1
|
Liu Y, Liu L, Luo J, Peng X. Metabolites from specific intestinal bacteria in vivo fermenting Lycium barbarum polysaccharide improve collagenous arthritis in rats. Int J Biol Macromol 2023; 226:1455-1467. [PMID: 36442555 DOI: 10.1016/j.ijbiomac.2022.11.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease affected patients' quality of life severely. Our previous study found Lycium barbarum polysaccharide (LBP) alleviated RA, but it remains unknown whether gut microbiota is necessary for the alleviation. Here, RA models were established in rats with microbiota and rats treated by antibiotic cocktail, and LBP was applied for the intervention on rats. The biochemical test, 16S rDNA sequencing and metabolome analysis were applied to analyze the effects of LBP on gut microbiota, their metabolites and hosts. Results showed the LBP intervention improved RA by inhibiting pro-inflammatory cytokines IL-1α, IL-1β, TNF-α and IL-6 only in rats with microbiota, but not in pseudo-germ-free rats. The abundance of specific bacteria, including Romboutsia, Lactobacillus, Turicibacter, Clostridium_sensu_stricto_1, Faecalibacterium and Adlercreutzia, and several metabolites, including O-desmethylangolensin, 3-hydroxydodecanedioic acid, N-formyl-L-methionine, suberic acid, (S)-oleuropeic acid, prolyl-histidine, 13,14-dihydro PGF-1a, (R)-pelletierine and short-chain fatty acids increased only in RA rats with microbiota after the intervention. Our results suggest that intestinal bacteria are necessary for LBP alleviating RA alleviation. The fermentation metabolite acts on the host instead of LBP itself, which may be the reason for the improvement of RA.
Collapse
Affiliation(s)
- Yanghanxiu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Liu Liu
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China
| | - Jianming Luo
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Xichun Peng
- Department of Food Science and Engineering, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
2
|
Bibliometric Analysis of Functional Crops and Nutritional Quality: Identification of Gene Resources to Improve Crop Nutritional Quality through Gene Editing Technology. Nutrients 2023; 15:nu15020373. [PMID: 36678244 PMCID: PMC9865409 DOI: 10.3390/nu15020373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/25/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023] Open
Abstract
Food security and hidden hunger are two worldwide serious and complex challenges nowadays. As one of the newly emerged technologies, gene editing technology and its application to crop improvement offers the possibility to relieve the pressure of food security and nutrient needs. In this paper, we analyzed the research status of quality improvement based on gene editing using four major crops, including rice, soybean, maize, and wheat, through a bibliometric analysis. The research hotspots now focus on the regulatory network of related traits, quite different from the technical improvements to gene editing in the early stage, while the trends in deregulation in gene-edited crops have accelerated related research. Then, we mined quality-related genes that can be edited to develop functional crops, including 16 genes related to starch, 15 to lipids, 14 to proteins, and 15 to other functional components. These findings will provide useful reference information and gene resources for the improvement of functional crops and nutritional quality based on gene editing technology.
Collapse
|
3
|
Wu Y, Yang Y, Wang L, Chen Y, Han X, Sun L, Chen H, Chen Q. Effect of Bifidobacterium on osteoclasts: TNF-α/NF-κB inflammatory signal pathway-mediated mechanism. Front Endocrinol (Lausanne) 2023; 14:1109296. [PMID: 36967748 PMCID: PMC10034056 DOI: 10.3389/fendo.2023.1109296] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 02/14/2023] [Indexed: 03/11/2023] Open
Abstract
Osteoporosis is a systemic multifactorial bone disease characterized by low bone quality and density and bone microstructure damage, increasing bone fragility and fracture vulnerability. Increased osteoclast differentiation and activity are important factors contributing to bone loss, which is a common pathological manifestation of bone diseases such as osteoporosis. TNF-a/NF-κB is an inflammatory signaling pathway with a key regulatory role in regulating osteoclast formation, and the classical pathway RANKL/RANK/OPG assists osteoclast formation. Activation of this inflammatory pathway promotes the formation of osteoclasts and accelerates the process of osteoporosis. Recent studies and emerging evidence have consistently demonstrated the potential of probiotics to modulate bone health. Secretions of Bifidobacterium, a genus of probiotic bacteria in the phylum Actinobacteria, such as short-chain fatty acids, equol, and exopolysaccharides, have indicated beneficial effects on bone health. This review discusses the molecular mechanisms of the TNF-a/NF-κB inflammatory pathway in regulating osteoclast formation and describes the secretions produced by Bifidobacterium and their potential effects on bone health through this pathway, opening up new directions for future research.
Collapse
Affiliation(s)
- Yue Wu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunjiao Yang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lan Wang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yiding Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xuke Han
- College of Acupuncture & Tuina, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Lisha Sun
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Huizhen Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiu Chen
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Qiu Chen,
| |
Collapse
|
4
|
Tanaka M, Fujii S, Inoue H, Takahashi N, Ishimi Y, Uehara M. (S)-Equol Is More Effective than (R)-Equol in Inhibiting Osteoclast Formation and Enhancing Osteoclast Apoptosis, and Reduces Estrogen Deficiency-Induced Bone Loss in Mice. J Nutr 2022; 152:1831-1842. [PMID: 35675296 DOI: 10.1093/jn/nxac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Equol, a metabolite of daidzein, binds to the estrogen receptor with greater affinity than daidzein and exhibits various biological properties. It exists as an enantiomer, either (S)-equol or (R)-equol. OBJECTIVES We have previously shown that the inhibitory effect of (S)-equol on bone fragility is stronger than that of racemic equol in ovariectomized (OVX) mice; however, the effect of (R)-equol has not been elucidated. The aim of this study was to compare the activities of equol enantiomers on bone metabolism in vitro and in vivo. METHODS Bone marrow cells (BMCs) and RAW 264.7 cells were treated with equol enantiomers. The number of osteoclasts and caspase-3/7 activity were measured. We examined the effect of equol enantiomers on osteoblast differentiation in MC3T3-E1 cells. In vivo, 8-wk-old female ddY mice were assigned to 4 groups: sham-operated (sham), OVX, OVX + 0.5 mg/d of (S)-equol (S-eq), and OVX + 0.5 mg/d of (R)-equol (R-eq). Four weeks after the intervention, femoral bone mineral density (BMD) and osteoclastic gene expression were analyzed, along with concentrations of equol enantiomers in the serum and tissues. RESULTS (S)-equol and (R)-equol inhibited osteoclast differentiation in BMCs (97% and 60%, P < 0.05) and RAW 264.7 cells (83% and 68%, P < 0.05). (S)-equol promoted apoptosis of mature osteoclasts by inducing caspase-3/7 activity (29%, P < 0.05) and enhanced osteoblast differentiation (29%, P < 0.05). In OVX mice, BMD was ameliorated in (S)-equol-treated mice (11%, P < 0.05), but not in (R)-equol-treated mice. The concentrations of (S)-equol were greater than those of (R)-equol in the serum, tibia, liver, and kidney (by 148%, 80%, 22%, and 139%, respectively). CONCLUSIONS These results suggest that (S)-equol is more effective than (R)-equol in inhibiting osteoclast formation and enhancing osteoclast apoptosis in vitro, supporting the beneficial effect of (S)-equol to reduce estrogen deficiency-induced bone loss in OVX mice.
