval (CI) 0.03–1.12, p = 0.05). Moreover, significant differences were seen in overall survival (OS) in relation to clinical TNM stage (p = 0.0004), cT (p = 0.0001), presence of distant disease (p = 0.002), mesorectal tumor deposits (p = 0.003), and tumor regression grade (p = 0.04). Conclusion: miR-21 may predict response to CRT in rectal cancer (RC).
Collapse
Affiliation(s)
- Susana Ourô
- Surgical Department, Hospital Beatriz Ângelo, Loures, Portugal.,NOVA Medical School, Lisbon, Portugal
| | - Cláudia Mourato
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sónia Velho
- Surgical Department, Hospital Beatriz Ângelo, Loures, Portugal
| | - André Cardador
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | | | | | - Rui E Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui Maio
- Surgical Department, Hospital Beatriz Ângelo, Loures, Portugal.,NOVA Medical School, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
14
|
De Palma FDE, Luglio G, Tropeano FP, Pagano G, D’Armiento M, Kroemer G, Maiuri MC, De Palma GD. The Role of Micro-RNAs and Circulating Tumor Markers as Predictors of Response to Neoadjuvant Therapy in Locally Advanced Rectal Cancer. Int J Mol Sci 2020; 21:E7040. [PMID: 32987896 PMCID: PMC7582560 DOI: 10.3390/ijms21197040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
The response to neoadjuvant chemoradiation (nCRT) is a critical step in the management of locally advanced rectal cancer (LARC) patients. Only a minority of LARC patients responds completely to neoadjuvant treatments, thus avoiding invasive radical surgical resection. Moreover, toxic side effects can adversely affect patients' survival. The difficulty in separating in advances responder from non-responder patients affected by LARC highlights the need for valid biomarkers that guide clinical decision-making. In this context, microRNAs (miRNAs) seem to be promising candidates for predicting LARC prognosis and/or therapy response, particularly due to their stability, facile detection, and disease-specific expression in human tissues, blood, serum, or urine. Although a considerable number of studies involving potential miRNA predictors to nCRT have been conducted over the years, to date, the identification of the perfect miRNA signatures or single miRNA, as well as their use in the clinical practice, is still representing a challenge for the management of LARC patients. In this review, we will first introduce LARC and its difficult management. Then, we will trace the scientific history and the key obstacles for the identification of specific miRNAs that predict responsiveness to nCRT. There is a high potential to identify non-invasive biomarkers that circulate in the human bloodstream and that might indicate the LARC patients who benefit from the watch-and-wait approach. For this, we will critically evaluate recent advances dealing with cell-free nucleic acids including miRNAs and circulating tumor cells as prognostic or predictive biomarkers.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75005 Paris, France; (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94800 Villejuif, France
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Gaetano Luglio
- Department of Public Health, University of Naples “Federico II”, 80138 Naples, Italy; (G.L.); (M.D.)
| | - Francesca Paola Tropeano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (F.P.T.); (G.P.)
| | - Gianluca Pagano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (F.P.T.); (G.P.)
| | - Maria D’Armiento
- Department of Public Health, University of Naples “Federico II”, 80138 Naples, Italy; (G.L.); (M.D.)
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75005 Paris, France; (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94800 Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 100864, China
- Department of Women’s and Children’s Health, Karolinska Institutet, 171 77 Stockholm, Sweden
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75005 Paris, France; (G.K.); (M.C.M.)
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94800 Villejuif, France
| | - Giovanni Domenico De Palma
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy; (F.P.T.); (G.P.)
- Centro Interuniversitario di Studi per l’Innovazione Tecnologica in Chirurgia, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
15
|
Izzotti A, Ceccaroli C, Geretto M, Ruggieri FG, Schenone S, Di Maria E. Predicting Response to Neoadjuvant Therapy in Colorectal Cancer Patients the Role of Messenger-and Micro-RNA Profiling. Cancers (Basel) 2020; 12:cancers12061652. [PMID: 32580435 PMCID: PMC7352797 DOI: 10.3390/cancers12061652] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer patients' responses to neoadjuvant therapy undergo broad inter-individual variations. The aim of this systematic review is to identify a molecular signature that is predictive of colon cancer downstaging and/or downgrading after neoadjuvant therapy. Among the hundreds analysed in the available studies, only 19 messenger-RNAs (mRNAs) and six micro-RNAs (miRNAs) were differentially expressed in responders versus non-responders in two or more independent studies. Therefore, a mRNA/miRNA signature can be designed accordingly, with limitations caused by the retrospective nature of these studies, the heterogeneity in study designs and the downgrading/downstaging assessment criteria. This signature can be proposed to tailor neoadjuvant therapy regimens on an individual basis.
Collapse
Affiliation(s)
- Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
- Correspondence: ; Tel.: +39-010-353-8522
| | | | - Marta Geretto
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy;
| | | | - Sara Schenone
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
| | - Emilio Di Maria
- Department of Health Sciences, University of Genova, 16132 Genova, Italy; (S.S.); (E.D.M.)
- Unit of Medical Genetics, Galliera Hospital, 16128 Genoa, Italy
| |
Collapse
|
16
|
Yang Y, Meng WJ, Wang ZQ. MicroRNAs in Colon and Rectal Cancer - Novel Biomarkers from Diagnosis to Therapy. Endocr Metab Immune Disord Drug Targets 2020; 20:1211-1226. [PMID: 32370729 DOI: 10.2174/1871530320666200506075219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 02/05/2023]
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a significant cause of tumor- related deaths worldwide. Traditional biomarkers, such as CEA and CA199, are not sensitive enough to provide useful information for early diagnosis and treatment and are rather used to track the clinical progression of the disease. There is growing evidence that microRNAs (miRNA) are potentially superior to traditional biomarkers as promising non-invasive biomarkers for the timely diagnosis and prediction of prognosis or treatment response in the management of CRC. In this review, the latest studies on the dysregulation of miRNAs expression in CRC and the potential for miRNAs to serve as biomarkers were collected. Given the limitations of miRNA, as discussed in this paper, its clinical applications as a diagnostic biomarker should be limited to use in combination with other biomarkers. Further research is necessary to elucidate the clinical applications of miRNA in therapy for CRC.
Collapse
Affiliation(s)
- Ying Yang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wen-Jian Meng
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zi-Qiang Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Farace C, Pisano A, Griñan-Lison C, Solinas G, Jiménez G, Serra M, Carrillo E, Scognamillo F, Attene F, Montella A, Marchal JA, Madeddu R. Deregulation of cancer-stem-cell-associated miRNAs in tissues and sera of colorectal cancer patients. Oncotarget 2020; 11:116-130. [PMID: 32010426 PMCID: PMC6968784 DOI: 10.18632/oncotarget.27411] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/16/2019] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is a deadly tumour in Western countries characterized by high cellular/molecular heterogeneity. Cancer stem cells (CSC) act in cancer recurrence, drug-resistance and in metastatic epithelial-to-mesenchymal transition. microRNAs (miRNAs) contribute to cancer is increasing, and miRNA roles in CSC phenotype and fate and their utility as CRC biomarkers have also been reported. Here, we investigated miR-21, miR-221, miR-18a, miR-210, miR-31, miR-34a, miR-10b and miR-16 expression in experimental ALDH+ and CD44+/CD326+ colorectal CSCs obtained from the human CRC cell lines HCT-116, HT-29 and T-84. Then, we moved our analysis in cancer tissue (CT), healthy tissue (HT) and serum (S) of adult CRC patients (n=12), determining relationships with clinical parameters (age, sex, metastasis, biochemical serum markers). Specific miRNA patterns were evident in vitro (normal, monolayers and CSCs) and in patients’ samples stratified by TNM stage (LOW vs HIGH) or metastasis (Met vs no-Met). miR-21, miR-210, miR-34a upregulation ad miR-16 dowregulation associated with the CSCs phenotype. miR-31b robustly overexpressed in monolayers and CSCs, and in CT ad S of HIGH grade and Met patients, suggesting a role as marker of CRC progression and metastasis. miR-18a upregulated in all cancer models and associated to CSC phenotype, and to metastasis and age in patients. miR-10b downregulated in CT and S of LOW/HIGH grade and no-Met patients. Our results identify miRNAs useful as colorectal CSC biomarker and that miR-21, miR-210, miR-10b and miR-31b are promising markers of CRC. A specific role of miR-18a as metastatic CRC serum biomarker in adult patients was also highlighted.
