1
|
DeCoy M, Page-Goertz C, Nofziger R, Besunder J, Raimer P, Gothard D, Brown M, Stewart R, Ruggles C, Breedlove K, Clark J. Hemodynamic profile effects of PM101 amiodarone formulation in patients with post-operative tachyarrhythmias. Cardiol Young 2023; 33:1643-1648. [PMID: 36124626 DOI: 10.1017/s1047951122002888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Amiodarone may be considered for patients with junctional ectopic tachycardia refractory to treatment with sedation, analgesia, cooling, and electrolyte replacements. There are currently no published pediatric data regarding the hemodynamic effects of the newer amiodarone formulation, PM101, devoid of hypotensive agents used in the original amiodarone formulation. We performed a single-center, retrospective, descriptive study from January 2012 to December 2020 in a pediatric ICU. Thirty-three patients were included (22 male and 11 female) between the ages of 1.1 and 1,460 days who developed post-operative junctional ectopic tachycardia or other tachyarrhythmias requiring PM101. Data analysis was performed on hemodynamic parameters (mean arterial pressures and heart rate) and total PM101 (mg/kg) from hour 0 of amiodarone administration to hour 72. Adverse outcomes were defined as Vasoactive-Inotropic Score >20, patients requiring ECMO or CPR, or patient death. There was no statistically significant decrease in mean arterial pressures within the 6 hours of PM101 administration (p > 0.05), but there was a statistically significant therapeutic decrease in heart rate for resolution of tachyarrhythmia (p < 0.05). Patients received up to 25 mg/kg in an 8-hour time for rate control. Average rate control was achieved within 11.91 hours and average rhythm control within 62 hours. There were four adverse events around the time of PM101 administration, with three determined to not be associated with the medication. PM101 is safe and effective in the pediatric cardiac surgical population. Our study demonstrated that PM101 can be used in a more aggressive dosing regimen than previously reported in pediatric literature with the prior formulation.
Collapse
Affiliation(s)
- Meredith DeCoy
- Akron Children's Hospital, Department of Medical Education, Akron, OH, USA
| | | | - Ryan Nofziger
- Akron Children's Hospital, Division of Critical Care, Akron, OH, USA
| | - James Besunder
- Akron Children's Hospital, Division of Critical Care, Akron, OH, USA
| | - Patricia Raimer
- Akron Children's Hospital, Division of Critical Care, Akron, OH, USA
| | - David Gothard
- Biostats, Inc: Data Analysis for Clinical Research Studies, East Canton, OH, USA
| | | | | | - Cassandra Ruggles
- Akron Children's Hospital, Division of Critical Care, Akron, OH, USA
| | | | - John Clark
- Akron Children's Hospital, Heart Center, Akron, OH, USA
| |
Collapse
|
2
|
Abstract
BACKGROUND Targeted drug development efforts in patients with CHD are needed to standardise care, improve outcomes, and limit adverse events in the post-operative period. To identify major gaps in knowledge that can be addressed by drug development efforts and provide a rationale for current clinical practice, this review evaluates the evidence behind the most common medication classes used in the post-operative care of children with CHD undergoing cardiac surgery with cardiopulmonary bypass. METHODS We systematically searched PubMed and EMBASE from 2000 to 2019 using a controlled vocabulary and keywords related to diuretics, vasoactives, sedatives, analgesics, pulmonary vasodilators, coagulation system medications, antiarrhythmics, steroids, and other endocrine drugs. We included studies of drugs given post-operatively to children with CHD undergoing repair or palliation with cardiopulmonary bypass. RESULTS We identified a total of 127 studies with 51,573 total children across medication classes. Most studies were retrospective cohorts at single centres. There is significant age- and disease-related variability in drug disposition, efficacy, and safety. CONCLUSION In this study, we discovered major gaps in knowledge for each medication class and identified areas for future research. Advances in data collection through electronic health records, novel trial methods, and collaboration can aid drug development efforts in standardising care, improving outcomes, and limiting adverse events in the post-operative period.
Collapse
|
3
|
|
4
|
Maconochie IK, Bingham R, Eich C, López-Herce J, Rodríguez-Núñez A, Rajka T, Van de Voorde P, Zideman DA, Biarent D, Monsieurs KG, Nolan JP. European Resuscitation Council Guidelines for Resuscitation 2015. Resuscitation 2015; 95:223-48. [DOI: 10.1016/j.resuscitation.2015.07.028] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
5
|
Abstract
OBJECTIVES Although amiodarone is an effective treatment for severe paediatric arrhythmias, uncertainties about adverse effects such as hypotension, bradycardia and excessive serum drug concentrations persist. Therefore, the aims of this study were to: (a) determine serum concentrations of intravenous (IV) amiodarone following a widely implemented dosing regimen of 5 mg/kg bolus plus a 10 mg/kg/day continuous infusion and (b) generate descriptive data on safety parameters such as hypotension, bradycardia or corrected QT (QTc) prolongation during this regimen. DESIGN Prospective observational study. SETTING Paediatric intensive care unit. PATIENTS Twenty paediatric patients (median age, 0.23 years; range, 6 days-15.04 years) with arrhythmia secondary to or without cardiac surgery. INTERVENTIONS None. MAIN OUTCOME MEASURES Amiodarone serum concentrations, blood pressure, heart rate, QTc intervals. RESULTS Amiodarone serum concentrations increased markedly during bolus, followed by rapid decreases during maintenance infusion. All patients had serum concentrations regarded as effective in adults (median concentration range: 1.30-2.06 µM/L during maintenance phase). Amiodarone suppressed arrhythmias in 18 (90%) patients. Mean QTc intervals for pretherapy, during and post-therapy periods were 443 ms, 458 ms and 467 ms, respectively. Eight patients had hypotension. CONCLUSIONS Amiodarone was effective in the majority of children in this small cohort.