Collapse
Affiliation(s)
- Miori Tanaka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shungo Fujii
- Department of Health and Nutrition, Faculty of Human Sciences, Hokkaido Bunkyo University, Eniwa, Japan
| | - Hirofumi Inoue
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Nobuyuki Takahashi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Yoshiko Ishimi
- Research Institute, Tokyo University of Agriculture, Tokyo, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
5
|
Landete JM. Development of soy beverages enriched in O-desmethylangolesin and 6-hydroxy-O-desmethylangolesin by engineered lactic acid bacteria. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Mechanism of Soy Isoflavone Daidzein-Induced Female-Specific Anorectic Effect. Metabolites 2022; 12:metabo12030252. [PMID: 35323695 PMCID: PMC8955737 DOI: 10.3390/metabo12030252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 02/04/2023] Open
Abstract
Epidemiological studies suggest that regular intake of soy isoflavone exerts a preventive effect on postmenopausal obesity and other forms of dysmetabolism. Estrogens inhibit eating behavior. Soy isoflavones may act as estrogen agonist in estrogen-depleted conditions, whereas they may either act as an estrogen antagonist or be ineffective in estrogen-repleted conditions. We investigated the effects of dietary soy isoflavone on food intake under various estrogen conditions using male, ovariectomized (OVX), and non-OVX female rats, and compared the effects with those of estradiol. We found that soy isoflavones reduced food intake in females specifically, regardless of whether ovariectomy had been performed, whereas subcutaneous implantation of estradiol pellet did not reduce food intake in intact female rats, but did so in OVX female and male rats. Contrary to this hypothesis, the reduction in food intake may not be caused by the estrogenic properties of soy isoflavones. It is of great interest to understand the mechanisms underlying the anorectic effects of soy isoflavones. In this non-systematic review, we summarize our recent studies that have investigated the bioactive substances of anorectic action, pharmacokinetic properties of soy isoflavones, and the modification of central and peripheral signals regulating appetite by soy isoflavones, and selected studies that were identified via database mining.
Collapse
|
7
|
Dietary syringic acid reduces fat mass in an ovariectomy-induced mouse model of obesity. ACTA ACUST UNITED AC 2021; 28:1340-1350. [PMID: 34610616 DOI: 10.1097/gme.0000000000001853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Postmenopausal women are at increased risk of metabolic diseases such as obesity and diabetes. Therefore, the chemoprevention of postmenopausal changes in health via dietary supplements is important. Syringic acid (SA) is a phenolic compound present in the fruit of the assai palm, Euterpe oleracea, and in the mycelium of the shiitake mushroom, Lentinula edodes. This compound shows no affinity for estrogen receptors and may exert disease-preventive effects. Reportedly, dietary SA ameliorates high-fat diet-induced obesity in mice; however, its effects on estrogen deficiency-induced obesity are still unclear. Therefore, in this study, we investigated whether and how dietary SA affects these factors in ovariectomized (OVX) mice. METHODS Ten-week-old OVX mice were fed SA-containing diets (100 mg/kg body weight/d) for 12 weeks. Their body weights, food intake, and uterus weights as well as other parameters were measured and comparisons were made with mice in the control group. RESULTS Dietary SA did not affect the body weight, food intake, or uterus weight of OVX mice over the study period; however, the SA-fed group showed lower fat mass (ie, visceral, subcutaneous, and total fat) than the OVX-control group (11.1 ± 3.3 vs. 8.3 ± 2.4, P < 0.05; 7.9 ± 1.1 vs. 5.9 ± 1.6, P < 0.05; 19.0 ± 4.2 vs. 14.1 ± 3.8, P < 0.05, respectively). Furthermore, blood analysis revealed that SA-treatment resulted in a dose-dependent decrease and increase in serum triglyceride (59.2 ± 8.3 vs. 43.9 ± 12.2 mg/dL P < 0.05) and adiponectin (7.7 ± 0.3 vs. 9.5 ± 0.6 μg/mL, P < 0.05) levels, respectively. CONCLUSIONS These results suggest that the SA diet improves lipid metabolism without affecting the uterus in OVX mice. Therefore, dietary SA has potential applicability for the prevention of postmenopausal obesity and type 2 diabetes.
Collapse
|
8
|
Sun Z, Li D, Li Y, Chen D, Yu B, Yu J, Mao X, Zheng P, Luo Y, Luo J, He J. Effects of dietary daidzein supplementation on growth performance, carcass characteristics, and meat quality in growing-finishing pigs. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2020.114591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Li H, Jia E, Hong Y, Chen Y, Jiao J. Phytoestrogens and NAFLD: Possible Mechanisms of Action. Mini Rev Med Chem 2020; 20:578-583. [PMID: 31902357 DOI: 10.2174/1389557520666200103114123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 12/18/2018] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) includes a variety of changes including nonalcoholic
fatty liver, cirrhosis and Hepatocellular Carcinoma (HCC), which are associated with metabolic
disorders and cardiovascular diseases. The pathogenesis of NAFLD is complex and multifactorial.
Many studies have shown that estrogen has a protective effect on premenopausal women with metabolic
disorders and non-alcoholic fatty liver disease. Estrogen supplements may, at least in theory,
prevent the development and progression of NAFLD. Phytoestrogen is extracted from plants, especially
legumes, whose molecular structure and biological activity are similar to those of mammals estrogen,
therefore it could replace the role of estrogen and prevent the occurrence of adverse reactions to
estrogen. In this article, we review the published literature related to phytoestrogens and NAFLD as
well as suggest the possible mechanisms that may underlie the association between phytoestrogens and
NAFLD.