Collapse
Affiliation(s)
- Cristiano Farace
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| | - Andrea Pisano
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Carmen Griñan-Lison
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain
| | - Giuliana Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain.,Bio-Health Research Foundation of Eastern Andalusia - Alejandro Otero (FIBAO), Granada, Spain
| | - Marina Serra
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Esmeralda Carrillo
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | | | - Federico Attene
- O.U. of Surgery I (Surgical Pathology), A.O.U. Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria (ibs.Granada), Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,National Institute of Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
18
|
System biological and experimental validation of miRNAs target genes involved in colorectal cancer radiation response. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
19
|
Baek DW, Kim G, Kang BW, Kim HJ, Park SY, Park JS, Choi GS, Kang MK, Hur K, Kim JG. High expression of microRNA-199a-5p is associated with superior clinical outcomes in patients with locally advanced rectal cancer. J Cancer Res Clin Oncol 2019; 146:105-115. [PMID: 31781865 DOI: 10.1007/s00432-019-03099-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
PURPOSE We aimed to identify biomarkers of response to preoperative CRT in patients with LARC using comprehensive miRNA analysis. METHODS This study included 65 rectal cancer specimens and 89 serum samples from patients diagnosed with LARC and treated with preoperative. All specimens were collected before CRT for evaluation of biologic differences between the good and poor CRT response groups (ypStage 0/I versus II/III/IV). For specific miRNA discovery, 800 miRNAs in 20 rectal cancer specimens were analyzed with a NanoString assay. For validation, a total of 65 tissue and 89 serum samples were tested with reverse transcription-polymerase chain reaction (RT-PCR). RESULTS In the discovery set, 16 target miRNAs were detected. In the validation set, higher expression of three miRNAs (miR-199a/b-3p, miR-199a-5p, and miR-199b-5p) was significantly associated with better response to CRT. In the univariate survival analysis, upregulation of these three miRNAs was associated with superior relapse-free survival (RFS) and overall survival (OS). Meanwhile, only a higher level of tissue miR-199a-5p was associated with superior RFS [hazard ratio (HR), 0.0.91; 95% confidence interval (CI) 0.035-0.580; p = 0.002] and OS (HR, 0.272; 95% CI 0.023-0.658; p < 0.001) in the multivariate survival analysis. Also, a higher level of exosomal miR-199b-5p correlated with better response to CRT (p = 0.0397). CONCLUSION High expression of tissue miR-199a/b-3p, miR-199a-5p, and miR-199b-5p was significantly associated with response to CRT, and a high level of tissue miR-199a-5p was associated with superior survival outcomes. Also, upregulated exosomal miR-199b-5p correlated with CRT response, reflecting its promise as a circulating biomarker of CRT response in patients with LARC.
Collapse
Affiliation(s)
- Dong Won Baek
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, 807 Hogukno, Buk-gu, Daegu, 41404, Republic of Korea
| | - Gyeonghwa Kim
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea
| | - Byung Woog Kang
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, 807 Hogukno, Buk-gu, Daegu, 41404, Republic of Korea
| | - Hye Jin Kim
- Department of Surgery, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Su Yeon Park
- Department of Surgery, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Jun Seok Park
- Department of Surgery, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Gyu-Seog Choi
- Department of Surgery, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Min Kyu Kang
- Department of Radiation Oncology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu, 41944, Republic of Korea.
| | - Jong Gwang Kim
- Department of Oncology/Hematology, Kyungpook National University Chilgok Hospital, School of Medicine, Kyungpook National University Cancer Research Institute, Kyungpook National University, 807 Hogukno, Buk-gu, Daegu, 41404, Republic of Korea.
| |
Collapse
|
20
|
Machackova T, Prochazka V, Kala Z, Slaby O. Translational Potential of MicroRNAs for Preoperative Staging and Prediction of Chemoradiotherapy Response in Rectal Cancer. Cancers (Basel) 2019; 11:cancers11101545. [PMID: 31614848 PMCID: PMC6827048 DOI: 10.3390/cancers11101545] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/04/2019] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer is the third most common cancer and the second cause of cancer-related deaths. Rectal cancer presents roughly one-third of all colorectal cancer cases and differs from it on both anatomical and molecular levels. While standard treatment of colon cancer patients is radical surgery, rectal cancer is usually treated with pre-operative chemoradiotherapy followed by total mesorectal excision, which requires precise estimation of TNM staging. Unfortunately, stage evaluation is based solely on imaging modalities, and they often do not correlate with postoperative pathological findings. Moreover, approximately half of rectal cancer patients do not respond to such pre-operative therapy, so they are exposed to its toxic effects without any clinical benefit. Thus, biomarkers that could precisely predict pre-operative TNM staging, and especially response to therapy, would significantly advance rectal cancer treatment—but till now, no such biomarker has been identified. In cancer research, microRNAs are emerging biomarkers due to their connection with carcinogenesis and exceptional stability. Circulating miRNAs are promising non-invasive biomarkers that could allow monitoring of a patient throughout the whole therapeutic process. This mini-review aims to summarize the current knowledge on miRNAs and circulating miRNAs involved in the prediction of response to treatment and pre-operative staging in rectal cancer patients.
Collapse
Affiliation(s)
- Tana Machackova
- Department of Molecular Medicine, European Institute of Technology, 625 00 Brno, Czech Republic.
| | - Vladimir Prochazka
- Department of Surgery, University Hospital Brno, 625 00 Brno, Czech Republic.
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno, 625 00 Brno, Czech Republic.
| | - Ondrej Slaby
- Department of Molecular Medicine, European Institute of Technology, 625 00 Brno, Czech Republic.
| |
Collapse
|
21
|
Wang Y, Mu L, Huang M. MicroRNA‑195 suppresses rectal cancer growth and metastasis via regulation of the PI3K/AKT signaling pathway. Mol Med Rep 2019; 20:4449-4458. [PMID: 31702045 PMCID: PMC6797947 DOI: 10.3892/mmr.2019.10717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/15/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) play a vital role in the progression of cancer, however, only limited data on miRNAs in rectal cancer are available. The aim of the present study was to investigate whether miR-195 could inhibit the progression of rectal cancer. The miR-195 mimic was transfected into 2 types of human rectal cancer cells (SW837 and SW1463). Cell viability and apoptosis were analyzed by Cell Counting Kit-8 (CCK-8) assay and flow cytometry, and cell migration and invasion were assessed by scratch test and Transwell assay. The results revealed that insulin-like growth factor 1 (IGF1) was predicted as a potential target of miR-195 by Targetscan7.2, and the result was verified by dual-luciferase reporter assay. The co-transfection of IGF1 was performed to confirm the underlying mechanism of tumor suppressor of miR-195 in rectal cancer. The activation of PI3K/AKT signaling was determined by western blotting. The levels of miR-195 in SW837 and SW1463 cells were revealed to be lower than in human rectal mucosa epithelial cells. After the transfection with miR-195, the cell viability was decreased, while the apoptosis was significantly increased (SW837: 5.21% vs. 20.96%; SW1463: 4.19% vs. 25.22%). Moreover, cell migration and invasion were significantly inhibited in the mimic group. miR-195 specifically targeted IGF1, however, the co-transfection of IGF1 could partially reverse the inhibitory effects of miR-195 on rectal cancer cells. It was also determined that the phosphorylation of PI3K and AKT were significantly inhibited in the mimic group. The tumor suppressive ability of miR-195 in rectal cancer cell proliferation and metastasis was mediated by blocking IGF1 expression and inhibiting the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yeli Wang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Linsong Mu
- Department of General Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Miaoling Huang
- Department of Anorectal, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| |
Collapse
|
22
|
Barchitta M, Maugeri A, Li Destri G, Basile G, Agodi A. Epigenetic Biomarkers in Colorectal Cancer Patients Receiving Adjuvant or Neoadjuvant Therapy: A Systematic Review of Epidemiological Studies. Int J Mol Sci 2019; 20:ijms20153842. [PMID: 31390840 PMCID: PMC6696286 DOI: 10.3390/ijms20153842] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) represents the third-most common cancer worldwide and one of the main challenges for public health. Despite great strides in the application of neoadjuvant and adjuvant therapies for rectal and colon cancer patients, each of these treatments is still associated with certain adverse effects and different response rates. Thus, there is an urgent need for identifying novel potential biomarkers that might guide personalized treatments for specific subgroups of patients. However, until now, there are no biomarkers to predict the manifestation of adverse effects and the response to treatment in CRC patients. Herein, we provide a systematic review of epidemiological studies investigating epigenetic biomarkers in CRC patients receiving neoadjuvant or adjuvant therapy, and their potential role for the prediction of outcomes and response to treatment. With this aim in mind, we identified several epigenetic markers in CRC patients who received surgery with adjuvant or neoadjuvant therapy. However, none of them currently has the robustness to be translated into the clinical setting. Thus, more efforts and further large-size prospective studies and/or trials should be encouraged to develop epigenetic biomarker panels for personalized prevention and medicine in CRC cancer.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Giovanni Li Destri
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy
| | - Guido Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, via S. Sofia, 78, 95123 Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, via S. Sofia, 87, 95123 Catania, Italy.
