1
|
Menchaca-Tapia PA, Marín-Rosales M, Salazar-Camarena DC, Cruz A, Oregon-Romero E, Tapia-Llanos R, Muñoz-Valle JF, Palafox-Sánchez CA. Analysis of PTPN22 -1123 G>C, +788 G>A and +1858 C>T Polymorphisms in Patients with Primary Sjögren's Syndrome. Diagnostics (Basel) 2023; 13:diagnostics13050899. [PMID: 36900045 PMCID: PMC10001387 DOI: 10.3390/diagnostics13050899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/01/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Primary Sjögren's syndrome (pSS) is an autoimmune exocrinopathy characterized by lymphocytic infiltration, glandular dysfunction and systemic manifestations. Lyp protein is a negative regulator of the T cell receptor encoded by the tyrosine phosphatase nonreceptor-type 22 (PTPN22) gene. Multiple single-nucleotide polymorphisms (SNPs) in the PTPN22 gene have been associated with susceptibility to autoimmune diseases. This study aimed to investigate the association of PTPN22 SNPs rs2488457 (-1123 G>C), rs33996649 (+788 G>A), rs2476601 (+1858 C>T) with pSS susceptibility in Mexican mestizo subjects. METHODS One hundred fifty pSS patients and 180 healthy controls (HCs) were included. Genotypes of PTPN22 SNPs were identified by PCR-RFLP. PTPN22 expression was evaluated through RT-PCR analysis. Serum anti-SSA/Ro and anti-SSB/La levels were measured using an ELISA kit. RESULTS Allele and genotype frequencies for all SNPs studied were similar in both groups (p > 0.05). pSS patients showed 17-fold higher expression of PTNP22 than HCs, and mRNA levels correlated with SSDAI score (r2 = 0.499, p = 0.008) and levels of anti-SSA/Ro and anti-SSB/La autoantibodies (r2 = 0.200, p = 0.03 and r2 = 0.175, p = 0.04, respectively). Positive anti-SSA/Ro pSS patients expressed higher PTPN22 mRNA levels (p = 0.008), with high focus scores by histopathology (p = 0.02). Moreover, PTPN22 expression had high diagnostic accuracy in pSS patients, with an AUC = 0.985. CONCLUSIONS Our findings demonstrate that the PTPN22 SNPs rs2488457 (-1123 G>C), rs33996649 (+788 G>A) and rs2476601 (+1858 C>T) are not associated with the disease susceptibility in the western Mexican population. Additionally, PTPN22 expression may be helpful as a diagnostic biomarker in pSS.
Collapse
Affiliation(s)
- Paula Annahi Menchaca-Tapia
- Doctorado en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Miguel Marín-Rosales
- Servicio de Reumatología, Hospital General de Occidente, Secretaria de Salud Jalisco, Guadalajara 45170, Mexico
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Diana Celeste Salazar-Camarena
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Alvaro Cruz
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Edith Oregon-Romero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Raziel Tapia-Llanos
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Claudia Azucena Palafox-Sánchez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Grupo de Inmunología Molecular, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
- Correspondence: ; Tel.: +52-33-3815-0611
| |
Collapse
|
2
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
3
|
Hu M, Chen Z, Liao Y, Wu J, Zheng D, Zhang H. Clinical value of the expression levels of protein tyrosine phosphatase non-receptor type 22.6 mRNA in peripheral blood mononuclear cells in Crohn's disease. Clin Exp Immunol 2022; 209:311-315. [PMID: 35751647 PMCID: PMC9521657 DOI: 10.1093/cei/uxac061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 01/23/2023] Open
Abstract
OBJECTIVE To explore the relationship between the expression levels of protein tyrosine phosphatase non-receptor type (PTPN) 22.6 mRNA in peripheral blood mononuclear cells (PBMCs) and the disease activity as well as clinical characteristics in Crohn's disease (CD) patients. METHODS A total of 480 subjects were enrolled. Data were collected including baseline information, expression levels of PTPN22.6 mRNA in PBMCs for all subjects, C-reactive protein (CRP) levels in serum, clinical characteristics, and disease activity for all patients. Expression levels of PTPN22.6 mRNA in PBMCs, CRP levels in serum, clinical characteristics according to Montreal Classification [8], and Crohn's disease activity index (CDAI) were the primary observation outcomes. RESULTS The expression levels of PTPN22.6 mRNA (P = 0.032) in PBMCs and serum CRP levels (P < 0.001) were significantly higher in active CD patients than in inactive CD patients (P = 0.032). Correlation analysis showed that there was a positive correlation between expression levels of PTPN22.6 mRNA and CDAI value (r = 0.512, P = 0.003), as well as expression levels of PTPN22.6 mRNA and CRP levels in the CD group (r = 0.456, P = 0.006). There were significantly higher expression levels of PTPN22.6 mRNA in PBMCs in patients with structuring behavior than that in patients with non-stricturing and non-penetrating (NSNP) behaviors (P = 0.018) and penetrating behaviors (P = 0.024). CONCLUSIONS The expression levels of PTPN22.6 mRNA can be used as an indicator to help predict CD diagnosis, disease activity, serum CRP level, and behavior type of CD disease.
