1
|
Shoar S, Shalaby M, Motiwala A, Jneid H, Allencherril J. Evolving Role of Coronary CT Angiography in Coronary Angiography and Intervention: A State-of-the-Art Review. Curr Cardiol Rep 2024; 26:1347-1357. [PMID: 39412596 DOI: 10.1007/s11886-024-02144-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 12/25/2024]
Abstract
PURPOSE OF REVIEW Despite growing evidence supporting the diagnostic utility of coronary computed tomographic angiography (CCTA) for anatomical assessment of coronary artery disease (CAD), its is underutilized in peri-procedural planning especially in the acute setting. RECENT FINDINGS Incorporation of flow reserve measurement techniques into CCTA has expanded its sensitivity and specificity for obstructive disease, and continued improvement in CCTA technology permits more accurate cross-sectional plaque characterization. CCTA has the potential to constitute the mainstay of pre-procedural planning for patients with CAD, who are being considered for percutaneous coronary intervention , reducing their ad hoc nature while facilitating equipment selection and improving catheterization lab safety and throughput. Future studies are needed to compare the cost and benefits of more frequent use of routine pre-procedural CCTA prior to coronary angiography and intervention.
Collapse
Affiliation(s)
- Saeed Shoar
- Department of Medicine, University of Maryland Capital Region Health, Largo, MD, USA.
| | - Mostafa Shalaby
- Department of Medicine, Division of Cardiovascular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Afaq Motiwala
- Department of Medicine, Division of Cardiovascular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Hani Jneid
- Department of Medicine, Division of Cardiovascular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Joseph Allencherril
- Department of Medicine, Division of Cardiovascular Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| |
Collapse
|
2
|
Li Y, Nagoshi R, Kozuki A, Kijima Y, Han Y, Shite J. Three-dimensional optical coherence tomography for guidance of percutaneous coronary intervention for coronary bifurcation disease: a review of current clinical applications. Cardiovasc Diagn Ther 2024; 14:949-957. [PMID: 39513132 PMCID: PMC11538841 DOI: 10.21037/cdt-24-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/19/2024] [Indexed: 11/15/2024]
Abstract
Percutaneous coronary intervention (PCI) for coronary bifurcation disease remains one of the most challenging situations in interventional cardiology in terms of procedural success rates and long-term cardiac events. Optical coherence tomography (OCT), with a higher signal-to-noise ratio and the ability to distinguish plaque components, can display the true condition of bifurcation lesions without overlapping or shortening and achieve detailed visualization of vascular structures, which is superior to those of other imaging modalities. Three-dimensional (3D) reconstruction of OCT images (3D-OCT) helps to gain a more informed understanding of the geometry and morphology of bifurcation lesions and provide additive information on plaque distribution. Following stent implantation, 3D-OCT can also guide the re-crossing of guide wires through stent struts jailing the side branch (SB) ostium and more clearly display the jailing strut configuration, as well as the ideal position of the guidewire recrossing point and stent struct link connection, to confirm the optimal guidewire position and understand interactions between stents and vessel walls, which may improve clinical results after PCI. The present review provides an up-to-date overview of the clinical use of 3D-OCT for accurate assessment of bifurcation anatomy, guiding the optimal guidewire rewiring into SB during bifurcation stenting, and evaluation of post-PCI results, offering novel information about atherosclerotic disease or stenting process.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Ryoji Nagoshi
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Amane Kozuki
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yoichi Kijima
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yaling Han
- Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Junya Shite
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| |
Collapse
|
3
|
Nieman K, García-García HM, Hideo-Kajita A, Collet C, Dey D, Pugliese F, Weissman G, Tijssen JGP, Leipsic J, Opolski MP, Ferencik M, Lu MT, Williams MC, Bruining N, Blanco PJ, Maurovich-Horvat P, Achenbach S. Standards for quantitative assessments by coronary computed tomography angiography (CCTA): An expert consensus document of the society of cardiovascular computed tomography (SCCT). J Cardiovasc Comput Tomogr 2024; 18:429-443. [PMID: 38849237 DOI: 10.1016/j.jcct.2024.05.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024]
Abstract
In current clinical practice, qualitative or semi-quantitative measures are primarily used to report coronary artery disease on cardiac CT. With advancements in cardiac CT technology and automated post-processing tools, quantitative measures of coronary disease severity have become more broadly available. Quantitative coronary CT angiography has great potential value for clinical management of patients, but also for research. This document aims to provide definitions and standards for the performance and reporting of quantitative measures of coronary artery disease by cardiac CT.
Collapse
Affiliation(s)
- Koen Nieman
- Stanford University School of Medicine and Cardiovascular Institute, Stanford, CA, United States.
| | - Hector M García-García
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, United States.