Collapse
Affiliation(s)
- Hui Li
- Department of Dentistry, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Erna Jia
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yu Hong
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yanzhen Chen
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Jian Jiao
- Department of Gastroenterolgy and Hepatology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
10
|
Chin KY, Pang KL. Skeletal Effects of Early-Life Exposure to Soy Isoflavones-A Review of Evidence From Rodent Models. Front Pediatr 2020; 8:563. [PMID: 33072660 PMCID: PMC7533582 DOI: 10.3389/fped.2020.00563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Isoflavones are dietary phytoestrogens commonly found in soy-based products. The widespread presence of isoflavones in soy infant formula and breast milk may have long-lasting effects on the development of sex hormone-sensitive organs like the skeleton. Animal early-life programming models are suitable for testing the skeletal effects of pre- and neonatal exposure of soy isoflavones. This review aims to collate the impacts of early-life exposure of soy isoflavones as evidenced in animal models. The isoflavones previously studied include daidzein, genistein, or a combination of both. They were administered to rodent pups during the first few days postnatal, but prolonged exposure had also been studied. The skeletal effects were observed when the animals reached sexual maturity or after castration to induce bone loss. In general, neonatal exposure to soy isoflavones exerted beneficial effects on the skeletal system of female rodents, but the effects on male rodents seem to depend on the time of exposure and require further examinations. It might also protect the animals against bone loss due to ovariectomy at adulthood but not upon orchidectomy. The potential benefits of isoflavones on the skeletal system should be interpreted together with its non-skeletal effects in the assessment of its safety and impacts.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,State Key Laboratory of Oncogenes and Related Genes, Department of Urology, Renji-Med X Clinical Stem Cell Research Center, School of Medicine, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Bax EN, Cochran KE, Mao J, Wiedmeyer CE, Rosenfeld CS. Opposing effects of S-equol supplementation on metabolic and behavioral parameters in mice fed a high-fat diet. Nutr Res 2018; 64:39-48. [PMID: 30802721 DOI: 10.1016/j.nutres.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Phytoestrogens, such as daidzein and genistein, may be used to treat various hormone-dependent disorders. Daidzein can be metabolized by intestinal microbes to S-equol. However, not all individuals possess bacteria producing this metabolite, resulting in categorization of equol vs nonequol producers. Past human and rodent studies have suggested that supplementation of this compound might yield beneficial metabolic and behavioral effects. We hypothesized that administration of S-equol to diet-induced obese male and female mice would mitigate potential diet-induced metabolic and comorbid neurobehavioral disorders. To test this possibility, we placed 5-week-old C57 mice on a high-fat diet (HFD) to mimic the diet currently consumed by many Western adults. Animals were randomly assigned to S-equol supplementation (10 mg/kg body weight) or vehicle control group. After 4 weeks on HFD with or without S-equol supplementation, metabolic and behavioral phenotyping was performed. Although the initial hypothesis proposed that S-equol treatment would improve metabolic and neurobehavioral outcomes, this supplementation instead exacerbated aspects of HFD-induced metabolic disease, as indicated by suppressed physical activity in treated individuals, reduced energy expenditure in treated males, and serum chemistry changes (hyperglycemia in treated individuals; hyperinsulinemia and hypoleptinemia in treated males). Conversely, S-equol individuals exhibited less anxiety-like and depressive-like behaviors, as evidenced by increased exploratory time in the elevated plus maze by treated males and increased time spent mobile in the tail suspension test for treated individuals. In summary, S-equol may be beneficial in mitigating depression and anxiety disorders in individuals, but for indeterminate reasons, supplementation may worsen facets of metabolic disorders in obese individuals.
Collapse
Affiliation(s)
- Erin N Bax
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Karlee E Cochran
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jiude Mao
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Charles E Wiedmeyer
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211, USA; MU Informatics Institute, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
12
|
Yoshikata R, Myint KZY, Ohta H. Effects of Equol Supplement on Bone and Cardiovascular Parameters in Middle-Aged Japanese Women: A Prospective Observational Study. J Altern Complement Med 2018; 24:701-708. [PMID: 29722549 PMCID: PMC6065522 DOI: 10.1089/acm.2018.0050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: To examine changes in the bone and cardiovascular parameters and tolerability in middle-aged Japanese women taking equol supplement for a year. Design: This was a prospective observational study. Subjects and Setting: Participants were 74 women receiving outpatient care at Hamasite Medical Clinic, Minato-ku, Tokyo, from 2013 to 2015. Interventions: Participants received per oral equol-containing supplement, 10 mg/day. Outcome measures: The primary outcome measures were percent changes in bone and cardiovascular parameters after 1 year supplementation with equol. The secondary measures included factors affecting the parameter changes and adverse effects associated with equol use for a year. Results: Reduction in arterial stiffness was observed after 12 months of equol supplement (1402.3 cm/s vs.1367.3 cm/s, p < 0.001). Significant reductions in respective parameters were observed in women with moderate and high risk for arteriosclerosis (median [95% confidence interval]: −3.2% [−5.79 to −0.74]; −12.65% [−18.52 to −4.28]; respectively); hypertriglyceridemia −45.53% [−70.24 to −5.58]; bone resorption risk (−15.15% [−23.71 to 1.56]; and bone fracture risk −26.68% [−76.43 to −5.99]. All 15 women with high baseline parathyroid hormone levels had achieved a median of 50% [−54.11 to −31.69] reduction from their baseline values. These associations were further confirmed in the results of multiple linear regression analysis. There were no reported adverse events or abnormal findings in the blood chemistry, Pap smear, mammography, and transvaginal ultrasound during periodic follow-ups. Conclusion: One year equol supplement was tolerable and induced improvement of certain bone and cardiovascular parameters, especially in higher risk groups. Further controlled studies are needed to explore long-term equol use for wellbeing of middle-aged women.
Collapse
Affiliation(s)
- Remi Yoshikata
- 1 Hamasite Clinic , Minato-ku, Japan .,2 Tokyo Midtown Medical Center , Minato-ku, Japan
| | | | | |
Collapse
|
13
|
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82:600-610. [DOI: 10.1080/09168451.2018.1444467] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.
Collapse
Affiliation(s)
- Kaeko Murota
- Faculty of Science and Technology, Department of Life Science, Kindai University, Osaka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mariko Uehara
- Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
14
|
Xu X, Jia X, Mo L, Liu C, Zheng L, Yuan Q, Zhou X. Intestinal microbiota: a potential target for the treatment of postmenopausal osteoporosis. Bone Res 2017; 5:17046. [PMID: 28983411 PMCID: PMC5627629 DOI: 10.1038/boneres.2017.46] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 07/24/2017] [Indexed: 02/08/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) is a prevalent metabolic bone disease characterized by bone loss and structural destruction, which increases the risk of fracture in postmenopausal women. Owing to the high morbidity and serious complications of PMO, many efforts have been devoted to its prophylaxis and treatment. The intestinal microbiota is the complex community of microorganisms colonizing the gastrointestinal tract. Probiotics, which are dietary or medical supplements consisting of beneficial intestinal bacteria, work in concert with endogenous intestinal microorganisms to maintain host health. Recent studies have revealed that bone loss in PMO is closely related to host immunity, which is influenced by the intestinal microbiota. The curative effects of probiotics on metabolic bone diseases have also been demonstrated. The effects of the intestinal microbiota on bone metabolism suggest a promising target for PMO management. This review seeks to summarize the critical effects of the intestinal microbiota and probiotics on PMO, with a focus on the molecular mechanisms underlying the pathogenic relationship between bacteria and host, and to define the possible treatment options.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyue Jia
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longyi Mo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chengcheng Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Dental Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Relationship between equol producer status and metabolic parameters in 743 Japanese women: equol producer status is associated with antiatherosclerotic conditions in women around menopause and early postmenopause. Menopause 2017; 24:216-224. [DOI: 10.1097/gme.0000000000000743] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Abstract
With the growth of age, the amount of estrogens produced by the human body will get less and less. Studies have shown that estrogen deficiency may cause many kinds of diseases, such as cardiovascular diseases, osteoporosis, and syndrome of menopause. Estrogens are also distributed extensively in numerous types of plants. Since there is a trace amount of natural estrogen in plants, our body can achieve continuous phytoestrogen supplementation while our health will not be influenced or damaged by the absorbed phytoestrogens in diets. After being absorbed, the phytoestrogens in diets may be converted by intestinal microflora to different metabolites with higher estrogenic activity. This review summarizes the types and distributions of phytoestrogens in diets, their metabolism, metabolites and bioactivities, with an aim to provide some guidelines for further study and utilization of microbial biotransforming metabolites of phytoestrogens.