Collapse
Affiliation(s)
| | | | - Yusheng Liao
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, People’s Republic of China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, People’s Republic of China
| | - Dan Zheng
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory for Molecular Diagnosis of Hubei Province, Wuhan, People’s Republic of China
| | - Heng Zhang
- Correspondence: Heng Zhang, Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology Sheng Li Street 26, Wuhan 430014, Hubei Province, People’s Republic of China.
| |
Collapse
|
4
|
Chen Z, Lu Y, Wu J, Zhang H. Clinical significance of blood platelets and mean platelet volume in patients with ulcerative colitis. J Int Med Res 2021; 49:3000605211009715. [PMID: 33884913 PMCID: PMC8072101 DOI: 10.1177/03000605211009715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objectives This retrospective study aimed to investigate and analyze the clinical
significance of blood platelets (PLTs) and mean platelet volume (MPV) in
patients with ulcerative colitis (UC). Methods A total of 132 patients with UC and 208 healthy subjects were enrolled. PLTs,
MPV, platelet-large cell rate (P-LCR), C-reactive protein (CRP), fibrinogen
(FIB) and D-dimer were analyzed. Correlations were calculated between
disease activity/extent of disease and MPV, PLT, and CRP levels in patients
with UC. Results PLT levels were significantly higher while MPV and P-LCR were lower in
patients with UC compared with controls. Disease activity was positive
correlated with CRP (r = 0.564) and PLT (r = 0.307) but negatively
correlated with MPV (r = −0.351). Extent of disease was positively
correlated with CRP (r = 0.312) but showed no correlation with PLTs and MPV.
FIB and D-dimer were higher in patients with UC, but the difference in FIB
levels was not statistically significant. Conclusions PLTs and MPV are potential biomarkers for UC disease activity. These data may
help clinicians to attain a more comprehensive judgment of the general
condition of patients with UC.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Lu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Wu
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Heng Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
5
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
6
|
Thude H, Tiede P, Marget M, Peine S, Nashan B, Koch M. Protein tyrosine phosphatase non-receptor type 22 (PTPN22) gene polymorphisms in liver transplant donors and impact on acute cellular liver transplant rejection. HLA 2019; 95:40-44. [PMID: 31577847 DOI: 10.1111/tan.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/13/2019] [Accepted: 09/19/2019] [Indexed: 11/28/2022]
Abstract
The PTPN22 gene encodes the lymphoid protein tyrosine phosphatase involved in regulation the immune response. The single nucleotide polymorphisms (SNPs) rs1217388, rs1310182, rs2476601, and rs2488457 are located within the PTPN22 gene. We investigated whether these SNPs in liver transplant donors are associated with acute cellular rejection in the recipients. The SNPs were analyzed in donors (n = 104) of recipients who did not develop an acute cellular rejection and in donors (n = 53) of corresponding recipients developing an acute cellular rejection. No significant differences in genotype and allele frequencies of these SNPs were detected in either of the group. Our data suggest that these SNPs in liver transplant donors have no impact on the susceptibility of acute cellular liver transplant rejection.