| |
Collapse
|
23
|
Manzanarez-Ozuna E, Flores DL, Gutiérrez-López E, Cervantes D, Juárez P. Model based on GA and DNN for prediction of mRNA-Smad7 expression regulated by miRNAs in breast cancer. Theor Biol Med Model 2018; 15:24. [PMID: 30594253 PMCID: PMC6310970 DOI: 10.1186/s12976-018-0095-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023] Open
Abstract
Background The Smad7 protein is negative regulator of the TGF-β signaling pathway, which is upregulated in patients with breast cancer. miRNAs regulate proteins expressions by arresting or degrading the mRNAs. The purpose of this work is to identify a miRNAs profile that regulates the expression of the mRNA coding for Smad7 in breast cancer using the data from patients with breast cancer obtained from the Cancer Genome Atlas Project. Methods We develop an automatic search method based on genetic algorithms to find a predictive model based on deep neural networks (DNN) which fit the set of biological data and apply the Olden algorithm to identify the relative importance of each miRNAs. Results A computational model of non-linear regression is shown, based on deep neural networks that predict the regulation given by the miRNA target transcripts mRNA coding for Smad7 protein in patients with breast cancer, with R2 of 0.99 is shown and MSE of 0.00001. In addition, the model is validated with the results in vivo and in vitro experiments reported in the literature. The set of miRNAs hsa-mir-146a, hsa-mir-93, hsa-mir-375, hsa-mir-205, hsa-mir-15a, hsa-mir-21, hsa-mir-20a, hsa-mir-503, hsa-mir-29c, hsa-mir-497, hsa-mir-107, hsa-mir-125a, hsa-mir-200c, hsa-mir-212, hsa-mir-429, hsa-mir-34a, hsa-let-7c, hsa-mir-92b, hsa-mir-33a, hsa-mir-15b, hsa-mir-224, hsa-mir-185 and hsa-mir-10b integrate a profile that critically regulates the expression of the mRNA coding for Smad7 in breast cancer. Conclusions We developed a genetic algorithm to select best features as DNN inputs (miRNAs). The genetic algorithm also builds the best DNN architecture by optimizing the parameters. Although the confirmation of the results by laboratory experiments has not occurred, the results allow suggesting that miRNAs profile could be used as biomarkers or targets in targeted therapies. Electronic supplementary material The online version of this article (10.1186/s12976-018-0095-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edgar Manzanarez-Ozuna
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Dora-Luz Flores
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico.
| | - Everardo Gutiérrez-López
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - David Cervantes
- Universidad Autónoma de Baja California, Carretera Transpeninsular Ensenada-Tijuana 3917 Colonia Playitas, C.P. 22860, Ensenada, B.C., Mexico
| | - Patricia Juárez
- Centro de Investigación Científica y de Educación Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Zona Playitas, C.P. 22860, Ensenada, B.C., Mexico
| |
Collapse
|
24
|
Campayo M, Navarro A, Benítez JC, Santasusagna S, Ferrer C, Monzó M, Cirera L. miR-21, miR-99b and miR-375 combination as predictive response signature for preoperative chemoradiotherapy in rectal cancer. PLoS One 2018; 13:e0206542. [PMID: 30388154 PMCID: PMC6214543 DOI: 10.1371/journal.pone.0206542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/29/2022] Open
Abstract
Introduction Preoperative chemoradiotherapy (CRT) is a standard treatment for locally advanced rectal cancer patients. Despite the benefits of CRT, its use in non-responder patients can be associated with increased toxicities and surgical resection delay. The identification of CRT response biomarkers, such as microRNAs, could improve the management of these patients. We have studied the microRNA expression in pretreatment endoscopy biopsies from rectal cancer patients treated with CRT to identify potential microRNAs able to predict CRT response and clinical outcome of these patients. Material and methods RNA from pretreatment endoscopy biopsies from 96 rectal cancer patients treated with preoperative CRT were studied. Pathological response was graded according to the tumor regression grade (TRG) Dworak classification. In the screening phase, 377 miRNAs were studied in 12 patients with extreme responses (TRG0-1 vs TRG4). The potential role as predictive biomarkers for CRT response, disease-free survival (DFS) and overall survival (OS) of the miRNAs identified in the screening phase were validated in the whole cohort. Results In the screening phase, an 8-miRNAs CRT-response signature was identified: let-7b, let-7e, miR-21, miR-99b, miR-183, miR-328, miR-375 and miR-483-5p. In the validation phase, miR-21, miR-99b and miR-375 emerged as CRT response-related miRNAs while miR-328 and let-7e emerged as prognostic markers for DFS and OS. Interestingly, ROC curve analysis showed that the combination of miR-21, miR-99b and miR-375 had the best capacity to distinguish patients with maximum response (TRG4) from others. Conclusions miR-21, miR-99b and miR-375 could add valuable information for individualizing treatment in locally advanced rectal cancer patients.
Collapse
Affiliation(s)
- Marc Campayo
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
- * E-mail:
| | - Alfons Navarro
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Jose Carlos Benítez
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Sandra Santasusagna
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Carme Ferrer
- Department of Pathology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| | - Mariano Monzó
- Molecular Oncology and Embryology Laboratory, Human Anatomy Unit, Faculty of Medicine and Health Sciences, University of Barcelona, IDIBAPS, Barcelona, Spain
| | - Luis Cirera
- Department of Medical Oncology, Hospital Universitari Mutua Terrassa, University of Barcelona, Terrassa, Barcelona, Spain
| |
Collapse
|
25
|
Chen M, Wu L, Tu J, Zhao Z, Fan X, Mao J, Weng Q, Wu X, Huang L, Xu M, Ji J. miR-590-5p suppresses hepatocellular carcinoma chemoresistance by targeting YAP1 expression. EBioMedicine 2018; 35:142-154. [PMID: 30111512 PMCID: PMC6154877 DOI: 10.1016/j.ebiom.2018.08.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022] Open
Abstract
Background Resistance to chemotherapeutic treatment is a common phenomenon in cancers, especially in hepatocellular carcinoma (HCC). The Hippo signaling pathway has been demonstrated to play a role in tumor initiation, development, and progression. However, little is known about its roles in the HCC chemoresistance. Methods In this study, real-time PCR and western blotting were used to identify the expression profile of key components of Hippo signaling pathway between chemoresistant and chemosensitive HCC cell lines. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and related mechanism of microRNA-590-5p/YAP1 axis in the chemoresistant phenotype of HCC cells. Findings We identified yes-associated protein 1 (YAP1) as the major dysregulated molecules in adriamycin (ADR)-resistant HCC cells. YAP1 was profoundly implicated in the chemoresistant phenotype of HCC cells. Furthermore, microRNA-590-5p was revealed as a functional modulator of YAP1. Importantly, YAP1-mediated chemoresistant phenotype was closely related to increased expression of stemness markers and ATP-binding cassette transporters. HCC patients with poor response to transarterial chemoembolization (TACE) treatment had higher protein level of YAP1 than that in the responsive patients. Interpretation The microRNA-590-5p/YAP axis plays an important role in the chemotherapeutic resistance of HCC cells, suggesting new adjuvant chemotherapeutic directions in HCC. Fund National Natural Science Foundation of China, Zhejiang Province Medical and Health Care Key Project, Experimental Animal Science and Technology Projects of Zhejiang Province, Public Welfare Technology Application Research Project of Lishui, Chinese Medicine Science and Technology Projects of Zhejiang Province.
Collapse
MESH Headings
- ATP-Binding Cassette Transporters/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Base Sequence
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Models, Biological
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Phenotype
- Phosphoproteins/metabolism
- Transcription Factors
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Liming Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; First Affiliated Hospital of Zhejiang University School of Medicine, 310000 Hangzhou, Zhejiang, PR China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Xiaoxi Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Jianting Mao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Xulu Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China
| | - Li Huang
- School of Materials Science and Engineering, Shanghai Key Laboratory of D&A for Metal-Functional Materials, Tongji University, Shanghai 201804, PR China.
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China.
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, the Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China; Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Affiliated Lishui Hospital of Zhejiang University, The Central Hospital of Zhejiang Lishui, 323000 Lishui, Zhejiang, PR China.
