1
|
Milan N, Navarria F, Cecchin E, De Mattia E. Somatic pharmacogenomics in the treatment prognosis of locally advanced rectal cancer patients: a narrative review of the literature. Expert Rev Clin Pharmacol 2024; 17:683-719. [PMID: 39046146 DOI: 10.1080/17512433.2024.2375449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/28/2024] [Indexed: 07/25/2024]
Abstract
INTRODUCTION Standard treatment for patients with locally advanced rectal cancer (LARC) includes neoadjuvant chemoradiotherapy (nCRT) with fluoropyrimidines, followed by surgical excision. The newly introduced therapeutic strategies propose intensified regimens or more conservative approaches based on risk stratification algorithms that currently include clinicoradiological criteria but not molecular variables. How to better stratify patients is a burning clinical question, and pharmacogenomics may prove useful in identifying new genetic markers that could be incorporated into clinical algorithms to personalize nCRT. An emerging area could be the evaluation of somatic mutations as potential genetic markers that correlate with patient prognosis. Tumor mutations in the RAS/BRAF genes, as well as microsatellite instability (MSI) status, are currently used in treatment selection for colorectal cancer (CRC); however, their clinical value in LARC is still unclear. AREA COVERED This literature review discusses the relevant findings on the prognostic role of mutations in the key oncogenes RAS, KRAS, BRAF, PIK3CA, SMAD4 and TP53, including MSI status in LARC patients treated with nCRT. EXPERT OPINION KRAS proved to be the most promising marker, consistently associated with poorer disease-free survival and overall survival. Therefore, KRAS could be a good candidate for integration into the risk stratification algorithm to develop a personalized treatment.
Collapse
Affiliation(s)
- Noemi Milan
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Navarria
- Radiation Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Erika Cecchin
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Elena De Mattia
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| |
Collapse
|
2
|
Xiang Y, Li S, Song M, Wang H, Hu K, Wang F, Wang Z, Niu Z, Liu J, Cai Y, Li Y, Zhu X, Geng J, Zhang Y, Teng H, Wang W. KRAS status predicted by pretreatment MRI radiomics was associated with lung metastasis in locally advanced rectal cancer patients. BMC Med Imaging 2023; 23:210. [PMID: 38087207 PMCID: PMC10717608 DOI: 10.1186/s12880-023-01173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Mutated KRAS may indicate an invasive nature and predict prognosis in locally advanced rectal cancer (LARC). We aimed to establish a radiomic model using pretreatment T2W MRIs to predict KRAS status and explore the association between the KRAS status or model predictions and lung metastasis. METHODS In this retrospective multicentre study, LARC patients from two institutions between January 2012 and January 2019 were randomly divided into training and testing cohorts. Least absolute shrinkage and selection operator (LASSO) regression and the support vector machine (SVM) classifier were utilized to select significant radiomic features and establish a prediction model, which was validated by radiomic score distribution and decision curve analysis. The association between the model stratification and lung metastasis was investigated by Cox regression and Kaplan‒Meier survival analysis; the results were compared by the log-rank test. RESULTS Overall, 103 patients were enrolled (73 and 30 in the training and testing cohorts, respectively). The median follow-up was 38.1 months (interquartile range: 26.9, 49.4). The radiomic model had an area under the curve (AUC) of 0.983 in the training cohort and 0.814 in the testing cohort. Using a cut-off of 0.679 defined by the receiver operating characteristic (ROC) curve, patients with a high radiomic score (RS) had a higher risk for lung metastasis (HR 3.565, 95% CI 1.337, 9.505, p = 0.011), showing similar predictive performances for the mutant and wild-type KRAS groups (HR 3.225, 95% CI 1.249, 8.323, p = 0.016, IDI: 1.08%, p = 0.687; NRI 2.23%, p = 0.766). CONCLUSIONS We established and validated a radiomic model for predicting KRAS status in LARC. Patients with high RS experienced more lung metastases. The model could noninvasively detect KRAS status and may help individualize clinical decision-making.