Collapse
Affiliation(s)
- Hansjörg Thude
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Petra Tiede
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Matthias Marget
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgey, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Koch
- Department of Hepatobiliary and Transplant Surgey, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Mustelin T, Bottini N, Stanford SM. The Contribution of PTPN22 to Rheumatic Disease. Arthritis Rheumatol 2019; 71:486-495. [PMID: 30507064 PMCID: PMC6438733 DOI: 10.1002/art.40790] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
One of the unresolved questions in modern medicine is why certain individuals develop a disorder such as rheumatoid arthritis (RA) or lupus, while others do not. Contemporary science indicates that genetics is partly responsible for disease development, while environmental and stochastic factors also play a role. Among the many genes that increase the risk of autoimmune conditions, the risk allele encoding the W620 variant of protein tyrosine phosphatase N22 (PTPN22) is shared between multiple rheumatic diseases, suggesting that it plays a fundamental role in the development of immune dysfunction. Herein, we discuss how the presence of the PTPN22 risk allele may shape the signs and symptoms of these diseases. Besides the emerging clarity regarding how PTPN22 tunes T and B cell antigen receptor signaling, we discuss recent discoveries of important functions of PTPN22 in myeloid cell lineages. Taken together, these new insights reveal important clues to the molecular mechanisms of prevalent diseases like RA and lupus and may open new avenues for the development of personalized therapies that spare the normal function of the immune system.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA 99108, phone (206) 616-6130,
| | - Nunzio Bottini
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| | - Stephanie M. Stanford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| |
Collapse
|
8
|
Budding K, van Setten J, van de Graaf EA, van Rossum OA, Kardol-Hoefnagel T, Kwakkel-van Erp JM, Oudijk EJD, Hack CE, Otten HG. The Autoimmune-Associated Single Nucleotide Polymorphism Within PTPN22 Correlates With Clinical Outcome After Lung Transplantation. Front Immunol 2019; 9:3105. [PMID: 30705675 PMCID: PMC6344400 DOI: 10.3389/fimmu.2018.03105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Obstructive chronic lung allograft dysfunction (BOS) is the major limiting factor for lung transplantation (LTx) outcome. PTPN22 is described as the hallmark autoimmunity gene, and one specific single nucleotide polymorphism (SNP), rs2476601, is associated with multiple autoimmune diseases, impaired T cell regulation, and autoantibody formation. Taking into consideration the contribution of autoimmunity to LTx outcome, we hypothesized that polymorphisms in the PTPN22 gene could be associated with BOS incidence. We selected six SNPs within PTPN22 and analyzed both patient and donor genotypes on BOS development post-LTx. A total of 144 patients and matched donors were included, and individual SNPs and haplotype configurations were analyzed. We found a significant association between patients carrying the heterozygous configuration of rs2476601 and a higher risk for BOS development (p = 0.005, OR: 4.400, 95%CI: 1.563–12.390). Kaplan-Meier analysis showed that heterozygous patients exhibit a lower BOS-free survival compared to patients homozygous for rs2476601 (p = 0.0047). One haplotype, which solely contained the heterozygous risk variant, was associated with BOS development (p = 0.015, OR: 7.029, 95%CI: 1.352–36.543). Our results show that LTx patients heterozygous for rs2476601 are more susceptible for BOS development and indicate a deleterious effect of the autoimmune-related risk factor of PTPN22 in patients on LTx outcome.