| |
Collapse
|
26
|
Du B, Wang X, Wu D, Wang T, Yang X, Wang J, Shi X, Chen L, Zhang W. MicroRNA expression profiles identify biomarkers for predicting the response to chemoradiotherapy in rectal cancer. Mol Med Rep 2018; 18:1909-1916. [PMID: 29956755 PMCID: PMC6072158 DOI: 10.3892/mmr.2018.9215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) following surgery significantly improves the survival rate of patients with rectal cancer. However, nCRT is associated with significant adverse symptoms and high medical costs. Therefore, it is important to investigate potential biomarkers for the prediction of the response to nCRT in patients with rectal cancer. The present study identified candidate biomarkers for predicting a complete response (CR) to nCRT in patients with rectal cancer and investigated the associated mechanisms. Microarray data (accession no. GSE29298) was downloaded from the Gene Expression Omnibus database. Differentially expressed microRNAs (miRNAs/miR) were screened between the pathological CR (pCR) group and no pCR (incomplete response) group. miRNA target genes were predicted using the miRWalk 2.0 online tool and subjected to Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. Furthermore, a miRNA co‑regulatory network was constructed and disease‑associated genes were predicted. The results demonstrated that a total of 36 upregulated and 5 downregulated miRNAs were identified between the two groups. Among these differentially expressed miRNAs, miR‑548c‑5p, miR‑548d‑5p and miR‑663a were significantly associated with a CR to nCRT. The co‑regulatory network and pathway analysis indicated that miR‑548c‑5p and miR‑548d‑5p may function together through stem cell pluripotency and ubiquitin‑mediated proteolysis signaling pathways. Furthermore, the prediction of disease‑associated genes demonstrated that miR‑548c‑5p/miR‑548d‑5p and miR‑663a may regulate genes associated with rectal cancer, including mutated in colorectal cancers (MCC) and adenomatous polyposis coli (APC), and colorectal neoplasms, including interleukin‑6 signal transducer (IL6ST), cell cycle checkpoint kinase 2 (CHEK2), marker of proliferation Ki‑67 (MKI67), cadherin 7 (CDH7), calreticulin (CALR) and transforming growth factor β1 (TGFB1). Therefore, miR‑548c‑5p, miR‑548d‑5p and miR‑663a are promising candidate biomarkers for predicting a CR to nCRT. miR‑548c‑5p/miR‑548d‑5p may be associated with a CR by regulating IL6ST, CHEK2, MKI67 and MCC. In addition, it may function through the pluripotency of stem cells and ubiquitin‑mediated proteolysis signaling pathways. miR‑663a may be associated with a CR to nCRT by targeting CDH7, CALR, APC and TGFβ1. Thus, the miRNA biomarkers investigated in the present study may represent novel therapeutic targets for the prediction and eventual improvement of the response to nCRT in patients with rectal cancer.
Collapse
Affiliation(s)
- Binbin Du
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiaoying Wang
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Dewang Wu
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Tao Wang
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xiongfei Yang
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Jiankai Wang
- Department of Radiotherapy, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Xinlong Shi
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Lingjuan Chen
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Weisheng Zhang
- Department of Anorectal Surgery, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
27
|
Chand M, Keller DS, Mirnezami R, Bullock M, Bhangu A, Moran B, Tekkis PP, Brown G, Mirnezami A, Berho M. Novel biomarkers for patient stratification in colorectal cancer: A review of definitions, emerging concepts, and data. World J Gastrointest Oncol 2018; 10:145-158. [PMID: 30079141 PMCID: PMC6068858 DOI: 10.4251/wjgo.v10.i7.145] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/22/2018] [Accepted: 06/08/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) treatment has become more personalised, incorporating a combination of the individual patient risk assessment, gene testing, and chemotherapy with surgery for optimal care. The improvement of staging with high-resolution imaging has allowed more selective treatments, optimising survival outcomes. The next step is to identify biomarkers that can inform clinicians of expected prognosis and offer the most beneficial treatment, while reducing unnecessary morbidity for the patient. The search for biomarkers in CRC has been of significant interest, with questions remaining on their impact and applicability. The study of biomarkers can be broadly divided into metabolic, molecular, microRNA, epithelial-to-mesenchymal-transition (EMT), and imaging classes. Although numerous molecules have claimed to impact prognosis and treatment, their clinical application has been limited. Furthermore, routine testing of prognostic markers with no demonstrable influence on response to treatment is a questionable practice, as it increases cost and can adversely affect expectations of treatment. In this review we focus on recent developments and emerging biomarkers with potential utility for clinical translation in CRC. We examine and critically appraise novel imaging and molecular-based approaches; evaluate the promising array of microRNAs, analyze metabolic profiles, and highlight key findings for biomarker potential in the EMT pathway.
Collapse
Affiliation(s)
- Manish Chand
- GENIE Centre, University College London, London W1W 7TS, United Kingdom
| | - Deborah S Keller
- Department of Surgery, Columbia University Medical Centre, New York, NY 10032, United States
| | - Reza Mirnezami
- Department of Surgery, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marc Bullock
- Department of Surgery, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Aneel Bhangu
- Department of Surgery, University of Birmingham, Birmingham B15 2QU, United Kingdom
| | - Brendan Moran
- Department of Colorectal Surgery, North Hampshire Hospital, Basingstoke RG24 7AL, United Kingdom
| | - Paris P Tekkis
- Department of Colorectal Surgery, Royal Marsden Hospital and Imperial College London, London SW3 6JJ, United Kingdom
| | - Gina Brown
- Department of Radiology, Royal Marsden Hospital and Imperial College London, London SW3 6JJ, United Kingdom
| | - Alexander Mirnezami
- Department of Surgical Oncology, University of Southampton and NIHR, Southampton SO17 1BJ, United Kingdom
| | - Mariana Berho
- Department of Pathology, Cleveland Clinic Florida, Weston, FL 33331, United States
| |
Collapse
|
28
|
MiR-185 enhances radiosensitivity of colorectal cancer cells by targeting IGF1R and IGF2. Biomed Pharmacother 2018; 106:763-769. [PMID: 29990869 DOI: 10.1016/j.biopha.2018.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/01/2018] [Accepted: 07/01/2018] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Radioresistance is a significant obstacle for effective treatment of colorectal cancer (CRC). Recent studies have indicated that miR-185 inhibits proliferation, survival, and invasion of CRC; however, the role of this miRNA in radioresistance of CRC has not been identified yet. The aim of this study is to investigate the role of miR-185 in radiosensitivity of CRC. METHODS After transfecting the cells with mimic miR-185, expressions of IGF1R and IGF2 were evaluated by real-time PCR and western blot. The radiation response of transfected cells was also examined by colony forming assay. Sub-G1 fraction analysis through flow cytometry and caspase 3 activity was used to evaluate apoptosis. RESULTS The results of real-time PCR and western blot indicated that IGF1R and IGF2 are downregulated in the transfected cells. Colony forming assay revealed that transfected cells were more radiosensitive than other cells. On the other hand,following irradiation the rate of apoptosis was significantly higher in the transfected cells than in the other cells. CONCLUSION In summary, our study is the first to show that upregulation of miR-185 enhances the sensitivity of CRC cells to ionizing radiation. miR-185 may act as a novel biomarker of radioresistance and may clinically enhance the radiation response of CRC.
Collapse
|
29
|
Pettit C, Webb A, Walston S, Chatterjee M, Chen W, Frankel W, Croce C, Williams TM. MicroRNA molecular profiling identifies potential signaling pathways conferring resistance to chemoradiation in locally-advanced rectal adenocarcinoma. Oncotarget 2018; 9:28951-28964. [PMID: 29988972 PMCID: PMC6034754 DOI: 10.18632/oncotarget.25652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Purpose There has been growing interest in using chemoradiation (CRT) for non-operative management of rectal cancer, and identifying patients who might benefit most from this approach is crucial. This study identified miRNAs (miRs) associated with clinical outcomes and treatment resistance by evaluating both pre- and post-CRT expression profiles. Methods Forty patients, 9 with pathologic complete response (pCR) and 31 with pathologic incomplete response (pIR) were included. MicroRNA was extracted from 40 pre-therapy tumor samples and 31 post-chemoradiation surgical samples with pathologic incomplete response (pIR). A generalized linear model was used to identify miRs associated with pCR. A linear mixed effects model was used to identify miRs differentially expressed before and after treatment. miR expression was dichotomized at the mean and clinical outcomes were evaluated using Cox proportional hazard modeling. Results Nine miRs were associated with pCR (p<0.05), but none were significant after false discovery rate correction. Among patients with pIR, 68 miRs were differentially expressed between the pre and post-CRT groups (FDR p<0.05). Ingenuity pathway analysis (IPA) demonstrated multiple signaling networks associated with pIR, including p38MAPK, TP53, AKT, IL-6, and RAS. Increased let-7b was correlated with increased distant metastasis (DM), worse relapse-free survival (RFS), and worse overall survival (OS) (p<0.05). Conclusions No miRs were significantly correlated with pCR. We identified miRs that were differentially expressed between pre- and post-CRT tumor samples, and these miRs implicated multiple signaling pathways that may confer resistance to CRT. In addition, we identified an association between increased let-7b and worse clinical outcomes (DM, DFS, OS).
Collapse
Affiliation(s)
- Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Steve Walston
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Moumita Chatterjee
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wei Chen
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Wendy Frankel
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Carlo Croce
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
30
|
Luo J, Liu L, Zhou N, Shen J, Sun Q, Zhu Y, Chen M. miR-519b-3p promotes responsiveness to preoperative chemoradiotherapy in rectal cancer patients by targeting ARID4B. Gene 2018; 655:84-90. [DOI: 10.1016/j.gene.2018.02.056] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
31
|
Epigenetic Modifications as Biomarkers of Tumor Development, Therapy Response, and Recurrence across the Cancer Care Continuum. Cancers (Basel) 2018; 10:cancers10040101. [PMID: 29614786 PMCID: PMC5923356 DOI: 10.3390/cancers10040101] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 02/06/2023] Open
Abstract
Aberrant epigenetic modifications are an early event in carcinogenesis, with the epigenetic landscape continuing to change during tumor progression and metastasis—these observations suggest that specific epigenetic modifications could be used as diagnostic and prognostic biomarkers for many cancer types. DNA methylation, post-translational histone modifications, and non-coding RNAs are all dysregulated in cancer and are detectable to various degrees in liquid biopsies such as sputum, urine, stool, and blood. Here, we will focus on the application of liquid biopsies, as opposed to tissue biopsies, because of their potential as non-invasive diagnostic tools and possible use in monitoring therapy response and progression to metastatic disease. This includes a discussion of septin-9 (SEPT9) DNA hypermethylation for detecting colorectal cancer, which is by far the most developed epigenetic biomarker assay. Despite their potential as prognostic and diagnostic biomarkers, technical issues such as inconsistent methodology between studies, overall low yield of epigenetic material in samples, and the need for improved histone and non-coding RNA purification methods are limiting the use of epigenetic biomarkers. Once these technical limitations are overcome, epigenetic biomarkers could be used to monitor cancer development, disease progression, therapeutic response, and recurrence across the entire cancer care continuum.