Collapse
|
17
|
Fujii S, Takahashi N, Inoue H, Katsumata SI, Kikkawa Y, Machida M, Ishimi Y, Uehara M. A combination of soy isoflavones and cello-oligosaccharides changes equol/O-desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice. Biosci Biotechnol Biochem 2016; 80:1632-5. [PMID: 27191709 DOI: 10.1080/09168451.2016.1184559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
We examined the cooperative effects of isoflavones and cello-oligosaccharides on daidzein metabolism and bone fragility in ovariectomized mice. Cello-oligosaccharides increased urinary equol and decreased O-desmethylangolensin. A combination of isoflavones and cello-oligosaccharides attenuated decreases in bone breaking force and stiffness caused by ovariectomy. Combination treatment with isofalvones and cello-oligosaccharides increases urinary equol/O-desmethylangolensin production ratio and prevents ovariectomy-induced abnormalities in bone strength.
Collapse
Affiliation(s)
- Shungo Fujii
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| | - Nobuyuki Takahashi
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| | - Hirofumi Inoue
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| | - Shin-Ichi Katsumata
- b Faculty of Applied Bioscience, Department of Nutritional Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Yuji Kikkawa
- c Nippon Paper Industries Co., Ltd. , Tokyo , Japan
| | | | - Yoshiko Ishimi
- d Department of Food Function and Labeling , National Institute of Health and Nutrition , Tokyo , Japan
| | - Mariko Uehara
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| |
Collapse
|
18
|
Katsumata SI, Fujioka M, Fujii S, Takeda K, Ishimi Y, Uehara M. Kanamycin inhibits daidzein metabolism and abilities of the metabolites to prevent bone loss in ovariectomized mice. BMC Res Notes 2016; 9:334. [PMID: 27388904 PMCID: PMC4936167 DOI: 10.1186/s13104-016-2139-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 06/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Daidzein is an isoflavone derived from soybeans that exerts preventive effects on bone loss in ovariectomized (OVX) animals. These effects have been correlated with increasing serum equol levels. In the present study, we investigated the effects of antibiotic intake on equol metabolism from daidzein, and the corresponding levels of bone loss in OVX mice. METHODS Eight-week-old female ddY mice (n = 42) were either ovariectomized (OVX) or subjected to a sham operation (sham). OVX mice were then divided into six dietary subgroups: control diet (control), 0.3 % kanamycin diet (KN), 0.1 % daidzein diet (Dz), 0.1 % daidzein and 0.0375 % kanamycin diet (Dz+KN3.75), 0.1 % daidzein and 0.075 % kanamycin diet (Dz+KN7.5), and 0.1 % daidzein and 0.3 % kanamycin diet (Dz+KN30). The mice were fed their respective diets for 4 weeks. RESULTS Uterine weight and femoral bone mineral density (BMD) were significantly lower in the OVX mice compared in the sham mice. No significant differences in uterine weight were observed among all OVX dietary subgroups. The Dz subgroup was found to exhibit higher plasma equol and O-desmethylangolensin (O-DMA) concentrations, as well as greater femoral BMD, compared to all other OVX subgroups. Furthermore, when compared to the Dz group, kanamycin intake decreased plasma equol and O-DMA concentrations, as well as femoral BMD in the OVX mice. CONCLUSIONS These results suggest that kanamycin intake inhibited the conversion of daidzein to equol and O-DMA, blocking the preventive effects of daidzein on bone loss in OVX mice. Therefore, the bone-protective effects of daidzein intake may be predominantly associated with increased plasma concentrations of either equol or O-DMA.
Collapse
Affiliation(s)
- Shin-Ichi Katsumata
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Maiko Fujioka
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation and Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan.,Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Shungo Fujii
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ken Takeda
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science (TUS), 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, National Institutes of Biomedical Innovation and Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Mariko Uehara
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| |
Collapse
|
19
|
Equol suppresses inflammatory response and bone erosion due to rheumatoid arthritis in mice. J Nutr Biochem 2016; 32:101-6. [PMID: 27142742 DOI: 10.1016/j.jnutbio.2016.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/14/2016] [Accepted: 02/23/2016] [Indexed: 11/21/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic and systemic autoimmune inflammatory disease. Typical pathological findings of RA include persistent synovitis and bone degradation in the peripheral joints. Equol, a metabolite of the major soybean isoflavone daidzein, shows superior bioactivity than other isoflavones. We investigated the effects of equol administration on inflammatory response and bone erosion in mice with collagen-induced arthritis (CIA). The severity of arthritis symptoms was significantly low in the equol-administered CIA mice. In addition, equol administration improved the CIA-induced bone mineral density decline. In the inflamed area of CIA mice, equol administration suppressed the expression of interleukin-6 and its receptor. Furthermore, equol reduced the expression of genes associated with bone formation inhibition, osteoclast and immature osteoblast specificity and cartilage destruction. These results suggest that equol suppresses RA development and RA-induced bone erosion by regulating inflammation and bone metabolism.