Collapse
Affiliation(s)
- Kevin Budding
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eduard A van de Graaf
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Oliver A van Rossum
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Kardol-Hoefnagel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Erik-Jan D Oudijk
- Center of Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Departments of Rheumatology and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henderikus G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
9
|
PTPN22 +788 G>A (R263Q) Polymorphism is Associated with mRNA Expression but it is not a Susceptibility Marker for Rheumatoid Arthritis Patients from Western Mexico. Biochem Genet 2019; 57:455-465. [PMID: 30637604 DOI: 10.1007/s10528-019-09902-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/04/2019] [Indexed: 02/01/2023]
Abstract
PTPN22 represents an important non-HLA gene that has been strongly associated with rheumatoid arthritis (RA) pathogenesis. Several studies have reported a specific genetic variant for PTPN22 (+788 G>A; rs33996649) that might be associated with decreased RA risk in Caucasian population; nevertheless, its specific role in western Mexican population has not been yet described. A case-control study with 443 RA patients and 317 control subjects (CS) was conducted. The genotyping was performed by Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique and the PTPN22 mRNA expression was determined by SYBR Green-based real-time quantitative-PCR assay. No association between the PTPN22 +788 G>A polymorphism and RA susceptibility in western Mexican population was found when comparing genotype and allelic frequencies between RA patients and CS (G/G vs. G/A: OR 0.55, p = 0.14, 95% CI 0.22-1.32; G vs. A: OR 0.56, p = 0.14, 95% CI 0.23-1.36). The PTPN22 mRNA expression increased 4.6-fold more in RA patients than in CS, and RA patients, carriers of PTPN22 +788 G/A genotype, expressed 15.6-fold more than RA patients carrying the homozygous G/G genotype. Overall, these results showed that the PTPN22 +788 G>A polymorphism is not associated with RA susceptibility in western Mexican population, whereas the presence of G/A genotype is associated with increased PTPN22 mRNA expression in RA patients.
Collapse
|
10
|
An association study in PTPN22 suggests that is a risk factor to Takayasu's arteritis. Inflamm Res 2018; 68:195-201. [PMID: 30470857 DOI: 10.1007/s00011-018-1204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Takayasu's arteritis (TA) represents a rare autoimmune disease (AD) characterized by systemic vasculitis that primarily affects large arteries, especially the aorta and the aortic arch and its main branches. Genetic components in TA are largely unknown. PTPN22 is a susceptibility loci for different ADs; however, the role of different PTPN22 single-nucleotide polymorphisms (SNPs) in the susceptibility to TA is not clear. METHODS We evaluated the PTPN22 R620W (C1858T), R263Q (G788A), and - 123G/C SNPs in a group of patients with TA and in healthy individuals from Mexico. Our study included 111 patients with TA and 314 healthy individuals. Genotyping was performed with the 5' exonuclease (TaqMan®) assay. RESULTS Our data showed that the PTPN22 R620W polymorphism is a risk factor for TA (CC vs. CT: OR 4.3, p = 0.002, and C vs. T: OR 4.1, p = 0.003); however, the PTPN22 R263Q and - 1123G/C polymorphisms are not associated with this AD. In addition, the PTPN22 CGT haplotype, which carries the minor allele of the PTPN22 C1858T variant, was also associated with TA susceptibility. CONCLUSION This is the first report documenting an association between PTPN22 R620W and TA.
Collapse
|
11
|
Chu XQ, Wang J, Chen GX, Zhang GQ, Zhang DY, Cai YY. Overexpression of microRNA-495 improves the intestinal mucosal barrier function by targeting STAT3 via inhibition of the JAK/STAT3 signaling pathway in a mouse model of ulcerative colitis. Pathol Res Pract 2017; 214:151-162. [PMID: 29129493 DOI: 10.1016/j.prp.2017.10.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/22/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022]
Abstract
We aim to investigate the role of microRNA-495 (miR-495) in the intestinal mucosal barrier by indirectly targeting signal transducer and activator of transcription 3 (STAT3) through the Janus kinase-signal transducer and activator of transcription (JAK)/STAT3 signaling pathway in a mouse model of ulcerative colitis (UC). BALB/c mice were selected for establishing mice model of UC, and intestinal tissues of normal and UC mice were collected. ELISA was conducted for detecting levels of TNF-α, IL-6, IFN-γ and IL-10. The levels of SOD, MPO, MDA and NO were tested in the intestinal tissues. Dual luciferase reporter gene assay was applied to determine whether miR-495 directly targets STAT3. Cells were cultured, transfected and assigned into: normal group, blank group, NC group, miR-495 mimic group, miR-495 inhibitor group, siRNA-STAT3 group and miR-495 inhibitor+siRNA-STAT3 group. MTT was used for testing cell proliferation, flow cytometry for cell cycle and apoptosis. Northern blotting and Western blotting were performed to detect miR-495 expression and expressions of STAT3, JAK and Claudin-1. Results show that the UC group had higher expression levels of TNF-α, IL-6, IFN-γ, MPO, MDA, NO, STAT3 and JAK and lower expression levels of IL-10, SOD, miR-495 and Claudin-1, compared to the normal group. Dual luciferase reporter gene assay confirmed that STAT3 was the target gene of miR-495. The miR-495 mimic and siRNA-STAT3 groups had higher expressions of Claudin-1, higher cell proliferation and increased amount of cells in S phase, but lower expressions of STAT3 and JAK, decreased amount of cells in G0/G1 phase and cell apoptotic rate compared with the blank, NC groups. We also found that the miR-495 inhibitor+siRNA-STAT3 group had reduced miR-495 expression. No significant differences were found in mRNA and protein expressions of STAT3, JAK and Claudin-1, cell proliferation, apoptosis and cycle amongst the miR-495 inhibitor+siRNA-STAT3 groups. Our study provides evidence that miR-495 improves the intestinal mucosal barrier function by targeting STAT3 through inhibiting the JAK/STAT3 signaling pathway in UC mice.