Collapse
|
32
|
Identification of biomarker microRNAs for predicting the response of colorectal cancer to neoadjuvant chemoradiotherapy based on microRNA regulatory network. Oncotarget 2018; 8:2233-2248. [PMID: 27903980 PMCID: PMC5356795 DOI: 10.18632/oncotarget.13659] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/18/2016] [Indexed: 12/31/2022] Open
Abstract
Preoperative radiotherapy or chemoradiotherapy has become a standard procedure for treatment of patients with locally advanced colorectal cancer (CRC). However, patients’ responses to treatment are different and personalized. MicroRNAs (miRNAs) are promising biomarkers for predicting personalized responses. In this study, we collected 30 publicly reported miRNAs associated with chemoradiotherapy of CRC. We extracted 46 differentially expressed miRNAs from samples of responders and non-responders to preoperative radiotherapy from the Gene Expression Omnibus dataset (Student's t test, p-value < 0.05 and |fold-change| > 2). We performed a systematic and integrative bioinformatics analysis to identify biomarker miRNAs for prediction of CRC responses to chemoradiotherapy. Using the bioinformatics model, miR-198, miR-765, miR-671-5p, miR-630, miR-371-5p, miR-575, miR-202, miR-483-5p and miR-513a-5p were screened as putative biomarkers for treatment response. Literature validation and functional enrichment analysis were exploited to confirm the reliability of the predicted miRNAs. Quantitative polymerase chain reaction showed that seven of the candidates were significantly differentially expressed between radiosensitive and insensitive CRC cell lines. The unique target genes of miR-198 and miR-765 were altered significantly upon transfection of specific miRNA mimics in the radiosensitive cell line. These results demonstrated the predictive power of our model and suggested that miR-198, miR-765, miR-630, miR-371-5p, miR-575, miR-202 and miR-513a-5p could be used for predicting the response of CRC to preoperative chemoradiotherapy.
Collapse
|
33
|
Circulating serum microRNA-345 correlates with unfavorable pathological response to preoperative chemoradiotherapy in locally advanced rectal cancer. Oncotarget 2018; 7:64233-64243. [PMID: 27572313 PMCID: PMC5325438 DOI: 10.18632/oncotarget.11649] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/11/2016] [Indexed: 12/23/2022] Open
Abstract
Preoperative chemoradiotherapy (pre-CRT) has been represented as the standard treatment for locally advanced rectal cancer (LARC), but large variations of tumor radiation response to CRT have been reported in the clinic. To explore the function of microRNAs as potential therapeutic predictors of pre-CRT pathological response in LARC, we analyzed global miRNA expression in CRT-sensitive and CRT-resistant groups before treatment. MiR-345 was significantly elevated in the CRT-resistant group. Therefore, miR-345 was selected as a candidate for further analysis. We assessed the correlation between the miRNA signatures and the chemoradiotherapeutic response in 20 randomly selected LARC tissue samples (Validation set) and 87 serum samples (Training set) by qRT-PCR. Further, we validated the results in 42 randomly selected LARC serum samples (Validation set). High miR-345 expression was significantly correlated with unfavorable pre-CRT pathological response in tissue and serum. Moreover, low miR-345 levels predicted superior 3-year local recurrence free survival (LRFS). Taken together, circulating serum miR-345 correlates with unfavorable pre-CRT response and poor locoregional control in LARC. It might be a promising biomarker to facilitate patient stratification for personalized treatment.
Collapse
|
34
|
Ma B, Xu Q, Song Y, Gao P, Wang Z. Current issues of preoperative radio(chemo)therapy and its future evolution in locally advanced rectal cancer. Future Oncol 2017; 13:2489-2501. [PMID: 29124955 DOI: 10.2217/fon-2017-0310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Neoadjuvant therapies are effective for local control and tumor downstaging. Up to date, preoperative long-course chemoradiotherapy and short-course radiotherapy are the two primary guideline-recommended neoadjuvant therapies for locally advanced rectal cancer patients. However, clinicians throughout the world are trying their best to further optimize the regimens and concepts of neoadjuvants. Hence, there is an urgent need to summarize evidence regarding indications of neaoadjuvant therapies and relative merits of current standard regimens. In addition, we also reviewed the optimized regimens mainly based on short-course radiotherapy with delayed surgery, consolidation chemotherapy, induction chemotherapy, chemotherapy alone without radiation and concepts in terms of organ preservation and personalized treatments to further explore the future evolution of neoadjuvant therapies in rectal cancer.
Collapse
Affiliation(s)
- Bin Ma
- Department of Surgical Oncology & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Qingzhou Xu
- Department of Surgical Oncology & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Yongxi Song
- Department of Surgical Oncology & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Peng Gao
- Department of Surgical Oncology & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China
| | - Zhenning Wang
- Department of Surgical Oncology & General Surgery, the First Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
35
|
Conde-Muiño R, Cano C, Sánchez-Martín V, Herrera A, Comino A, Medina PP, Palma P, Cuadros M. Preoperative chemoradiotherapy for rectal cancer: the sensitizer role of the association between miR-375 and c-Myc. Oncotarget 2017; 8:82294-82302. [PMID: 29137264 PMCID: PMC5669890 DOI: 10.18632/oncotarget.19393] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Administration of chemoradiation before tumor resection has revolutionized the management of locally advanced rectal cancer, but many patients have proven resistant to this preoperative therapy. Our group recently reported a negative correlation between c-Myc gene expression and this resistance. In the present study, integrated analysis of miRNA and mRNA expression profiles was conducted in 45 pre-treatment rectal tumors in order to analyze the expressions of miRNAs and c-Myc and their relationship with clinicopathological factors and patient survival. Twelve miRNAs were found to be differentially expressed by responders and non-responders to the chemoradiation. Functional classification revealed an association between the differentially expressed miRNAs and c-Myc. Quantitative real-time PCR results showed that miRNA-148 and miRNA-375 levels were both significantly lower in responders than in non-responders. Notably, a significant negative correlation was found between miRNA-375 expression and c-Myc expression. According to these findings, miRNA-375 and its targeted c-Myc may be useful as a predictive biomarker of the response to neoadjuvant treatment in patients with locally advanced rectal cancer.
Collapse
Affiliation(s)
- Raquel Conde-Muiño
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Carlos Cano
- Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
| | - Victoria Sánchez-Martín
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| | - Antonio Herrera
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Ana Comino
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Pedro P Medina
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | - Pablo Palma
- Division of Colon & Rectal Surgery, University Hospital Virgen de las Nieves, Granada, Spain
| | - Marta Cuadros
- Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Granada, Spain.,GENYO, Centre for Genomics and Oncological Research, Pfizer/University of de Granada/Junta de Andalucía, PTS Granada, Granada, Spain
| |
Collapse
|
36
|
García-Vazquez R, Ruiz-García E, Meneses García A, Astudillo-de la Vega H, Lara-Medina F, Alvarado-Miranda A, Maldonado-Martínez H, González-Barrios JA, Campos-Parra AD, Rodríguez Cuevas S, Marchat LA, López-Camarillo C. A microRNA signature associated with pathological complete response to novel neoadjuvant therapy regimen in triple-negative breast cancer. Tumour Biol 2017. [PMID: 28621239 DOI: 10.1177/1010428317702899] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neoadjuvant chemotherapy aims to improve the outcome of breast cancer patients, but only few would benefit from this treatment. Pathological complete response has been proposed as a surrogate marker for the prediction of long-term clinical benefits; however, 50%-85% patients have an unfavorable pathological complete response to chemotherapy. MicroRNAs are known biomarkers of breast cancer progression; nevertheless, their potential to identify patients with pathological complete response remains poorly understood. Here, we investigated whether a microRNA profile could be associated with pathological complete response in triple-negative breast cancer patients receiving 5-fluorouracil, adriamycin, cyclophosphamide-cisplatin/paclitaxel as a novel neoadjuvant chemotherapy. In the discovery cohort, the expression of 754 microRNAs was examined in tumors from 10 triple-negative breast cancer patients who achieved pathological complete response and 8 without pathological complete response using TaqMan Low-Density Arrays. Unsupervised hierarchical cluster analysis identified 11 microRNAs with significant differences between responder and no-responder patients (fold change ≥ 1.5; p < 0.05). The differential expression of miR-30a, miR-9-3p, miR-770, and miR-143-5p was validated in an independent group of 17 patients with or without pathological complete response. Moreover, Kaplan-Meier analysis showed that expression of these four microRNAs was associated with an increased disease-free survival. Gene ontology classification of predicted microRNA targets indicated that numerous genes are involved in pathways related to chemoresistance, such as vascular endothelial growth factor, focal adhesion kinase, WNT, ERbB, phosphoinositide 3-kinase, and AKT signaling. In summary, we identified a novel microRNA expression signature associated with pathological complete response in breast cancer. We propose that the four validated microRNAs could be used as molecular biomarkers of clinical response in triple-negative breast cancer patients with pathological complete response to neoadjuvant therapy.