| | | | - Carlos Collet
- Onze Lieve Vrouwziekenhuis, Cardiovascular Center Aalst, Aalst, Belgium
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Francesca Pugliese
- NIHR Cardiovascular Biomedical Research Unit at Barts, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London & Department of Cardiology, Barts Health NHS Trust, London, UK
| | - Gaby Weissman
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, United States
| | - Jan G P Tijssen
- Department of Cardiology, Academic Medical Center, Room G4-230, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Jonathon Leipsic
- Department of Radiology and Medicine (Cardiology), University of British Columbia, Vancouver, BC, Canada
| | - Maksymilian P Opolski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Maros Ferencik
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, United States
| | - Michael T Lu
- Cardiovascular Imaging Research Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Nico Bruining
- Department of Cardiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Stephan Achenbach
- Department of Cardiology, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Radunović A, Vidaković R, Timčić S, Odanović N, Stefanović M, Lipovac M, Krupniković K, Mandić A, Kojić D, Tomović M, Ilić I. Multislice computerized tomography coronary angiography can be a comparable tool to intravascular ultrasound in evaluating "true" coronary artery bifurcations. Front Cardiovasc Med 2023; 10:1292517. [PMID: 38028491 PMCID: PMC10657987 DOI: 10.3389/fcvm.2023.1292517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Coronary bifurcation atherosclerosis depends on its angles, flow, and extensive branching. We investigate the ability of CT coronary angiography (CTCA) to determine atherosclerotic plaque characteristics of "true" bifurcation compared with intravascular ultrasound (IVUS) and the influence on side branch (SB) fate after percutaneous coronary intervention (PCI). Methods and results The study included 70 patients with 72 "true" bifurcations. Most of the bifurcations were in the left anterior descending-diagonal (Dg) territory [50 out of 72 (69.4%)]. Longitudinal plaque evaluation at the polygon of confluence [carina and 5 mm proximal and distal in the main branch (MB)] showed that carina side MB and SB plaque had occurred with the lowest incidence with fibro-lipid structure (115 ± 63 HU and 89 ± 73 HU, p < 0.001 for all). Bland-Altman analysis showed a discrepancy in measuring mainly the lumen area between CTCA and IVUS in proximal MB [lumen 5.10, 95% CI (95% confidence interval, 4.53-5.68) mm2, p < 0.001; vessel -1.42, 95% CI (-2.63 to -0.21) mm2, p = 0.023], carina MB [lumen 3.74, 95% CI (3.37-4.10) mm2, p < 0.001; vessel -0.48, 95% CI (-1.45 to 0.48) mm2, p = 0.322], and distal MB [lumen 4.72, 95% CI (4.27-5.18) mm2, p < 0.001; vessel 0.62, 95% CI (-0.53 to 1.77) mm2, p = 0.283]. A significant correlation existed between average plaque density on CTCA with a percentage of calcified plaque on IVUS tissue characterization (proximal r = 0.307/p = 0.024, carina 0.469/0.008, distal 0.339/0.024, minimal lumen diameter 0.318/0.020). Circumferential plaque in the proximal MB segment remained an independent predictor of SB compromise [OR 3.962 (95% CI 1.170-13.418)]. Conclusion Detection and characterization of atherosclerotic plaque by CTCA in non-left main "true" coronary bifurcations can provide useful information about bifurcation anatomy and plaque distribution that can predict outcomes after provisional stenting, thus guiding the interventional strategy to bifurcation PCI.
Collapse
Affiliation(s)
- Anja Radunović
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Radosav Vidaković
- Department of Cardiology, Clinical Hospital Center Zemun, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Stefan Timčić
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Natalija Odanović
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Milica Stefanović
- Department of Cardiology, Clinical Hospital Center Zemun, Belgrade, Serbia
| | - Mirko Lipovac
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Kosta Krupniković
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Aleksandar Mandić
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Dejan Kojić
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Milosav Tomović
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
| | - Ivan Ilić
- Department of Cardiology, Institute for Cardiovascular Diseases Dedinje, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Grodecki K, Warniello M, Spiewak M, Kwiecinski J. Advanced Cardiac Imaging in the Assessment of Aortic Stenosis. J Cardiovasc Dev Dis 2023; 10:jcdd10050216. [PMID: 37233183 DOI: 10.3390/jcdd10050216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Aortic stenosis is the most common form of valve disease in the Western world and a major healthcare burden. Although echocardiography remains the central modality for the diagnosis and assessment of aortic stenosis, recently, advanced cardiac imaging with cardiovascular magnetic resonance, computed tomography, and positron emission tomography have provided invaluable pathological insights that may guide the personalized management of the disease. In this review, we discuss applications of these novel non-invasive imaging modalities for establishing the diagnosis, monitoring disease progression, and eventually planning the invasive treatment of aortic stenosis.
Collapse
Affiliation(s)
- Kajetan Grodecki
- 1st Department of Cardiology, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Mateusz Warniello
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Mateusz Spiewak
- Magnetic Resonance Unit, Department of Radiology, Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Jacek Kwiecinski
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| |
Collapse
|
6
|
Predictors and Biomarkers of Subclinical Leaflet Thrombosis after Transcatheter Aortic Valve Implantation. J Clin Med 2020; 9:jcm9113742. [PMID: 33233321 PMCID: PMC7700436 DOI: 10.3390/jcm9113742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 01/03/2023] Open
Abstract
Transcatheter aortic valve implantation (TAVI) is a recent revolutionary treatment for high-risk patients with severe aortic stenosis who are not suitable for surgery, expanding to intermediate and low-risk patients. Valve leaflet thrombosis (LT) is a potentially fatal complication after TAVI. The incidence of subclinical LT is as high as 25% among patients in the first year after TAVI. Subclinical LT may evolve into symptomatic thrombosis or lead to premature bioprosthesis degeneration, increasing the risk of neurological complications. Because imaging-based methods have limited sensitivity to detect subclinical LT, there is an urgent need for predictors and biomarkers that would make it possible to predict LT after TAVI. Here, we summarize recent data regarding (i) patient-related, (ii) procedure-related, (iii) blood-based and (iv) imaging predictors and biomarkers which might be useful for the early diagnosis of subclinical LT after TAVI. Prevention of LT might offer an opportunity to improve risk stratification and tailor therapy after TAVI.
Collapse
|