Collapse
Affiliation(s)
- Xian-Qun Chu
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Jing Wang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Guang-Xiang Chen
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China
| | - Guan-Qi Zhang
- Department of Hepatobiliary Surgery, Hubei Provincial People's Hospital, Wuhan 430060, PR China
| | - De-Yong Zhang
- Department of Gastrointestinal Surgery, Jining No. 1 People's Hospital, No. 6, Jiankang Road, Jining, Shandong Province 272011, PR China.
| | - Yong-Yan Cai
- The First Department of Pediatrics Medicine, Cangzhou Central Hospital, Cangzhou 061000, PR China
| |
Collapse
|
12
|
Protein tyrosine phosphatase non-receptor 22 and C-Src tyrosine kinase genes are down-regulated in patients with rheumatoid arthritis. Sci Rep 2017; 7:10525. [PMID: 28874816 PMCID: PMC5585411 DOI: 10.1038/s41598-017-10915-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/16/2017] [Indexed: 01/02/2023] Open
Abstract
Several protein tyrosine phosphatase non-receptor 22 (PTPN22) single-nucleotide polymorphisms (SNPs) have been significantly related with rheumatoid arthritis (RA) susceptibility. Nevertheless, its potential influence on PTPN22 expression in RA has not been completely elucidated. Furthermore, PTPN22 binds to C-Src tyrosine kinase (CSK) forming a key complex in autoimmunity. However, the information of CSK gene in RA is scarce. In this study, we analyzed the relative PTPN22 and CSK expression in peripheral blood from 89 RA patients and 43 controls to determine if the most relevant PTPN22 (rs2488457, rs2476601 and rs33996649) and CSK (rs34933034 and rs1378942) polymorphisms may influence on PTPN22 and CSK expression in RA. The association between PTPN22 and CSK expression in RA patients and their clinical characteristics was also evaluated. Our study shows for the first time a marked down-regulation of PTPN22 expression in RA patients carrying the risk alleles of PTPN22 rs2488457 and rs2476601 compared to controls (p = 0.004 and p = 0.007, respectively). Furthermore, CSK expression was significantly lower in RA patients than in controls (p < 0.0001). Interestingly, a reduced PTPN22 expression was disclosed in RA patients with ischemic heart disease (p = 0.009). The transcriptional suppression of this PTPN22/CSK complex may have a noteworthy clinical relevance in RA patients.