Collapse
Affiliation(s)
- Raúl García-Vazquez
- 1 Programas en Biomedicina Molecular y Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - Erika Ruiz-García
- 2 Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Abelardo Meneses García
- 2 Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, Ciudad de México, México
| | - Horacio Astudillo-de la Vega
- 3 Laboratorio de Investigación Traslacional en Cáncer y Terapia Celular, Hospital de Oncología, Centro Médico Siglo XXI, Ciudad de México, México
| | - Fernando Lara-Medina
- 4 Unidad de Cáncer de Mama, Instituto Nacional de Cancerología, Ciudad de México, México
| | | | | | - Juan A González-Barrios
- 6 Laboratorio de Medicina Genómica, Hospital Regional 1 de Octubre ISSSTE, Ciudad de México, México
| | - Alma D Campos-Parra
- 7 Laboratorio de Genómica, Instituto Nacional de Cancerología, Ciudad de México, México
| | | | - Laurence A Marchat
- 1 Programas en Biomedicina Molecular y Biotecnología, Instituto Politécnico Nacional, Ciudad de México, México
| | - César López-Camarillo
- 9 Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| |
Collapse
|
37
|
Pettit C, Walston S, Wald P, Webb A, Williams TM. Molecular profiling of locally-advanced rectal adenocarcinoma using microRNA expression (Review). Int J Oncol 2017. [PMID: 28627602 DOI: 10.3892/ijo.2017.4045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Treatment for locally-advanced rectal cancer (LARC) typically consists of neoadjuvant chemoradiation followed by total mesorectal excision. Recently, there has been growing interest in non-operative management for patients who are medically-inoperable or wish to avoid surgical morbidity and permanent colostomy. Approximately 50% of patients who receive pre-operative neoadjuvant chemoradiation develop some degree of pathologic response. Approximately 10-20% of patients are found to have a complete pathologic response, a finding which has frequently been shown to predict better clinical outcomes, including local-regional control, distant metastasis and survival. Many recent studies have evaluated the role of molecular biomarkers in predicting response to neoadjuvant therapy. MicroRNAs (miRNAs) are an emerging class of biomarkers that have the potential to predict which patients are most likely to benefit from pre-operative therapy and from a selective surgical approach. Here, we review the published literature on microRNAs as prognostic and predictive biomarkers in rectal cancer after pre-operative therapy. In the future, the development of prospectively validated miRNA signatures will allow clinical implementation of miRNAs as prognostic and predictive signatures in LARC.
Collapse
Affiliation(s)
- Cory Pettit
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Steve Walston
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Patrick Wald
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Amy Webb
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| | - Terence M Williams
- The Ohio State University Medical Center, Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, Columbus, OH 43210, USA
| |
Collapse
|
38
|
Shen B, Yu S, Zhang Y, Yuan Y, Li X, Zhong J, Feng J. miR-590-5p regulates gastric cancer cell growth and chemosensitivity through RECK and the AKT/ERK pathway. Onco Targets Ther 2016; 9:6009-6019. [PMID: 27757042 PMCID: PMC5055051 DOI: 10.2147/ott.s110923] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background The aim of this study was to determine the role of miRNA-590-5p in gastric cancer (GC) progression. Methods Quantitative real-time polymerase chain reaction was performed to measure endogenous miR-590-5p levels in GC cells and tissues. Overexpression or knockdown of miR-590-5p in GC cells was performed by transfection with mimics or an inhibitor, respectively. MTT, matrigel transwell, and Western blot assays were used to assess the effects of miR-590-5p on cell proliferation, invasion, chemosensitivity of GC cells, and the AKT pathway, respectively. In silico prediction and luciferase reporter activity were used to identify potential targets of miR-590-5p. A xenograft model was also established to evaluate the function of miR-590-5p in vivo. Results The expression of miR-590-5p was significantly increased in GC cells and tissues, and upregulated miR-590-5p was associated with increased tumor size, lymph node metastasis, and poor survival. Overexpression of miR-590-5p promoted cell proliferation and invasion and reduced the sensitivity of GC cells to cisplatin and paclitaxel. In contrast, inhibition of miR-590-5p had the opposite effects on GC cells. RECK was identified as a direct target of miR-590-5p. Knockdown of RECK accelerated cell proliferation and motility and decreased the drug sensitivity. Furthermore, reintroduction of RECK inhibited the oncogenic effects of miR-590-5p by suppressing cell proliferation and invasion and increasing drug sensitivity. We found that the AKT/ERK and STAT3 signaling pathways were activated by miR-590-5p overexpression. The chemoresistance of miR-590-5p was also verified by in vivo analysis. Conclusion In summary, we suggest that the miR-590-5p/RECK/AKT axis contributes to GC and may serve as a promising therapeutic target for treatment.
Collapse
Affiliation(s)
- Bo Shen
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Shaorong Yu
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yan Zhang
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuan Yuan
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaoyou Li
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jian Zhong
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jifeng Feng
- Department of Oncology, Jiangsu Cancer Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
39
|
Eriksen AHM, Andersen RF, Nielsen BS, Sørensen FB, Appelt AL, Jakobsen A, Hansen TF. Intratumoral Heterogeneity of MicroRNA Expression in Rectal Cancer. PLoS One 2016; 11:e0156919. [PMID: 27258547 PMCID: PMC4892647 DOI: 10.1371/journal.pone.0156919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/20/2016] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION An increasing number of studies have investigated microRNAs (miRNAs) as potential markers of diagnosis, treatment and prognosis. So far, agreement between studies has been minimal, which may in part be explained by intratumoral heterogeneity of miRNA expression. The aim of the present study was to assess the heterogeneity of a panel of selected miRNAs in rectal cancer, using two different technical approaches. MATERIALS AND METHODS The expression of the investigated miRNAs was analysed by real-time quantitative polymerase chain reaction (RT-qPCR) and in situ hybridization (ISH) in tumour specimens from 27 patients with T3-4 rectal cancer. From each tumour, tissue from three different luminal localisations was examined. Inter- and intra-patient variability was assessed by calculating intraclass correlation coefficients (ICCs). Correlations between RT-qPCR and ISH were evaluated using Spearman's correlation. RESULTS ICCsingle (one sample from each patient) was higher than 50% for miRNA-21 and miRNA-31. For miRNA-125b, miRNA-145, and miRNA-630, ICCsingle was lower than 50%. The ICCmean (mean of three samples from each patient) was higher than 50% for miRNA-21(RT-qPCR and ISH), miRNA-125b (RT-qPCR and ISH), miRNA-145 (ISH), miRNA-630 (RT-qPCR), and miRNA-31 (RT-qPCR). For miRNA-145 (RT-qPCR) and miRNA-630 (ISH), ICCmean was lower than 50%. Spearman correlation coefficients, comparing results obtained by RT-qPCR and ISH, respectively, ranged from 0.084 to 0.325 for the mean value from each patient, and from -0.085 to 0.515 in the section including the deepest part of the tumour. CONCLUSION Intratumoral heterogeneity may influence the measurement of miRNA expression and consequently the number of samples needed for representative estimates. Our findings with two different methods suggest that one sample is sufficient for adequate assessment of miRNA-21 and miRNA-31, whereas more samples would improve the assessment of miRNA-125b, miRNA-145, and miRNA-630. Interestingly, we found a poor correlation between the expression estimates obtained by RT-qPCR and ISH, respectively.