Collapse
Affiliation(s)
- Yirong Xiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Shuai Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Maxiaowei Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hongzhi Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ke Hu
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fengwei Wang
- Department of Oncology, Tianjin Union Medical Center, Tianjin, China
| | - Zhi Wang
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, China
| | - Zhiyong Niu
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, China
| | - Jin Liu
- Blot Info & Tech (Beijing) Co. Ltd, Beijing, China
| | - Yong Cai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yongheng Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Xianggao Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Jianhao Geng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Yangzi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Huajing Teng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Weihu Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| |
Collapse
|
3
|
Ahn HM, Kim DW, Oh HJ, Kim HK, Lee HS, Lee TG, Shin HR, Yang IJ, Lee J, Suh JW, Oh HK, Kang SB. Different oncological features of colorectal cancer codon-specific KRAS mutations: Not codon 13 but codon 12 have prognostic value. World J Gastroenterol 2023; 29:4883-4899. [PMID: 37701134 PMCID: PMC10494767 DOI: 10.3748/wjg.v29.i32.4883] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/06/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Approximately 40% of colorectal cancer (CRC) cases are linked to Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations. KRAS mutations are associated with poor CRC prognosis, especially KRAS codon 12 mutation, which is associated with metastasis and poorer survival. However, the clinicopathological characteristics and prognosis of KRAS codon 13 mutation in CRC remain unclear. AIM To evaluate the clinicopathological characteristics and prognostic value of codon-specific KRAS mutations, especially in codon 13. METHODS This retrospective, single-center, observational cohort study included patients who underwent surgery for stage I-III CRC between January 2009 and December 2019. Patients with KRAS mutation status confirmed by molecular pathology reports were included. The relationships between clinicopathological characteristics and individual codon-specific KRAS mutations were analyzed. Survival data were analyzed to identify codon-specific KRAS mutations as recurrence-related factors using the Cox proportional hazards regression model. RESULTS Among the 2203 patients, the incidence of KRAS codons 12, 13, and 61 mutations was 27.7%, 9.1%, and 1.3%, respectively. Both KARS codons 12 and 13 mutations showed a tendency to be associated with clinical characteristics, but only codon 12 was associated with pathological features, such as stage of primary tumor (T stage), lymph node involvement (N stage), vascular invasion, perineural invasion, tumor size, and microsatellite instability. KRAS codon 13 mutation showed no associations (77.2% vs 85.3%, P = 0.159), whereas codon 12 was associated with a lower 5-year recurrence-free survival rate (78.9% vs 75.5%, P = 0.025). In multivariable analysis, along with T and N stages and vascular and perineural invasion, only codon 12 (hazard ratio: 1.399; 95% confidence interval: 1.034-1.894; P = 0.030) among KRAS mutations was an independent risk factor for recurrence. CONCLUSION This study provides evidence that KRAS codon 13 mutation is less likely to serve as a prognostic biomarker than codon 12 mutation for CRC in a large-scale cohort.
Collapse
Affiliation(s)
- Hong-Min Ahn
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Duck-Woo Kim
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Hyeon Jeong Oh
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Hyung Kyung Kim
- Department of Pathology, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Hye Seung Lee
- Department of Pathology, Seoul National University Hospital, Seoul 03080, South Korea
| | - Tae Gyun Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Hye-Rim Shin
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - In Jun Yang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Jeehye Lee
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Jung Wook Suh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Heung-Kwon Oh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| | - Sung-Bum Kang
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam 13620, South Korea
| |
Collapse
|
4
|
Predictive and Prognostic Value of Oncogene Mutations and Microsatellite Instability in Locally-Advanced Rectal Cancer Treated with Neoadjuvant Radiation-Based Therapy: A Systematic Review and Meta-Analysis. Cancers (Basel) 2023; 15:cancers15051469. [PMID: 36900260 PMCID: PMC10001009 DOI: 10.3390/cancers15051469] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Markers of pathological complete response (pCR) to preoperative radiation-based therapy in locally advanced rectal cancer (LARC) are strongly needed. This meta-analysis aimed at elucidating the predictive/prognostic role of tumor markers in LARC. We systematically reviewed the impact of RAS, TP53, BRAF, PIK3CA, and SMAD4 mutations and MSI status on response (pCR, downstaging) and prognosis (risk of recurrence, survival) in LARC according to PRISMA guidelines and the PICO model. PubMed, Cochrane Library, and Web of Science Core Collection were systematically searched to identify relevant studies published before October 2022. KRAS mutations were significantly associated with the risk of not achieving pCR after preoperative treatment (summary OR = 1.80, 95% CI: 1.23-2.64). This association was even more significant in patients not receiving cetuximab (summary OR = 2.17, 95% CI: 1.41-3.33) than in patients receiving cetuximab (summary OR = 0.89, 95% CI: 0.39-20.05). MSI status was not associated with pCR (summary OR = 0.80, 95% CI: 0.41-1.57). No effect of KRAS mutation or MSI status on downstaging was detected. Meta-analysis of survival outcomes was not possible due to the large heterogeneity among studies in endpoint assessment. The minimum number of eligible studies to assess the predictive/prognostic role of TP53, BRAF, PIK3CA, and SMAD4 mutations was not reached. KRAS mutation, but not MSI status, proved to be a detrimental marker for response to preoperative radiation-based therapy in LARC. Translating this finding into the clinic could improve the management of LARC patients. More data are needed to clarify the clinical impact of TP53, BRAF, PIK3CA, and SMAD4 mutations.
Collapse
|