Collapse
|
13
|
Norén E, Almer S, Söderman J. Genetic variation and expression levels of tight junction genes identifies association between MAGI3 and inflammatory bowel disease. BMC Gastroenterol 2017; 17:68. [PMID: 28545409 PMCID: PMC5445404 DOI: 10.1186/s12876-017-0620-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/10/2017] [Indexed: 01/03/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is associated with increased intestinal permeability, which involves paracellular passage regulated through tight junctions (TJ). The aim of the study was to investigate single nucleotide polymorphisms (SNP) located in genes encoding interacting TJ proteins and corresponding expressions, in relation to IBD. Methods Allelic associations between TJ-related genes (F11R, MAGI1, MAGI2, MAGI3, PARD3, PTEN, and TJP1) and IBD, Crohn’s disease (CD), or ulcerative colitis (UC) were investigated. PTPN22 was included since it’s located in the same genetic region as MAGI3. Gene expression levels were investigated in relation to genotype, inflammatory status, phenotype, and medical treatment. Results The two strongest allelic associations were observed between IBD and SNPs in MAGI2 (rs6962966) and MAGI3 (rs1343126). Another MAGI3 SNP marker (rs6689879) contributed to increased ileal MAGI3 expression level in non-IBD controls. Furthermore, association between inflammation and decreased expression levels of MAGI3, PTEN, and TJP1 in colonic IBD as well as UC mucosa, and between inflammation and increased expression of PTPN22 in colonic IBD mucosa, was observed. Conclusions Our findings lend support to a genetic basis for modulation of intestinal epithelial barrier in IBD, and we have identified MAGI3 as a new candidate gene for IBD. Electronic supplementary material The online version of this article (doi:10.1186/s12876-017-0620-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elisabeth Norén
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden. .,Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden.
| | - Sven Almer
- Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden.,GastroCentrum, Karolinska University Hospital, Solna, Stockholm, Sweden
| | - Jan Söderman
- Division of Medical Diagnostics, Region Jönköping County, Jönköping, Sweden.,Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Hedjoudje A, Cheurfa C, Briquez C, Zhang A, Koch S, Vuitton L. rs2476601 polymorphism in PTPN22 is associated with Crohn's disease but not with ulcerative colitis: a meta-analysis of 16,838 cases and 13,356 controls. Ann Gastroenterol 2017; 30:197-208. [PMID: 28243041 PMCID: PMC5320033 DOI: 10.20524/aog.2017.0121] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
Background Although the rs2476601 polymorphism of PTPN22 has been reported to be a susceptibility gene for Crohn’s disease (CD), results from different studies vary and remain inconclusive. Also, no association has been found between rs2476601 and the risk of ulcerative colitis (UC). The aim of this meta-analysis was to investigate the association between this PTPN22 polymorphism (rs2476601) and the risk of inflammatory bowel disease, UC and CD. Methods We performed a meta-analysis by identifying relevant candidate gene-based studies from EMBASE and MEDLINE. Odds ratios (OR) and 95% confidence intervals (CI) were calculated to estimate the strength of associations between rs2476601 and inflammatory bowel diseases, using a fixed effect or random effect model. Publication bias was also assessed. Results By pooling 14 different studies, 13,356 controls, 8182 patients with CD, and 8656 with UC were included. We found that the T allele of PTPN22 was not significantly associated with a higher risk of developing UC (OR 1.06, 95%CI 0.98-1.14) but was associated with a decreased risk of developing CD (OR 1.28, 95%CI 1.17-1.40). The T allele in rs2476601 lowered the risk of CD by 22%. Conclusion This study shows that PTPN22 (rs2476601) is significantly associated with the risk of developing CD, but has no association with UC. This suggests that these diseases have different pathways involved in their pathophysiology.
Collapse
Affiliation(s)
- Abdellah Hedjoudje
- Gastro-entérologie, Centre Hospitalier Régional Universitaire de Besançon, Besançon (Abdellah Hedjoudje, Clément Briquez, Stéphane Koch, Lucine Vuitton); Faculté de Médecine, Université Paris Descartes, Paris (Chérifa Cheurfa)
| | - Chérifa Cheurfa
- Faculté de Médecine, Université Paris Descartes, Paris (Chérifa Cheurfa); Anésthésie réanimation, CHU Charles Nicolle, Rouen, France (Chérifa Cheurfa)
| | - Clément Briquez
- Gastro-entérologie, Centre Hospitalier Régional Universitaire de Besançon, Besançon (Abdellah Hedjoudje, Clément Briquez, Stéphane Koch, Lucine Vuitton)
| | - Allen Zhang
- Johns Hopkins University Evidence-based Practice Center, Johns Hopkins University, Baltimore, United States (Allen Zhang)
