1
|
Singh SP, Varghese KJ, Qureshi FM, Anderson MC, Foxworth J, Knuepfer MM. Catheter-based renal sympathetic nerve denervation on hypertension management outcomes. World J Radiol 2022; 14:238-248. [PMID: 36160631 PMCID: PMC9350608 DOI: 10.4329/wjr.v14.i7.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Renal sympathetic denervation (RSD) provides a minimally invasive interventional treatment modality for patients with resistant hypertension. However, the post-operative outcomes remain a key area of investigation since its earliest clinical trials.
AIM To evaluate patient outcomes after RSD intervention among peer-reviewed patient cases.
METHODS A systematic review of literature on MEDLINE, Google Scholar, and the Cochrane Database of Systematic Reviews for RSD case studies to assess post-operative hypertension readings and medical management.
RESULTS Among 51 RSD cases, the post-operative RSD patients report an apparent reduction with a mean number of 3.1 antihypertensive medications. The mean systolic arterial blood pressure 1 year following RSD was 136.0 mmHg (95%CI: 118.7-153.3).
CONCLUSION The apparent improvements in office systolic blood pressure after 12 month post-operative RSD can support the therapeutic potential of this intervention for blood pressure reduction. Additional studies which utilized a uniform methodology for blood pressure measurement can further support the findings of this systematic review.
Collapse
Affiliation(s)
- Som P Singh
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MO 64106, United States
| | - Kevin J Varghese
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MO 64106, United States
| | - Fahad M Qureshi
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MO 64106, United States
| | - Macy C Anderson
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MO 64106, United States
| | - John Foxworth
- Department of Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, MO 64106, United States
| | - Mark M Knuepfer
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, United States
| |
Collapse
|
2
|
Gauthier MM, Dennis MR, Morales MN, Brooks HL, Banek CT. Contribution of Afferent Renal Nerves to Cystogenesis and Arterial Pressure Regulation in a Preclinical Model of Autosomal Recessive Polycystic Kidney Disease. Am J Physiol Renal Physiol 2022; 322:F680-F691. [PMID: 35466689 PMCID: PMC9159540 DOI: 10.1152/ajprenal.00009.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Polycystic kidney disease (PKD) is the most common inheritable cause of kidney failure, and the underlying mechanisms remain incompletely uncovered. Renal nerves contribute to hypertension and chronic kidney disease - frequent complications of PKD. There is limited evidence that renal nerves may contribute to cardiorenal dysfunction in PKD, and no investigations of the role of sympathetic versus afferent nerves in PKD. Afferent renal nerve activity (ARNA) is elevated in models of renal disease and fibrosis. However, it remains unknown if this is true in PKD. We tested the hypothesis that ARNA is elevated in a preclinical model of autosomal recessive PKD (ARPKD), and that targeted renal nerve ablation would attenuate cystogenesis and cardiorenal dysfunction. We tested this by performing a total (T-RDNx) or afferent (A-RDNx) denervation in 4-week-old male and female PCK rats, then quantifying renal and cardiovascular responses 6 weeks following treatment. Cystogenesis was attenuated with A-RDNx and T-RDNx vs. sham controls, highlighting a crucial role for renal afferent nerves in cystogenesis. In contrast, blood pressure was improved with T-RDNx but not A-RDNx. Importantly, treatments produced similar results in both males and females. Direct renal afferent nerve recordings revealed that ARNA was 2-fold greater in PCK rats vs. non-cystic controls and was directly correlated to cystic severity. To our knowledge, we are the first to demonstrate that PCK rats have greater ARNA than non-cystic, age-matched controls. The findings of these studies support a novel and crucial role for renal afferent innervation in cystogenesis in the PCK rat.
Collapse
Affiliation(s)
- Madeline M Gauthier
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Melissa R Dennis
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Mark N Morales
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Heddwen L Brooks
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States
| | - Christopher T Banek
- Department of Physiology, University of Arizona Health Sciences Center, Tucson, AZ, United States.,Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
3
|
El Chediak A, Degheili JA, Khauli RB. Genitourinary Interventions in Autosomal Dominant Polycystic Kidney Disease: Clinical Recommendations for Urologic and Transplant Surgeons. EXP CLIN TRANSPLANT 2021; 19:95-103. [PMID: 33494664 DOI: 10.6002/ect.2020.0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autosomal dominant polycystic kidney disease is the fourth most common single cause of end-stage renal disease worldwide with both renal and extrarenal manifestations, resulting in significant morbidity. Approaches to the management of this disease vary widely, with no broadly accepted practice guidelines. Herein, we reviewed the various surgical and interventional management options that are targeted toward treating the symptoms or addressing the resulting kidney failure. Novel treatment modalities such as celiac plexus blockade and renal denervation appear to be promising in pain relief; however, further studies are lacking. Renal cyst decortication seems to have a higher success rate in targeting cyst-related pain compared with aspiration only. In terms of requiring major surgical intervention, such as need and timing of native nephrectomy, there are several considerations when deciding on transplantation with or without a pretransplant native nephrectomy. Patients who are not candidates for native nephrectomy may consider transcatheter arterial embolization. Based on our review of the contemporary indications for genitourinary interventions in the management of autosomal dominant polycystic kidney disease, we propose an algorithm that depicts the decision-making process on assessing the indications and timing of native nephrectomy in patients with end-stage renal disease awaiting transplant.
