1
|
Zhang J, Yin Y, Xu Q, Che X, Yu C, Ren Y, Li D, Zhao J. Integrated serum pharmacochemistry and investigation of the anti-gastric ulcer effect of Zuojin pill in rats induced by ethanol. PHARMACEUTICAL BIOLOGY 2022; 60:1417-1435. [PMID: 35938492 PMCID: PMC9361771 DOI: 10.1080/13880209.2022.2098345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Zuojin Pill (ZJP) has been used to treat gastrointestinal problems in China for hundreds of years. OBJECTIVE To discover more potential active ingredients and evaluate the gastroprotective mechanisms of ZJP. MATERIALS AND METHODS An approach involving UPLC-Q-Orbitrap HRMS and serum pharmacochemistry was established to screen the multiple chemical constituents of ZJP. Male Sprague-Dawley (SD) rats were divided into six groups: normal control, ulcer control, omeprazole (30 mg/kg), and three ZJP groups (1.0, 2.0 and 4.0 g/kg). After oral treatment with ZJP or omeprazole for 7 days, all groups except the normal control group were orally administered 5 mL/kg ethanol to induce gastric ulceration. Histopathological assessment of gastric tissue was performed by haematoxylin and eosin staining. Antioxidant parameters and inflammatory mediators were determined using ELISA Kit and immunohistochemical analysis. RESULTS Ninety components were identified in ZJP. Among them, 23 prototypes were found in rat serum after oral administration of ZJP. The ulcer inhibition was over 90.0% for all the ZJP groups. Compared with the ulcer control rats, ZJP (4.0 g/kg) enhanced the antioxidant capacity of gastric tissue: superoxide dismutase (1.33-fold), catalase (2.61-fold), glutathione (2.14-fold), and reduced the malondialdehyde level (0.48-fold). Simultaneously, the ZJP meaningfully lowered the content of tumour necrosis factor-α (0.76-fold), interleukin-6 (0.66-fold), myeloperoxidase (0.21-fold), and nuclear factor kappa B (p65) (0.62-fold). DISCUSSION AND CONCLUSIONS This study showed ZJP could mitigate ethanol-induced rat gastric ulcers, which might benefit from the synergistic actions of multiple ingredients. The findings could support the quality control and clinical trials of ZJP.
Collapse
Affiliation(s)
- Jiaying Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yi Yin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Qianqian Xu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaoqing Che
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Chen Yu
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Ren
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Dongsheng Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Juanjuan Zhao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Liu L, Lu K, Xie J, Che H, Li H, Wancui X. Melanin from Sepia pharaonis ink alleviates mucosal damage and reduces inflammation to prevent alcohol-induced gastric ulcers. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
3
|
Zhang Y, Xiao W, Lin Z, Tan X, Li F, Luo P, Liu H. Systematic Pharmacology Mechanisms of Starfish in the Treatment of Peptic Ulcer. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.248.261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Agarwood Alcohol Extract Protects against Gastric Ulcer by Inhibiting Oxidation and Inflammation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9944685. [PMID: 34580595 PMCID: PMC8464430 DOI: 10.1155/2021/9944685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Background Agarwood has been used for centuries, especially for treatment of gastrointestinal diseases. Earlier studies of our laboratory suggested that agarwood alcohol extracts (AAEs) provided gastric mucosal protection. This study aims to investigate the ameliorative effect of AAEs on ethanol-induced gastric ulcers and its mechanism. Methods Mice were given agarwood induced by the whole-tree agarwood-inducing technique alcohol extract (WTAAE, 0.71, 1.42, and 2.84 g/kg), wild agarwood induced by axe wounds alcohol extract (WAAE, 2.84 g/kg), and burning-chisel-drilling agarwood alcohol extract (FBAAE, 2.84 g/kg) orally, respectively. After 7 days' pretreatment with AAEs, the gastric ulcers were induced by absolute ethanol. The ulcer index, gastric histopathology, biochemical parameters, and inflammatory proteins were evaluated. Results Pharmacological results showed AAEs (1.42 and 2.84 g/kg) reduced the gastric occurrence and ulcer inhibition rates up to more than 60%. AAEs decreased the level of nitric oxide (NO) and increased glutathione (GSH) and superoxide dismutase (SOD) levels. Besides, AAEs decreased the levels of interleukin-1β (IL-1β) and interleukin-6 (IL-6), but the interleukin-10 (IL-10) was upregulated. The expressions of nuclear factor kappa B (NF-κB) and phosphorylated protein 38 (p-P38) were inhibited. The effect of WTAAE was better than that of FBAAE and similar to that of WAAE at the dose of 2.84 g/kg. Conclusions These results demonstrate that agarwood alleviates the occurrence and development of gastric ulcers via inhibiting oxidation and inflammation.