Collapse
|
20
|
Yusakul G, Sakamoto S, Juengwatanatrakul T, Putalun W, Tanaka H, Morimoto S. Preparation and application of a monoclonal antibody against the isoflavone glycoside daidzin using a mannich reaction-derived hapten conjugate. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:81-8. [PMID: 26689919 DOI: 10.1002/pca.2604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/18/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
INTRODUCTION Daidzin and its aglycone daidzein are major pharmacologically active compounds of soybean (Glycine max), kudzu (Pueraria lobata), and kwao kruea khao (P. mirifica). Pharmacological activities of daidzin are mediated by its more potent metabolites daidzein and equol; however, daidzin is the predominant compound found in these medicinal plants, and the efficacy and safety of equol depend on the amount of daidzin consumed. OBJECTIVE To develop a specific monoclonal antibody (MAb)-based indirect competitive enzyme-linked immunosorbent assay (icELISA) for standardisation of daidzin content in herbal medicines or nutraceuticals. METHODOLOGY The Mannich reaction was used for the synthesis of a highly immunogenic conjugate between daidzin and a cationised carrier protein. Splenocytes of hyperimmunised mice were fused with myeloma cells to generate a hybridoma secreting antibody against daidzin. RESULTS The icELISA showed high selectivity and acceptable sensitivity for daidzin determination (1.56-100 ng/mL) with high reproducibility (coefficients of variation were < 5%). The icELISA was a reliable analytical method for daidzin in Glycine max, Pueraria lobata and P. mirifica, for which daidzin recoveries from spiked samples were 98.99-104.94%. Daidzin content of these plant-derived products determined using the icELISA were in close agreement with those determined by a HPLC-UV method. CONCLUSION The icELISA is useful for specific daidzin determination because of its reliability, low cost, speed and high throughput.
Collapse
Affiliation(s)
- Gorawit Yusakul
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
21
|
Nie Q, Xing M, Hu J, Hu X, Nie S, Xie M. Metabolism and health effects of phyto-estrogens. Crit Rev Food Sci Nutr 2015; 57:2432-2454. [DOI: 10.1080/10408398.2015.1077194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Mengmeng Xing
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Xiaojuan Hu
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University Nanchang, CN, Nanchang, China
| |
Collapse
|
22
|
The relevance of pharmacognosy in pharmacological research on herbal medicinal products. Epilepsy Behav 2015; 52:344-62. [PMID: 26169932 DOI: 10.1016/j.yebeh.2015.05.037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/22/2015] [Accepted: 05/23/2015] [Indexed: 01/27/2023]
Abstract
As all medicines, herbal medicinal products are expected to be safe, effective, and of appropriate quality. However, regulations on herbal medicinal products vary from country to country, and herbal preparations do occur not only in the form of medicinal products but also as less strictly regulated product groups like dietary supplements. Therefore, it is not always easy for the consumers to discriminate high-quality products from low-quality products. On the other hand, herbal medicines have many special features that distinguish them from conventional medicinal products. Plants are complex multicomponent mixtures; in addition, their phytochemical composition is not constant because of inherent variability and a plethora of external influences. Therefore, the production process of an herbal medicinal product needs to be strictly monitored. First of all, the starting materials need to be correctly authenticated and free of adulterants and contaminants. During plant growth, many factors like harvest season and time, developmental stage, temperature, and humidity have a strong impact on plant metabolite production. Also, postharvest processing steps like drying and storage can significantly alter the phytochemical composition of herbal material. As the production of many phytopharmaceuticals includes an extraction step, the extraction solvent and conditions need to be optimized in order to enrich the bioactive constituents in the extract. The quality of finished preparations needs to be determined either on the basis of marker constituents or on the basis of analytical fingerprints. Thus, all production stages should be accompanied by appropriate quality assessment measures. Depending on the particular task, different methods need to be applied, ranging from macroscopic, microscopic, and DNA-based authentication methods to spectroscopic methods like vibrational spectroscopy and chromatographic and hyphenated methods like HPLC, GC-MS and LC-MS. Also, when performing pharmacological and toxicological studies, many features inherent in herbal medicinal products need to be considered in order to guarantee valid results: concerning in vitro studies, difficulties are often related to lacking knowledge of ADME characteristics of the bioactive constituents, nuisance compounds producing false positive and false negative results, and solubility problems. In in vivo animal studies, the route of administration is a very important issue. Clinical trials on herbal medicinal products in humans very often suffer from a poor reporting quality. This often hampers or precludes the pooling of clinical data for systematic reviews. In order to overcome this problem, appropriate documentation standards for clinical trials on herbal medicinal products have been defined in an extension of the CONSORT checklist. This article is part of a Special Issue entitled "Botanicals for Epilepsy".
Collapse
|
23
|
Loutchanwoot P, Srivilai P, Jarry H. The influence of equol on the hypothalamic-pituitary-thyroid axis and hepatic lipid metabolic parameters in adult male rats. Life Sci 2015; 128:1-7. [PMID: 25744395 DOI: 10.1016/j.lfs.2015.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 11/15/2014] [Accepted: 02/02/2015] [Indexed: 12/14/2022]
Abstract
AIMS Equol, the principal active metabolite of soy-derived phytoestrogen daidzein, has well-known estrogenic actions. Results of several studies indicate that equol may also have anti-androgenic activities. However, mechanisms of action of equol on hypothalamic-pituitary-thyroid axis (HPTA) and hepatic lipid metabolism in adult male rats have not been determined yet. MAIN METHODS Equol at two doses of 100 and 250mg/kgbodyweight(BW)/day was orally gavaged for 5days to groups of 4-month-old male rats. As a positive anti-androgenic control group, animals received 100mg of pure anti-androgenic drug flutamide/kgBW/day. Circulating concentrations of thyroid hormones and lipids, and expression levels of genes underlying HPTA function were determined by radioimmunoassay and TaqMan® real-time reverse transcription polymerase chain reaction, respectively. KEY FINDINGS Flutamide significantly decreased relative prostate weight, whereas equol did not. Both equol and flutamide caused a significant increase in relative liver weights, and decreases in plasma levels of total tetraiodothyronine (T4) and triiodothyronine (T3), whereas free T4 and T3 concentrations were not reduced. Equol caused the marked down-regulation of hypothalamic thyrotropin-releasing hormone mRNA expression, whereas flutamide did not. Equol as well as flutamide significantly down-regulated the expression levels of pituitary thyrotropin beta-subunit mRNA, without altering thyrotropin secretion. Equol caused reductions in plasma levels of total cholesterol, high- and low-density lipoproteins and triglycerides, whereas flutamide exerted opposite effects. SIGNIFICANCE This is the first study to reveal that in male rats equol did not affect HPTA function and liver lipid metabolism through the anti-androgenic pathway, however, the intrinsic estrogenic actions of equol were observed.