| | - Stéphane Koch
- Gastro-entérologie, Centre Hospitalier Régional Universitaire de Besançon, Besançon (Abdellah Hedjoudje, Clément Briquez, Stéphane Koch, Lucine Vuitton)
| | - Lucine Vuitton
- Gastro-entérologie, Centre Hospitalier Régional Universitaire de Besançon, Besançon (Abdellah Hedjoudje, Clément Briquez, Stéphane Koch, Lucine Vuitton)
| |
Collapse
|
15
|
Li F, Li N, Zhu Q, Zhou Z, Zhang P, Yang C, Han Q, Lv Y, Wei P, Liu Z. Association of PTPN22 gene polymorphisms with chronic hepatitis B virus infection in Chinese Han population. Hum Immunol 2015; 76:736-41. [PMID: 26429315 DOI: 10.1016/j.humimm.2015.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 06/23/2015] [Accepted: 09/27/2015] [Indexed: 01/12/2023]
Abstract
Lymphoid protein tyrosine phosphatase encoded by protein tyrosine phosphatase non-receptor 22 (PTPN22) gene plays an important regulatory role in T- and B-cell activation. This study investigated PTPN22 -1123G/C and intron 16 T/C polymorphisms in 372 patients with chronic hepatitis B virus (HBV) infection, 72 HBV infection resolvers and 273 healthy controls. Genotypic association tests between groups assuming codominant, dominant or log-additive genetic models were performed. In recessive model, PTPN22 -1123G/C genotype GG in healthy controls was more frequent than infection resolvers (P=0.037, OR=3.606, 95%CI=1.079-12.053) and this genotype in HBV patients was more frequent than resolvers although the difference was not significant (P=0.059). The PTPN22 intron 16 T/C genotype TC in cirrhosis patients was significantly higher than asymptomatic carriers (ASC) in codominant (P=0.028, OR=9.792, 95%CI=1.281-74.832) and overdominant (P=0.025, OR=10.142, 95%CI=1.332-77.214) models. This genotype in hepatocellular carcinoma (HCC) patients was significantly higher than ASC in codominant (P=0.034, OR=9.200, 95%CI=1.176-71.990) and overdominant (P=0.030, OR=9.677, 95%CI=1.241-75.442) models. These findings suggest that PTPN22 polymorphisms may predispose the chronicity or the development of cirrhosis and HCC in HBV infection.
Collapse
Affiliation(s)
- Fang Li
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Na Li
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qianqian Zhu
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhihua Zhou
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Pingping Zhang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Cuiling Yang
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Qunying Han
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Ping Wei
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Zhengwen Liu
- Department of Infectious Diseases, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Institute of Advanced Surgical Technology and Engineering, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
16
|
Association between a gain-of-function variant of PTPN22 and rejection in liver transplantation. Transplantation 2015; 99:431-7. [PMID: 25073032 DOI: 10.1097/tp.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The protein tyrosine phosphatase nonreceptor 22 gene (PTPN22) encodes a strong T-cell regulator called lymphoid protein tyrosine phosphatase. Previously, PTPN22 was described as a susceptibility gene for autoimmunity because it contains single nucleotide polymorphisms (SNPs) associated with several autoimmune diseases. One SNP (rs2476601; 1858G>A) has emerged as a particularly potent risk factor for autoimmunity. We address the question whether PTPN22 polymorphisms are also associated with acute rejection after liver transplantation. METHODS We investigated the influence of six PTPN22 SNPs on the susceptibility to acute liver allograft rejection. Consequently, we carried out a retrospective study genotyping 345 German liver recipients at six SNP loci, which include rs2488457 (-1123G>C), rs33996649 (788C>T), rs2476601 (1858G>A), rs1310182 (-852A>G), rs1217388 (-2200G>A), rs3789604 (64434T>G). Our study enrolled 165 recipients who did not develop rejection, 123 who showed one rejection episode, and 57 patients who suffered from multiple acute rejections after transplantation. RESULTS The 1858A allele containing genotypes (GA+AA) and the 1858A allele had a significantly higher frequency in the group of patients with multiple rejection episodes (35.1% and 18.4%) compared to rejection-free patients (15.8% and 7.9%; P=0.022 and 0.023). In contrast, we could not detect any association between rejection and the other tested SNPs. Additionally, we identified one haplotype contributing to risk of multiple rejections, however, exhibiting no stronger impact than the 1858A allele alone. CONCLUSION We conclude that the 1858G>A SNP may confer susceptibility to multiple acute liver transplant rejections in the German population.