Collapse
Affiliation(s)
- Anne Haahr Mellergaard Eriksen
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
- * E-mail:
| | - Rikke Fredslund Andersen
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | | | - Flemming Brandt Sørensen
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Ane Lindegaard Appelt
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anders Jakobsen
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Torben Frøstrup Hansen
- Danish Colorectal Cancer Center South, Vejle Hospital, Vejle, Denmark
- Institute of Regional Health Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
40
|
Azizian A, Gruber J, Ghadimi BM, Gaedcke J. MicroRNA in rectal cancer. World J Gastrointest Oncol 2016; 8:416-426. [PMID: 27190581 PMCID: PMC4865709 DOI: 10.4251/wjgo.v8.i5.416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 12/01/2015] [Accepted: 03/09/2016] [Indexed: 02/05/2023] Open
Abstract
In rectal cancer, one of the most common cancers worldwide, the proper staging of the disease determines the subsequent therapy. For those with locally advanced rectal cancer, a neoadjuvant chemoradiotherapy (CRT) is recommended before any surgery. However, response to CRT ranges from complete response (responders) to complete resistance (non-responders). To date we are not able to separate in advance the first group from the second, due to the absence of a valid biomarker. Therefore all patients receive the same therapy regardless of whether they reap benefits. On the other hand almost all patients receive a surgical resection after the CRT, although a watch-and-wait procedure or an endoscopic resection might be sufficient for those who responded well to the CRT. Being highly conserved regulators of gene expression, microRNAs (miRNAs) seem to be promising candidates for biomarkers. Many studies have been analyzing the miRNAs expressed in rectal cancer tissue to determine a specific miRNA profile for the ailment. Unfortunately, there is only a small overlap of identified miRNAs between different studies, posing the question as to whether different methods or differences in tissue storage may contribute to that fact or if the results simply are not reproducible, due to unknown factors with undetected influences on miRNA expression. Other studies sought to find miRNAs which correlate to clinical parameters (tumor grade, nodal stage, metastasis, survival) and therapy response. Although several miRNAs seem to have an impact on the response to CRT or might predict nodal stage, there is still only little overlap between different studies. We here aimed to summarize the current literature on rectal cancer and miRNA expression with respect to the different relevant clinical parameters.
Collapse
|
41
|
Azizian A, Epping I, Kramer F, Jo P, Bernhardt M, Kitz J, Salinas G, Wolff HA, Grade M, Beißbarth T, Ghadimi BM, Gaedcke J. Prognostic Value of MicroRNAs in Preoperative Treated Rectal Cancer. Int J Mol Sci 2016; 17:568. [PMID: 27092493 PMCID: PMC4849024 DOI: 10.3390/ijms17040568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 12/26/2022] Open
Abstract
Background: Patients with locally advanced rectal cancer are treated with preoperative chemoradiotherapy followed by surgical resection. Despite similar clinical parameters (uT2-3, uN+) and standard therapy, patients’ prognoses differ widely. A possible prediction of prognosis through microRNAs as biomarkers out of treatment-naïve biopsies would allow individualized therapy options. Methods: Microarray analysis of 45 microdissected preoperative biopsies from patients with rectal cancer was performed to identify potential microRNAs to predict overall survival, disease-free survival, cancer-specific survival, distant-metastasis-free survival, tumor regression grade, or nodal stage. Quantitative real-time polymerase chain reaction (qPCR) was performed on an independent set of 147 rectal cancer patients to validate relevant miRNAs. Results: In the microarray screen, 14 microRNAs were significantly correlated to overall survival. Five microRNAs were included from previous work. Finally, 19 miRNAs were evaluated by qPCR. miR-515-5p, miR-573, miR-579 and miR-802 demonstrated significant correlation with overall survival and cancer-specific survival (p < 0.05). miR-573 was also significantly correlated with the tumor regression grade after preoperative chemoradiotherapy. miR-133b showed a significant correlation with distant-metastasis-free survival. miR-146b expression levels showed a significant correlation with nodal stage. Conclusion: Specific microRNAs can be used as biomarkers to predict prognosis of patients with rectal cancer and possibly stratify patients’ therapy if validated in a prospective study.
Collapse
Affiliation(s)
- Azadeh Azizian
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Ingo Epping
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Frank Kramer
- Department of Medical Statistics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Peter Jo
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Markus Bernhardt
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Julia Kitz
- Department of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Gabriela Salinas
- Department of Developmental Biochemistry, University of Göttingen, Göttingen 37075, Germany.
| | - Hendrik A Wolff
- Medical Practice Radiotherapy München, Burgstraße 7, München 80331, Germany.
| | - Marian Grade
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Tim Beißbarth
- Department of Medical Statistics, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - B Michael Ghadimi
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| | - Jochen Gaedcke
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Str. 40, Göttingen 37075, Germany.
| |
Collapse
|
42
|
Ryan JE, Warrier SK, Lynch AC, Ramsay RG, Phillips WA, Heriot AG. Predicting pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer: a systematic review. Colorectal Dis 2016; 18:234-46. [PMID: 26531759 DOI: 10.1111/codi.13207] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/17/2015] [Indexed: 02/08/2023]
Abstract
AIM Approximately 20% of patients treated with neoadjuvant chemoradiotherapy (nCRT) for locally advanced rectal cancer achieve a pathological complete response (pCR) while the remainder derive the benefit of improved local control and downstaging and a small proportion show a minimal response. The ability to predict which patients will benefit would allow for improved patient stratification directing therapy to those who are likely to achieve a good response, thereby avoiding ineffective treatment in those unlikely to benefit. METHOD A systematic review of the English language literature was conducted to identify pathological factors, imaging modalities and molecular factors that predict pCR following chemoradiotherapy. PubMed, MEDLINE and Cochrane Database searches were conducted with the following keywords and MeSH search terms: 'rectal neoplasm', 'response', 'neoadjuvant', 'preoperative chemoradiation', 'tumor response'. After review of title and abstracts, 85 articles addressing the prediction of pCR were selected. RESULTS Clear methods to predict pCR before chemoradiotherapy have not been defined. Clinical and radiological features of the primary cancer have limited ability to predict response. Molecular profiling holds the greatest potential to predict pCR but adoption of this technology will require greater concordance between cohorts for the biomarkers currently under investigation. CONCLUSION At present no robust markers of the prediction of pCR have been identified and the topic remains an area for future research. This review critically evaluates existing literature providing an overview of the methods currently available to predict pCR to nCRT for locally advanced rectal cancer. The review also provides a comprehensive comparison of the accuracy of each modality.
Collapse
Affiliation(s)
- J E Ryan
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Epworth Healthcare, Melbourne, Victoria, Australia.,Austin Academic Centre, University of Melbourne, Parkville, Victoria, Australia
| | - S K Warrier
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - A C Lynch
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - R G Ramsay
- Differentiation and Transcription Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - W A Phillips
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Cancer Biology and Surgical Oncology Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - A G Heriot
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Cekaite L, Eide PW, Lind GE, Skotheim RI, Lothe RA. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer. Oncotarget 2016; 7:6476-505. [PMID: 26623728 PMCID: PMC4872728 DOI: 10.18632/oncotarget.6390] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/16/2015] [Indexed: 02/07/2023] Open
Abstract
Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression.
Collapse
Affiliation(s)
- Lina Cekaite
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Peter W. Eide
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Guro E. Lind
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Rolf I. Skotheim
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| | - Ragnhild A. Lothe
- Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- K.G.Jebsen Colorectal Cancer Research Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Casey MC, Sweeney KJ, Brown JAL, Kerin MJ. Exploring circulating micro-RNA in the neoadjuvant treatment of breast cancer. Int J Cancer 2016; 139:12-22. [PMID: 26756433 PMCID: PMC5066681 DOI: 10.1002/ijc.29985] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy amongst females worldwide. In recent years the management of this disease has transformed considerably, including the administration of chemotherapy in the neoadjuvant setting. Aside from increasing rates of breast conserving surgery and enabling surgery via tumour burden reduction, use of chemotherapy in the neoadjuvant setting allows monitoring of in vivo tumour response to chemotherapeutics. Currently, there is no effective means of identifying chemotherapeutic responders from non‐responders. Whilst some patients achieve complete pathological response (pCR) to chemotherapy, a good prognostic index, a proportion of patients derive little or no benefit, being exposed to the deleterious effects of systemic treatment without any knowledge of whether they will receive benefit. The identification of predictive and prognostic biomarkers could confer multiple benefits in this setting, specifically the individualization of breast cancer management and more effective administration of chemotherapeutics. In addition, biomarkers could potentially expedite the identification of novel chemotherapeutic agents or increase their efficacy. Micro‐RNAs (miRNAs) are small non‐coding RNA molecules. With their tissue‐specific expression, correlation with clinicopathological prognostic indices and known dysregulation in breast cancer, miRNAs have quickly become an important avenue in the search for novel breast cancer biomarkers. We provide a brief history of breast cancer chemotherapeutics and explore the emerging field of circulating (blood‐borne) miRNAs as breast cancer biomarkers for the neoadjuvant treatment of breast cancer. Established molecular markers of breast cancer are outlined, while the potential role of circulating miRNAs as chemotherapeutic response predictors, prognosticators or potential therapeutic targets is discussed.