Collapse
Affiliation(s)
- Panida Loutchanwoot
- Department of Biology Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantharawichai District, Mahasarakham Province 44150 Thailand.
| | - Prayook Srivilai
- Department of Biology Faculty of Science, Mahasarakham University, Khamriang Sub-district, Kantharawichai District, Mahasarakham Province 44150 Thailand
| | - Hubertus Jarry
- Department of Endocrinology, University Medical Center Göttingen, Robert-Koch-Strasse 40, D-37075 Göttingen, Germany
| |
Collapse
|
24
|
Hong HJ, Lee JI. A Versatile Synthesis of O-Desmethylangolensin Analogues from Methoxy-Substituted Benzoic Acids. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2014. [DOI: 10.5012/jkcs.2014.58.6.569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Zhao XH, Yang ZQ, Bao LB, Wang CY, -Zhou S, Gong JM, Fu CB, Xu LJ, Liu CJ, Qu M. Daidzein enhances intramuscular fat deposition and improves meat quality in finishing steers. Exp Biol Med (Maywood) 2014; 240:1152-7. [PMID: 25526906 DOI: 10.1177/1535370214564755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/12/2014] [Indexed: 11/16/2022] Open
Abstract
An experiment was conducted to determine the effects of soy isoflavone daidzein on carcass characteristics, fat deposition, meat quality, and blood metabolites in finishing steers. Fourteen crossbred steers were used in a 120-d finishing study. These steers were stratified by weight into groups and randomly allotted by group to one of two dietary treatments: (1) control and (2) daidzein (500 mg/kg concentrate). The steers were fed a 90% concentrate diet. Supplemental daidzein did not affect slaughter weight, hot carcass weight, and dressing percentage, but tended to reduce fat proportion (not including intramuscular fat) in carcass and backfat thickness of steers. The carcass bone proportion was greater in steers fed daidzein diets than those fed control diets. Daidzein supplementation reduced pH at 24 h after slaughtered and moisture content and increased isocitrate dehydrogenase activity, fat content (16.28% and 7.94%), marbling score (5.29 and 3.36), redness (a*), and chroma (C*) values in longissimus muscle relative to control treatment. The concentrations of blood metabolites including glucose, blood urea nitrogen, triglyceride, total cholesterol, non-esterified fatty acid, high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were all lower in steers fed daidzein diets than those fed control diets. Current results suggest that supplemental daidzein can affect lipid metabolism, increase intramuscular fat content and marbling score, and improve meat quality in finishing steers. Daidzein should be a promising feed additive for production of high-quality beef meat.
Collapse
Affiliation(s)
- Xiang-Hui Zhao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhu-Qing Yang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lin-Bin Bao
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Can-Yu Wang
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shan -Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jian-Ming Gong
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chuan-Bian Fu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lan-Jiao Xu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Chan-Juan Liu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| | - Mingren Qu
- Jiangxi Province Key Laboratory of Animal Nutrition/Engineering Research Center of Feed Development, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
26
|
Chiou YS, Wu JC, Huang Q, Shahidi F, Wang YJ, Ho CT, Pan MH. Metabolic and colonic microbiota transformation may enhance the bioactivities of dietary polyphenols. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Gardana C, Canzi E, Simonetti P. R(-)-O-desmethylangolensin is the main enantiomeric form of daidzein metabolite produced by human in vitro and in vivo. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 953-954:30-7. [PMID: 24561352 DOI: 10.1016/j.jchromb.2014.01.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 01/21/2014] [Accepted: 01/29/2014] [Indexed: 11/19/2022]
Abstract
After ingestion, human intestinal bacteria transform daidzein into dihydrodaidzein, which can be further metabolised to O-desmethylangolensin. This metabolite, unlike daidzein, has a chiral centre and can therefore occur as two distinct enantiomers; however, it is unclear which enantiomer is present in humans. The aim of this study was to define in vitro and in vivo the structure of O-desmethylangolensin and then to evaluate its pharmacokinetic parameters. Daidzein metabolism was preliminarily investigated in anaerobic batch cultures inoculated with mixed faecal bacteria from O-desmethylangolensin producer volunteers. The transformation was monitored by liquid chromatography-mass spectrometry and a chiral column was used to distinguish dihydrodaidzein and O-desmethylangolensin enantiomers. These were purified, analysed by circular dichroism and the results established R(-)-O-desmethylangolensin as the main product (enantiomer excess 91%). However, both dihydrodaidzein enantiomers were detected. Similar results were obtained by in vivo trials. The in vitro formation of O-desmethylangolensin seems to be directly correlated with the number of transforming microorganisms. This correlation was found in vivo for tmax but not for other pharmacokinetic indexes. The pharmacokinetics of daidzein, dihydrodaidzein and O-desmethylangolensin were then evaluated in 11 healthy adult O-desmethylangolensin producers after the single administration of soy milk containing 100mg daidzein. The conjugated forms of daidzein, dihydrodaidzein and O-desmethylangolensin represent more than 90 and 95% of the plasmatic and urinary forms, respectively. The Cmax, tmax and half-life of O-desmethylangolensin in plasma were 62±53nM, 28±11 and 15±6h, respectively. Relevant inter-individual variations were observed as indicated by the high standard deviations.
Collapse
Affiliation(s)
- Claudio Gardana
- Università degli Studi di Milano - Department of Food, Environmental and Nutritional Sciences - DeFENS, Division of Human Nutrition - Via Celoria 2, 20133 Milan, Italy.
| | - Enrica Canzi
- Università degli Studi di Milano - Department of Food, Environmental and Nutritional Sciences - DeFENS, Division of Microbiology - Via Celoria 2, 20133 Milan, Italy
| | - Paolo Simonetti
- Università degli Studi di Milano - Department of Food, Environmental and Nutritional Sciences - DeFENS, Division of Human Nutrition - Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
28
|
Tadaishi M, Nishide Y, Tousen Y, Kruger MC, Ishimi Y. Cooperative effects of soy isoflavones and carotenoids on osteoclast formation. J Clin Biochem Nutr 2014; 54:109-15. [PMID: 24688220 PMCID: PMC3947975 DOI: 10.3164/jcbn.13-94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 11/22/2022] Open
Abstract
Osteoclasts play a major role in bone resorption. Several functional food components, such as soy isoflavones and carotenoids, are reported to inhibit osteoclast formation. However, the cooperative effect of functional foods or their constituents on bone metabolism has not been clarified. This study aimed to investigate the cooperative effect of soy isoflavones and carotenoids on osteoclast formation in vitro using cultures of RAW264 and bone marrow cells in the presence of receptor activator of nuclear factor κ-B ligand. In RAW264 cells, treatment with soy isoflavones (genistein or equol) or carotenoids (β-carotene) suppressed osteoclast formation. At 10 µM, genistein and equol inhibited RAW264 cell proliferation but did not affect cell viability. When 10 µM genistein or equol was combined with 0.1 µM β-carotene, we observed an additive suppressive effect on osteoclast differentiation. Similar results were observed with bone marrow cell cultures. We found that 10 µM of zeaxanthin or lutein suppressed osteoclast formation singly, and further enhanced the suppressive effects of daidzein or genistein when administered in combination. These results suggest that the combination of soy isoflavones and carotenoids have an enhanced suppressive effect on osteoclast formation. This knowledge might be important in planning diet for bone health.