Collapse
|
5
|
Wu H, Gu L, Ma X, Tian X, Fan S, Qin M, Lu J, Lyu M, Wang S. Rapid Detection of Helicobacter pylori by the Naked Eye Using DNA Aptamers. ACS OMEGA 2021; 6:3771-3779. [PMID: 33585756 PMCID: PMC7876845 DOI: 10.1021/acsomega.0c05374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/12/2021] [Indexed: 05/02/2023]
Abstract
Helicobacter pylori was first isolated from gastritis patients by Barry J. Marshall and J. Robin Warren in 1982, and more than 90% of duodenal ulcers and about 80% of gastric ulcers are caused by H. pylori infection. Most detection methods require sophisticated instruments and professional operators, making detection slow and expensive. Therefore, it is critical to develop a simple, fast, highly specific, and practical strategy for the detection of H. pylori. In this study, we used H. pylori as a target to select unique aptamers that can be used for the detection of H. pylori. In our study, we used random ssDNA as an initial library to screen nucleic acid aptamers for H. pylori. We used binding rate and the fluorescence intensity to identify candidate aptamers. One DNA aptamer, named HPA-2, was discovered through six rounds of positive selection and three rounds of negative selection, and it had the highest affinity constant of all aptamers tested (K d = 19.3 ± 3.2 nM). This aptamer could be used to detect H. pylori and showed no specificity for other bacteria. Moreover, we developed a new sensor to detect H. pylori with the naked eye for 5 min using illumination from a hand-held flashlight. Our study provides a framework for the development of other aptamer-based methods for the rapid detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Hangjie Wu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Lide Gu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xiaoyi Ma
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Xueqing Tian
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Shihui Fan
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Mingcan Qin
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Jing Lu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| | - Shujun Wang
- Jiangsu Key Laboratory
of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine
Biotechnology, Jiangsu Ocean University, Lianyungang 222005, PR China
- Co-Innovation Center of Jiangsu Marine
Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, PR China
| |
Collapse
|
6
|
Zhao J, Li X, Liu Q, Shi L, Zhang L, Yang H, Zhang Q. Clinical comparative analysis of various duodenal diseases in different age groups. TURKISH JOURNAL OF GASTROENTEROLOGY 2020; 31:489-496. [PMID: 32897221 DOI: 10.5152/tjg.2020.18712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND/AIMS This study aimed to investigate the differences and relevance of various common duodenal diseases in different parts in the aspects of age, gender, helicobacter pylori (H. pylori) infection, application of nonsteroidal anti-inflammatory drugs (NSAIDs), smoking, or alcohol consumption. MATERIALS AND METHODS The medical records of various duodenal diseases were collected and tested for difference using the χ2 test or the Fisher exact probability method. RESULTS 1) The proportions of duodenal ulcer (DU), inflammation, and duodenal bulb diseases in the adult group (A) (47.98%, 36.70%, and 66.63%) were higher than those in the elderly group (E) (41.38%, 29.83%, and 56.82%), but the proportions of duodenal diverticulum (DD) and tumor diseases in the descending and ascending segments (2.95%, 1.43%, 9.14%, and 0.14%) were lower than those in group E (13.73%, 3.69%, 19.41%, and 0.76%) (p<0.001). 2) The positive rate of H. pylori (63.64%) in the duodenal bulb diseases was higher than that in the bulb-descending segment (53.75%), but the application rate of NSAIDs (16.44%) in the duodenal bulb-descending diseases was lower than that in the descending segment (24.81%) (p<0.001). CONCLUSION 1) DU, inflammation, and duodenal bulb diseases are common in adults, but DD and tumor diseases in the descending and ascending segments are more common in the elderly. 2) Compared with the duodenal bulb-descending diseases, the application of NSAIDs has greater impact on the diseases in the descending segment, and the rate of H. pylori infection is higher in duodenal bulb diseases.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xuelian Li
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qi Liu
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Linyan Shi
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ling Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hong Yang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qianqian Zhang
- Department of Gastroenterology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|