Collapse
Affiliation(s)
- Alissar El Chediak
- From the Department of Nephrology, Vanderbilt University Medical Center, Nashville, USA
| | - Jad A Degheili
- From the Division of Pediatric Urology, Department of Surgery, Children's Hospital of Eastern Ontario, University of Ottawa, Ontario, Canada.,From the Division of Urology and Renal Transplantation, Department of Surgery, American University of Beirut Medical Center, Beirut, Lebanon
| | | |
Collapse
|
4
|
Rovella V, Scimeca M, Giannini E, D'Ercole A, Giacobbi E, Noce A, D'Urso G, Anselmo A, Bove P, Santeusanio G, Bonanno E, Casasco M, Mauriello S, Di Daniele N, Mauriello A, Anemona L. Morphological evaluation of sympathetic renal innervation in patients with autosomal dominant polycystic kidney disease. J Nephrol 2019; 33:83-89. [PMID: 31025246 DOI: 10.1007/s40620-019-00612-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/13/2019] [Indexed: 12/18/2022]
Abstract
Several evidences support the hypothesis that patients affected by autosomal dominant polycystic kidney disease (ASPKD) show a sympathetic renal hyperactivity. Nevertheless, no morphological evidences are available yet. Therefore, the aim of the study was to demonstrate that an increase in sympathetic renal artery innervation was present in the ADPKD patients by using histological methods. In addition, here we correlated the sympathetic renal artery innervation with the evolutionary state of ADPKD (increase in volume of kidney, onset of chronic renal failure and hypertension). To this end, peri-adventitial innervation of renal arteries was studied using morphological methods from 49 patients in total: 29 underwent surgical nephrectomies for ADPKD and 20 non-dialysis patients (CTRL group) undergoing nephrectomy for other diseases. Nerve density (number of nerves per mm2) was evaluated in the peri-adventitial tissue in a concentric ring that was located within 2 mm from the beginning of the adventitia by using immunohistochemistry. The total nerve density was significantly increased in the ADPKD group (1.26 ± 0.82 × mm2) as compared to controls (0.78 ± 0.40 × mm2) (p = 0.02). Hypertensive patients with ADPKD showed a greater nerve density than control hypertensives. However, the increase in renal sympathetic innervation in the ADPKD patients was found to be independent of hypertension, resistance to antihypertensive therapy, age, sex and kidney volume, as demonstrated by the uni and multivariate analysis. In conclusion, our study better clarifies the effect of sympathetic hyperactivity in the progression of polycystic disease.
Collapse
Affiliation(s)
- Valentina Rovella
- Division of Internal Medicine and Nephrology, Policlinico Tor Vergata, viale oxford 81, Rome, 00133, Italy
| | - Manuel Scimeca
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy.,San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy
| | - Elena Giannini
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Adriana D'Ercole
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Erica Giacobbi
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Annalisa Noce
- Division of Internal Medicine and Nephrology, Policlinico Tor Vergata, viale oxford 81, Rome, 00133, Italy
| | - Gabriele D'Urso
- Division of Internal Medicine and Nephrology, Policlinico Tor Vergata, viale oxford 81, Rome, 00133, Italy
| | - Alessandro Anselmo
- Transplantation Surgery, Department of Surgery Policlinico Tor Vergata Foundation, Rome, Italy
| | - Pierluigi Bove
- Urology, Department of Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Santeusanio
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | - Elena Bonanno
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| | | | - Silvestro Mauriello
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Nicola Di Daniele
- Division of Internal Medicine and Nephrology, Policlinico Tor Vergata, viale oxford 81, Rome, 00133, Italy
| | - Alessandro Mauriello
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy. .,Tor Vergata Oncoscience Research (TOR), University of Rome "Tor Vergata", Rome, Italy.