Collapse
Affiliation(s)
- Miki Tadaishi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yoriko Nishide
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Yuko Tousen
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| | - Marlena C Kruger
- Institute of Food, Nutrition and Human Health, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Yoshiko Ishimi
- Department of Food Function and Labeling, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8636, Japan
| |
Collapse
|
29
|
Schilling T, Ebert R, Raaijmakers N, Schütze N, Jakob F. Effects of phytoestrogens and other plant-derived compounds on mesenchymal stem cells, bone maintenance and regeneration. J Steroid Biochem Mol Biol 2014; 139:252-61. [PMID: 23262262 DOI: 10.1016/j.jsbmb.2012.12.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/06/2012] [Accepted: 12/10/2012] [Indexed: 01/13/2023]
Abstract
Phytoestrogens and other plant-derived compounds and extracts have been developed for the treatment of menopause-related complaints and disorders, e.g. hot flushes and osteoporosis. Since estrogens have been discussed to enhance the risk for hormone-sensitive cancers, research activities try to find alternatives. Phytoestrogens like genistein and resveratrol as well as other plant-derived compounds are capable of substituting for estrogens to some extent. Their effects on mesenchymal stem cells and the tissues derived therefrom have been investigated in vitro and in preclinical settings. Besides their well-known estrogenic, i.e. mainly antiresorptive effects on bone via estrogen receptor (ER) signalling, they also directly or indirectly affect osteogenic and adipogenic pathways. As a novel mechanism, phytoestrogens and plant-derived saponins and flavonoids like kaempferol and xanthohumol have been described to reciprocally affect the osteogenic versus the adipogenic differentiation pathway. Both, ER-mediated and other pathways mediate a shift towards osteogenesis by inhibiting PPARγ and C/EBPα, the key adipogenic transcription factors (TFs), while stimulating the key osteogenic TFs Runx2 and Sp7. Besides ER signalling, the broad spectrum of molecular mechanisms supporting osteogenesis comprises the modulation of PPARγ, Wnt/β-catenin, and Sirt1 signalling, which inversely influence the transcription or transactivation of osteogenic versus adipogenic TFs. Preventing the age- and hormone deficiency-related shift towards adipogenesis without provoking adverse estrogenic effects represents a very promising strategy for treating bone loss and other metabolic diseases beyond bone. Research on plant-derived compounds will have to be pursued in vitro as well as in preclinical studies and controlled clinical trials in humans are urgently needed. This article is part of a Special Issue entitled 'Phytoestrogens'.
Collapse
Affiliation(s)
- Tatjana Schilling
- University of Würzburg, Orthopaedic Department, Orthopaedic Centre for Musculoskeletal Research, Würzburg, Germany.
| | | | | | | | | |
Collapse
|
30
|
Uehara M. Isoflavone metabolism and bone-sparing effects of daidzein-metabolites. J Clin Biochem Nutr 2013; 52:193-201. [PMID: 23704808 PMCID: PMC3652301 DOI: 10.3164/jcbn.13-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
Several dietary phytochemicals exhibit anti-oxidative, anti-inflammatory and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Soybean isoflavones are similar in structure to estrogen and have received considerable attention as potential alternatives to hormone replacement therapy. Daidzein, a major isoflavone found in soybean, is metabolized to equol by intestinal microflora; this metabolite exhibits stronger estrogenic activity than daidzein. Recent studies suggest that the clinical effectiveness of isoflavones might be due to their ability to produce equol in the gut. This review focused on the metabolic pathway of equol and possible bioactivities of equol and O-desmethylangolensin, another metabolite of daidzein, with regard to bone metabolism and the status of intestinal microflora. Furthermore, we considered risk-benefit analyses of isoflavones and their metabolites.
Collapse
Affiliation(s)
- Mariko Uehara
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku. Tokyo 156-8502, Japan
| |
Collapse
|
31
|
Chiang SS, Pan TM. Beneficial effects of phytoestrogens and their metabolites produced by intestinal microflora on bone health. Appl Microbiol Biotechnol 2013; 97:1489-500. [PMID: 23318837 DOI: 10.1007/s00253-012-4675-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/19/2012] [Indexed: 01/01/2023]
Abstract
Phytoestrogens are a class of bioactive compounds derived from plants and exert various estrogenic and antiestrogenic effects. Estrogen deficiency osteoporosis has become a serious problem in elderly women. The use of ovariectomized (OVX) rat or mice models to simulate the postmenopausal condition is well established. This review aimed to clarify the sources, biochemistry, absorption, metabolism, and mode of action of phytoestrogens on bone health in intervention studies. In vitro, phytoestrogens promote protein synthesis, osteoprotegerin/receptor activation of nuclear factor-kappa B ligand ratio, and mineralization by osteoblast-like cells (MC3T3-E1). In the OVX murine model, administration of phytoestrogens can inhibit differentiation and activation of osteoclasts, expression of tartrate-resistant acid phosphatase, and secretion of pyridinoline compound. Phytoestrogens also enhance bone formation and increase bone mineral density and levels of alkaline phosphatase, osteocalcin, osteopontin, and α1(I) collagen. Results of mechanistic studies have indicated that phytoestrogens suppress the rate of bone resorption and enhance the rate of bone formation.
Collapse
Affiliation(s)
- Shen-Shih Chiang
- Department of Food Science and Biotechnology, National Chung Hsing University, No. 250 Kuokuang Road, Taichung 40227, Taiwan
| | | |
Collapse
|
32
|
Bi-phasic effect of equol on adipocyte differentiation of MC3T3-L1 cells. Biosci Biotechnol Biochem 2013; 77:201-4. [PMID: 23291758 DOI: 10.1271/bbb.120677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We investigated the effects of equol on adipogenesis by measuring lipid accumulation and analyzing the change in adipocyte-related gene expression in MC3T3-L1 cells. Treatment with 10 µM equol tended to increase adipocyte-related gene expression, whereas 100 µM equol reduced lipid accumulation and suppressed the expression of these genes and proteins. Our results suggest that equol regulated adipogenesis in a bi-phasic fashion.
Collapse
|
33
|
Jin HS, Kim BY, Kim J, Hong KW, Jung SY, Lee YS, Huh D, Oh B, Chung YS, Jeong SY. Association between the SPRY1 gene polymorphism and obesity-related traits and osteoporosis in Korean women. Mol Genet Metab 2013; 108:95-101. [PMID: 23146288 DOI: 10.1016/j.ymgme.2012.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Emerging evidence has revealed a close relationship between obesity and osteoporosis. It was reported recently that conditional knockout of the Spry1 gene in mice adipocytes causes an increase in body fat and a decrease in bone mass, and that these phenotypes are rescued by Spry1 overexpression in adipose tissue. In this study, we investigated whether genetic variation in the human SPRY1 gene is associated with obesity-related phenotypes and/or osteoporosis in humans. METHODS We performed a candidate gene association analysis between the four single nucleotide polymorphisms (SNPs) and 14 imputed SNPs in the SPRY1 gene and obesity-related traits and osteoporosis in a Korean women cohort (3013 subjects). RESULTS All four SPRY1 gene SNPs were significantly associated with either obesity-related traits or osteoporosis. The TGCC haplotype in the SRPY1 gene showed simultaneous association with an increased risk for obesity-related traits, percentage body fat (p=0.0087) and percentage abdominal fat (p=0.047), and osteoporosis (odds ratio=1.50; p=0.025) in the recessive genetic model. CONCLUSIONS Our results support a previous finding in conditional Spry1 gene knockout mice and suggest that the SPRY1 gene is an important genetic factor for determining the risk of both obesity and osteoporosis in humans.