Collapse
Affiliation(s)
- Máire-Caitlín Casey
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | - Karl J Sweeney
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| | | | - Michael J Kerin
- Discipline of Surgery, School of Medicine, National University of Ireland, Galway, Ireland
| |
Collapse
|
45
|
Pan Y, Liu R, Terpstra E, Wang Y, Qiao F, Wang J, Tong Y, Pan B. Dysregulation and Diagnostic Potential of microRNA in Alzheimer’s Disease. J Alzheimers Dis 2015; 49:1-12. [DOI: 10.3233/jad-150451] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yaoqian Pan
- Department of Veterinary Pathology, College of Animal Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruizhu Liu
- China-Japan Union Hospital Jilin University, Changchun, Jilin, China
| | - Erin Terpstra
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Yanqing Wang
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Fangfang Qiao
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
| | - Jin Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Bo Pan
- Department of Veterinary Pathology, College of Animal Sciences, Henan Institute of Science and Technology, Xinxiang, China
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD, USA
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- State Key Lab of Agrobiotechnology, Key Lab of Animal Epidemiology and Zoonosis, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Patel PM, Harris K, Huerta S. Clinical and molecular diagnosis of pathologic complete response in rectal cancer. Expert Rev Mol Diagn 2015; 15:1505-16. [DOI: 10.1586/14737159.2015.1091728] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
47
|
Caramés C, Cristóbal I, Moreno V, del Puerto L, Moreno I, Rodriguez M, Marín JP, Correa AV, Hernández R, Zenzola V, Hernández T, León A, Martín JI, Sánchez-Fayos P, García-Olmo D, Rojo F, Goel A, Fernandez-Aceñero MJ, García-Foncillas J. MicroRNA-21 predicts response to preoperative chemoradiotherapy in locally advanced rectal cancer. Int J Colorectal Dis 2015; 30:899-906. [PMID: 25953218 DOI: 10.1007/s00384-015-2231-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE The treatment of choice for locally advanced rectal cancer is preoperative chemoradiotherapy. Despite half of patients do not respond and suffer unnecessary toxicities and surgery delays, there are no biomarkers to guide preoperative CRT outcome. MicroRNA-21 has been related to acquisition of 5-fluorouracil resistance; however, its potential predictive value of response to preoperative chemoradiotherapy in locally advanced rectal cancer remains unknown. METHODS Nighty-two patients diagnosed with locally advanced rectal cancer who were preoperatively treated with chemoradiotherapy were selected for this study. Moreover, microRNA-21 expression was quantified in formalin-fixed paraffin-embedded biopsies from this cohort, and the results obtained were correlated with clinical and molecular characteristics, pathological response, and outcome. RESULTS MicroRNA-21 was found overexpressed in 77.6% cases, and significantly correlated with tumor grade after preoperative chemoradiotherapy (P = 0.013) and with pathological response (P = 0.013). The odds ratio of having miR-21 overexpression and not getting a respond to chemoradiotherapy resulted in 9.75 CI 2.24 to 42. Sensitivity, specificity, negative predictive values, and positive predictive value were 86.6, 60, 42.8, and 92%, respectively. Multivariate analysis confirmed the clinical significance of miR-21 determining preoperative chemoradiotherapy response. CONCLUSIONS MicroRNA-21 expression efficiently predicts preoperative chemoradiotherapy pathological response in locally advanced rectal cancer.
Collapse
Affiliation(s)
- Cristina Caramés
- Medical Oncology Department, University Hospital "Fundación Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Predictive and prognostic biomarkers for neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Crit Rev Oncol Hematol 2015; 96:67-80. [PMID: 26032919 DOI: 10.1016/j.critrevonc.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 05/05/2015] [Indexed: 02/08/2023] Open
Abstract
Locally advanced rectal cancer is regularly treated with trimodality therapy consisting of neoadjuvant chemoradiation, surgery and adjuvant chemotherapy. There is a need for biomarkers to assess treatment response, and aid in stratification of patient risk to adapt and personalise components of the therapy. Currently, pathological stage and tumour regression grade are used to assess response. Experimental markers include proteins involved in cell proliferation, apoptosis, angiogenesis, the epithelial to mesenchymal transition and microsatellite instability. As yet, no single marker is sufficiently robust to have clinical utility. Microarrays that screen a tumour for multiple promising candidate markers, gene expression and microRNA profiling will likely have higher yield and it is expected that a combination or panel of markers would prove most useful. Moving forward, utilising serial samples of circulating tumour cells or circulating nucleic acids can potentially allow us to demonstrate tumour heterogeneity, document mutational changes and subsequently measure treatment response.
Collapse
|
49
|
Lopes-Ramos CM, Habr-Gama A, Quevedo BDS, Felício NM, Bettoni F, Koyama FC, Asprino PF, Galante PA, Gama-Rodrigues J, Camargo AA, Perez RO, Parmigiani RB. Overexpression of miR-21-5p as a predictive marker for complete tumor regression to neoadjuvant chemoradiotherapy in rectal cancer patients. BMC Med Genomics 2014; 7:68. [PMID: 25496125 PMCID: PMC4279677 DOI: 10.1186/s12920-014-0068-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/28/2014] [Indexed: 12/16/2022] Open
Abstract
Background Neoadjuvant chemoradiotherapy (nCRT) followed by radical surgery is the preferred treatment strategy for locally advanced rectal cancer. However, complete tumor regression is observed in a significant proportion of patients after nCRT, making them ideal candidates for alternative treatment strategies to this considerably morbid procedure. Identification of such patients based on clinical findings (complete clinical response - cCR) is difficult mainly because it relies on subjective clinical and imaging studies. Our goal was to identify biomarkers capable of predicting complete response to nCRT. Methods We analyzed miRNA expression profile using deep sequencing in rectal tumor biopsies prior to nCRT. Differential expression was investigated by EdgeR for a training (n = 27) and a validation (n = 16) set of patients to identify miRNAs associated with treatment response (complete vs. incomplete). In vitro experiments with two cancer cell lines were also performed in order to evaluate the possible role of miRNAs on response to nCRT. Results We found 4 miRNAs differentially expressed between complete and incomplete responders to nCRT. In addition, validation was performed using an independent group of patients and miR-21-5p was confirmed as being overexpressed in complete responders. Overall sensitivity and specificity of miR-21-5p expression in predicting complete response to nCRT was 78% and 86% respectively. Interestingly, in a subset of patients with cCR followed by early local recurrence, the expression level of miR-21-5p was considerably low, similarly to incomplete responders. We also found SATB1, a miR-21-5p target gene and known multidrug resistance gene, whose expression was inversely correlated with miR-21-5p expression. Finally, we performed functional experiments and showed that miR-21-5p and SATB1 may be directly involved with poor response to nCRT in rectal cancer patients. Conclusions This study suggests miR-21-5p as a promising predictive biomarker, which should aid in the selection of patients with cCR to nCRT that potentially could be spared from radical surgery. Electronic supplementary material The online version of this article (doi:10.1186/s12920-014-0068-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Camila Miranda Lopes-Ramos
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil. .,Fundação Antônio Prudente, São Paulo, Brazil.
| | - Angelita Habr-Gama
- Angelita & Joaquim Gama Institute, São Paulo, Brazil. .,University of São Paulo School of Medicine, São Paulo, Brazil.
| | | | - Natália Mariana Felício
- Angelita & Joaquim Gama Institute, São Paulo, Brazil. .,Hospital Alemão Oswaldo Cruz, São Paulo, Brazil.
| | - Fabiana Bettoni
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil.
| | | | | | | | - Joaquim Gama-Rodrigues
- Angelita & Joaquim Gama Institute, São Paulo, Brazil. .,University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Anamaria Aranha Camargo
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, Brazil. .,Ludwig Institute for Cancer Research, São Paulo, Brazil.
| | - Rodrigo Oliva Perez
- Angelita & Joaquim Gama Institute, São Paulo, Brazil. .,University of São Paulo School of Medicine, São Paulo, Brazil. .,Ludwig Institute for Cancer Research, São Paulo, Brazil.
| | | |
Collapse
|
50
|
Okugawa Y, Toiyama Y, Goel A. An update on microRNAs as colorectal cancer biomarkers: where are we and what's next? Expert Rev Mol Diagn 2014; 14:999-1021. [PMID: 25163355 PMCID: PMC4374444 DOI: 10.1586/14737159.2014.946907] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
miRNAs are abundant classes of small, endogenous non-coding RNAs, which inhibit the expression of target gene via post-transcriptional regulation. In addition to an important functional role miRNAs play in carcinogenesis, emerging evidence has demonstrated their feasibility as robust cancer biomarkers. In particular, the recent discovery of miRNAs in the body fluids provides an attractive opportunity for the development of non-invasive biomarkers for the diagnosis, prognosis and predictive response to cancer therapy. Colorectal cancer (CRC) is one of the most common cancers worldwide, and accumulating data provides a compelling case for the potential exploitation of miRNAs as CRC-biomarkers. This review summarizes the current state of literature in the field, focusing on the clinical relevance of miRNAs as potential biomarkers for CRC treatment and discussing the forthcoming challenges to further advance this exciting field of 'academic research' into 'bedside clinical care' of patients suffering from CRC.
Collapse
Affiliation(s)
- Yoshinaga Okugawa
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| | - Yuji Toiyama
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
- Department of Gastrointestinal and Pediatric Surgery, Division of Reparative Medicine, Institute of Life Sciences, Graduate School of Medicine, Mie University, Mie 514-8507, Japan
| | - Ajay Goel
- Gastrointestinal Cancer Research Laboratory, Division of Gastroenterology, Department of Internal Medicine, Charles A. Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas 75246-2017, USA
| |
Collapse
|