Collapse
Affiliation(s)
- Sergej Ramusovic
- Department of Clinical Pharmacy and Pharmacotherapy, Heinrich-Heine-University, , Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Biarent D, Bingham R, Eich C, López-Herce J, Maconochie I, Rodríguez-Núñez A, Rajka T, Zideman D. European Resuscitation Council Guidelines for Resuscitation 2010 Section 6. Paediatric life support. Resuscitation 2011; 81:1364-88. [PMID: 20956047 DOI: 10.1016/j.resuscitation.2010.08.012] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Dominique Biarent
- Paediatric Intensive Care, Hôpital Universitaire des Enfants, 15 av JJ Crocq, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
de Caen AR, Kleinman ME, Chameides L, Atkins DL, Berg RA, Berg MD, Bhanji F, Biarent D, Bingham R, Coovadia AH, Hazinski MF, Hickey RW, Nadkarni VM, Reis AG, Rodriguez-Nunez A, Tibballs J, Zaritsky AL, Zideman D. Part 10: Paediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 2011; 81 Suppl 1:e213-59. [PMID: 20956041 DOI: 10.1016/j.resuscitation.2010.08.028] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Allan R de Caen
- Stollery Children's Hospital, University of Alberta, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Biarent D, Bingham R, Eich C, López-Herce J, Maconochie I, Rodrίguez-Núñez A, Rajka T, Zideman D. Lebensrettende Maßnahmen bei Kindern („paediatric life support“). Notf Rett Med 2010. [DOI: 10.1007/s10049-010-1372-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kleinman ME, Chameides L, Schexnayder SM, Samson RA, Hazinski MF, Atkins DL, Berg MD, de Caen AR, Fink EL, Freid EB, Hickey RW, Marino BS, Nadkarni VM, Proctor LT, Qureshi FA, Sartorelli K, Topjian A, van der Jagt EW, Zaritsky AL. Part 14: Pediatric Advanced Life Support. Circulation 2010; 122:S876-908. [DOI: 10.1161/circulationaha.110.971101] [Citation(s) in RCA: 473] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Kleinman ME, de Caen AR, Chameides L, Atkins DL, Berg RA, Berg MD, Bhanji F, Biarent D, Bingham R, Coovadia AH, Hazinski MF, Hickey RW, Nadkarni VM, Reis AG, Rodriguez-Nunez A, Tibballs J, Zaritsky AL, Zideman D. Pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Pediatrics 2010; 126:e1261-318. [PMID: 20956433 PMCID: PMC3784274 DOI: 10.1542/peds.2010-2972a] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
12
|
Kleinman ME, de Caen AR, Chameides L, Atkins DL, Berg RA, Berg MD, Bhanji F, Biarent D, Bingham R, Coovadia AH, Hazinski MF, Hickey RW, Nadkarni VM, Reis AG, Rodriguez-Nunez A, Tibballs J, Zaritsky AL, Zideman D. Part 10: Pediatric basic and advanced life support: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2010; 122:S466-515. [PMID: 20956258 PMCID: PMC3748977 DOI: 10.1161/circulationaha.110.971093] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Note From the Writing Group: Throughout this article, the reader will notice combinations of superscripted letters and numbers (eg, “Family Presence During ResuscitationPeds-003”). These callouts are hyperlinked to evidence-based worksheets, which were used in the development of this article. An appendix of worksheets, applicable to this article, is located at the end of the text. The worksheets are available in PDF format and are open access.
Collapse
|
13
|
Schwaiblmair M, Berghaus T, Haeckel T, Wagner T, von Scheidt W. Amiodarone-induced pulmonary toxicity: an under-recognized and severe adverse effect? Clin Res Cardiol 2010; 99:693-700. [DOI: 10.1007/s00392-010-0181-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 05/20/2010] [Indexed: 01/15/2023]
|
14
|
Abstract
Amiodarone is a class 3 antiarrhythmic agent used for a broad range of arrhythmias including adenosine-resistant supraventricular tachycardia, junctional ectopic tachycardia, and ventricular tachycardia. Compared with adults, there are few data on its use in children with arrhythmias resistant to conventional therapy. National and international guidelines for cardiopulmonary resuscitation and emergency cardiovascular care recommend its use for a variety of arrhythmias based on case reports, cohort studies, and extrapolation from adult data. This article will review the historical development, chemical properties, metabolism, indications and contraindications, and adverse effects of amiodarone in infants and children. After completing this CME activity, the reader should be able to utilize amiodarone in the pediatric population for arrhythmias and identify complications associated with its use.
Collapse
|