Collapse
|
17
|
Ferjeni Z, Bouzid D, Fourati H, Stayoussef M, Abida O, Kammoun T, Hachicha M, Penha-Gonçalves C, Masmoudi H. Association of TCR/CD3, PTPN22, CD28 and ZAP70 gene polymorphisms with type 1 diabetes risk in Tunisian population: family based association study. Immunol Lett 2014; 163:1-7. [PMID: 25448703 DOI: 10.1016/j.imlet.2014.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/30/2014] [Accepted: 11/10/2014] [Indexed: 11/28/2022]
Abstract
Type 1 diabetes (T1D) is caused by an immune-mediated destruction of the insulin-producing β-cells. Several studies support the involvement of T cell activation molecules in the pathogenesis of T1D. In order to underline the role of the genes involved in this activation pathway, we investigated, using the Sequenom MassARRAY platform, 45 single-nucleotide polymorphisms (SNPs) belonging to TCR/CD3, CD28, ZAP70, and PTPN22 genes in 59 T1D Tunisian families. In the current study, we identified an association with rs706 (Z score=2.782; p=0.005) of TCRβ gene. We also demonstrated that rs10918706 in the intron of the CD3z gene was associated with increased risk of T1D (Z score 2.137; p=0.032). In the same region, rs2949655 (Z score=2.101; p=0.035) and rs1214611 (Z score=4.036; p=0.00005) showed a genotype association with the risk of T1D. When haplotypes were constructed, GAA haplotype displayed significant association with T1D (Z score=2.135; p=0.032), while GGA haplotype (Z score=-1.988; p=0.046) was negatively associated with the disease. We also identified an association with rs3181096 (Z score=2.177; p=0.029), rs17695937 (Z score =2.111; p=0.034) and rs2488457 (Z score=2.219; p=0.026), respectively of CD28, ZAP70 and PTPN22 genes. In addition, our results suggest a significant effect on T1D susceptibility for AC (Z score=2.30; p=0.02) and CTGGC (Z score=2.309, p=0.02) haplotypes of ZAP70 and PTPN22 genes, respectively. While, the GTCT (Z score=-2.114, p=0.034) and CTAGG (Z score=-2.121, p=0.033) haplotypes of CD28 and PTPN22 genes, may confer protection against T1D. These findings confirm the role of PTPN22 and CD28 involved in the T cell activation pathway in the development of T1D in Tunisian families. Interestingly, ZAP70 and TCRβ/CD3z seem to contribute to the susceptibility to the disease in our population. However, this finding has to be confirmed in further studies.
Collapse
Affiliation(s)
- Zouidi Ferjeni
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia.
| | - D Bouzid
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - H Fourati
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - M Stayoussef
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - O Abida
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| | - T Kammoun
- Pediatric Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | - M Hachicha
- Pediatric Department, Hedi Chaker Hospital, University of Sfax, Sfax, Tunisia
| | | | - H Masmoudi
- Immunology Department, Habib Bourguiba Hospital, University of Sfax, Sfax, Tunisia
| |
Collapse
|
18
|
Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol 2013; 32:83-119. [PMID: 24364806 DOI: 10.1146/annurev-immunol-032713-120249] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inheritance of a coding variant of the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is associated with increased susceptibility to autoimmunity and infection. Efforts to elucidate the mechanisms by which the PTPN22-C1858T variant modulates disease risk revealed that PTPN22 performs a signaling function in multiple biochemical pathways and cell types. Capable of both enzymatic activity and adaptor functions, PTPN22 modulates signaling through antigen and innate immune receptors. PTPN22 plays roles in lymphocyte development and activation, establishment of tolerance, and innate immune cell-mediated host defense and immunoregulation. The disease-associated PTPN22-R620W variant protein is likely involved in multiple stages of the pathogenesis of autoimmunity. Establishment of a tolerant B cell repertoire is disrupted by PTPN22-R620W action during immature B cell selection, and PTPN22-R620W alters mature T cell responsiveness. However, after autoimmune attack has initiated tissue injury, PTPN22-R620W may foster inflammation through modulating the balance of myeloid cell-produced cytokines.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037;
| | | |
Collapse
|