| | - Lucia Anemona
- Anatomic Pathology, Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy
| |
Collapse
|
5
|
Raptis V, Loutradis C, Sarafidis PA. Renal injury progression in autosomal dominant polycystic kidney disease: a look beyond the cysts. Nephrol Dial Transplant 2018; 33:1887-1895. [DOI: 10.1093/ndt/gfy023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Affiliation(s)
- Vasileios Raptis
- Section of Nephrology and Hypertension, 1st Department of Medicine, AHEPA Hospital, Thessaloniki, Greece
| | - Charalampos Loutradis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pantelis A Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
6
|
Neuropeptide Y as an indicator of successful alterations in sympathetic nervous activity after renal sympathetic denervation. Clin Res Cardiol 2015; 104:1064-71. [PMID: 26008896 DOI: 10.1007/s00392-015-0874-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/20/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Renal sympathetic denervation (RSD) represents a safe and effective treatment option for certain patients with resistant hypertension and has been shown to decrease sympathetic activity. Neuropeptide Y (NPY) is a neurotransmitter that is co-released with norepinephrine and is up-regulated during increased sympathetic activity. The aim of the present study was to examine the effect of RSD on NPY and to analyze the association between changes in NPY levels and blood pressure reduction after RSD. METHODS A total of 150 consecutive patients (age 64.9 ± 10.2 years) from three clinical centers undergoing RSD were included in this study. Response to RSD was defined as an office systolic blood pressure (SBP) reduction of >10 mmHg 6 months after RSD. Venous blood samples for measurement of NPY were collected prior to and 6 months after RSD. RESULTS BP and NPY levels were significantly reduced by 23/9 mmHg (p = 0.001/0.001) and 0.24 mg/dL (p < 0.01) 6 months after RSD. There was a significant correlation between baseline SBP- and RSD-related systolic BP reduction (r = -0.43; p < 0.001) and between serum NPY baseline values and NPY level changes (r = -0.52; p < 0.001) at the 6-month follow-up. The BP response to RSD (>10 mmHg) was associated with a significantly greater reduction in NPY level when compared with BP non-responders (p = 0.001). CONCLUSION This study demonstrates an effect of RSD on serum NPY levels, a specific marker for sympathetic activity. The association between RSD-related changes in SBP and NPY levels provides further evidence of the effect of RSD on the sympathetic nervous system.
Collapse
|
7
|
Casteleijn NF, Blankestijn PJ, Gansevoort RT. In reply to 'catheter-based renal denervation in ADPKD: just for pain control?'. Am J Kidney Dis 2014; 64:999-1000. [PMID: 25453837 DOI: 10.1053/j.ajkd.2014.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/25/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Niek F Casteleijn
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Peter J Blankestijn
- University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Ron T Gansevoort
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
8
|
Wang Y. Single-sided renal denervation may be not suitable for patients with significant renal artery stenosis. Clin Res Cardiol 2014; 103:950-1. [DOI: 10.1007/s00392-014-0741-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 07/15/2014] [Indexed: 11/30/2022]
|
9
|
Böhm M, Linz D, Ukena C, Esler M, Mahfoud F. Renal Denervation for the Treatment of Cardiovascular High Risk-Hypertension or Beyond? Circ Res 2014; 115:400-9. [DOI: 10.1161/circresaha.115.302522] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Michael Böhm
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Dominik Linz
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Christian Ukena
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Murray Esler
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| | - Felix Mahfoud
- From the Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany (M.B., D.L., C.U., F.M.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.E.)
| |
Collapse
|
10
|
Abstract
INTRODUCTION Autosomal-dominant polycystic kidney disease (ADPKD) represents a therapeutic challenge as effective treatment to retard the growth of cysts in the kidneys and the liver has not been available despite decades of intense basic and clinical research. AREAS COVERED Several clinical trials have been performed in recent years to study the effect of diverse drugs on the growth of renal and hepatic cysts, and on functional deterioration of the glomerular filtration rate. The drug classes that have been tested in randomized clinical trials include the mammalian target of rapamycin (mTOR) inhibitors, sirolimus and everolimus, the somatostatin analogues (octreotide, lanreotide, pasireotide), and most recently, the vasopressin V2 receptor antagonist, tolvaptan. The results with the mTOR inhibitors were disappointing, but more encouraging with the somatostatin analogues and with tolvaptan. Additional drugs are being tested, which include among others, the SRC-ABL tyrosine kinase inhibitor, bosutinib, and the traditional Chinese herbal medication, triptolide. Additional therapeutic strategies to retard cyst growth aim at blood pressure control via inhibition of the renin-angiotensin system and the sympathetic nervous system. EXPERT OPINION Given the accumulated knowledge, it is currently uncertain whether drugs will become available in the near future to significantly change the course of the relentlessly progressing polycystic kidney disease.
Collapse
Affiliation(s)
- Rudolf P Wüthrich
- University Hospital, Division of Nephrology , Rämistrasse 100, 8091 Zürich , Switzerland +41 44 255 33 84 ; +41 44 255 45 93 ;
| | | |
Collapse
|