Collapse
Affiliation(s)
- Hyun-Seok Jin
- Department of Medical Genetics, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang KL, Hu YC, Hsieh BS, Cheng HL, Hsu HW, Huang LW, Su SJ. Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats. Nutrition 2013; 29:250-7. [PMID: 22858193 DOI: 10.1016/j.nut.2012.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE Several studies have shown that soy isoflavones have estrogen-like activities and might constitute an alternative to hormone replacement treatment. The present study investigated the effects of soy isoflavones alone and combined with vitamin D3 on prevention of bone loss. METHODS Sprague-Dawley rats were sham-operated (n = 8) or ovariectomized (OVX; n = 40), and then the OVX rats were randomly assigned to five groups that were untreated or treated for 14 wk with vitamin D3, 17β-estradiol, soy isoflavone extract (SIE), or vitamin D3 plus SIE. The effects of the isoflavones and 1α,25(OH)(2)D(3) on cultured osteoblasts and osteoclasts also were investigated. RESULTS In OVX rats, the bone mineral density and trabecular bone volume loss were improved by 17β-estradiol, SIE, or SIE plus vitamin D3 treatment. SIE treatment was more effective than vitamin D3 or 17β-estradiol in inhibiting increases in serum tumor necrosis factor-α levels and osteoblast osteoprotegerin expression. SIE plus vitamin D3 was more effective in increasing osterix expression than each alone. Bone cell cultures showed that the isoflavones induced preosteoblasts to differentiate into osteoblasts and increased osteoblast mineralization. Isoflavones inhibited preosteoclasts and osteoclast proliferation and decreased osteoclast resorption. The combination of isoflavones plus 1α,25(OH)(2)D(3) showed additive effects on the increase in cell proliferation of cultured preosteoblasts. CONCLUSION Treatment with soy isoflavones might be an alternative to hormone replacement therapy in decreasing bone loss from postmenopausal estrogen deficiency. In addition, there are further effects on increasing transcription factor osterix expression and preosteoblast proliferation when these were combined with vitamin D3.
Collapse
Affiliation(s)
- Kee-Lung Chang
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
35
|
Frankenfeld CL. O-desmethylangolensin: the importance of equol's lesser known cousin to human health. Adv Nutr 2011; 2:317-24. [PMID: 22332073 PMCID: PMC3125681 DOI: 10.3945/an.111.000539] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The objective for this paper was to review human studies of O-desmethylangolensin (O-DMA) concentrations and of O-DMA producers compared with nonproducers in the context of results from in vitro studies. O-DMA is an intestinal bacterial metabolite of daidzein, an isoflavone compound observed to have phytoestrogenic properties. Not all individuals harbor bacteria capable of metabolizing daidzein to O-DMA, and individuals can be classified as O-DMA producers and nonproducers. O-DMA is less structurally similar to 17β-estradiol than its parent compound, daidzein; thus, it may exhibit different biological actions than daidzein. Evidence from in vitro studies suggests that O-DMA has several cancer-related biological actions. However, results from human metabolic studies and observational studies of disease risk suggest that these actions may not be physiologically relevant in vivo due to the amount and form (primarily glucuronide) of circulating O-DMA. Apart from circulating O-DMA concentrations, the underlying bacteria may have a distinct physiological role. Urinary excretion of O-DMA in humans is a marker of harboring intestinal bacteria capable of C-ring cleavage. Bacterial C-ring cleavage reactions are relevant to other phytochemicals that may exert biological actions in vivo that are stronger than the actions of O-DMA; thus, the role of the phenotype may extend beyond daidzein metabolism. There are a limited number of studies that have evaluated disease risk factors in relation to being an O-DMA producer, with mixed results. Further research evaluating disease risk in relation to the O-DMA-producer phenotype from the perspective of intestinal microbial composition is recommended.
Collapse
|
36
|
Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women. Menopause 2011; 18:563-74. [DOI: 10.1097/gme.0b013e3181f85aa7] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Gautam AK, Bhargavan B, Tyagi AM, Srivastava K, Yadav DK, Kumar M, Singh A, Mishra JS, Singh AB, Sanyal S, Maurya R, Manickavasagam L, Singh SP, Wahajuddin W, Jain GK, Chattopadhyay N, Singh D. Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats. J Nutr Biochem 2011; 22:318-27. [DOI: 10.1016/j.jnutbio.2010.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 11/15/2022]
|
38
|
Weaver CM, Legette LL. Equol, via dietary sources or intestinal production, may ameliorate estrogen deficiency-induced bone loss. J Nutr 2010; 140:1377S-9S. [PMID: 20505019 PMCID: PMC2884336 DOI: 10.3945/jn.109.118331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Equol, a product of intestinal metabolism of daidzein, is chemically similar to estrogen (without the lipophilic moiety) and has higher estrogen receptor-beta binding affinity than its parent precursor. In 2004, a long-term, randomized controlled trial that characterized postmenopausal women by their equol-producing status showed stronger advantages to lumbar spine bone mineral density (BMD) in equol- compared with nonequol-producers. Subsequent studies have related equol status of participants to change in bone turnover markers or BMD in response to soy isoflavone interventions. To our knowledge, we are the first to prescreen women for equol-producing status prior to initiating an intervention. In menopausal Western women, equol status did not affect the modest, but significant, reduction in bone resorption achieved with a soy isoflavone intervention.
Collapse
|
39
|
Selma MV, Espín JC, Tomás-Barberán FA. Interaction between phenolics and gut microbiota: role in human health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:6485-501. [PMID: 19580283 DOI: 10.1021/jf902107d] [Citation(s) in RCA: 862] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Dietary phenolic compounds are often transformed before absorption. This transformation modulates their biological activity. Different studies have been carried out to understand gut microbiota transformations of particular polyphenol types and identify the responsible microorganisms. Although there are potentially thousands of different phenolic compounds in the diet, they are typically transformed to a much smaller number of metabolites. The aim of this review was to discuss the current information about the microbial degradation metabolites obtained from different phenolics and their formation pathways, identifying their differences and similarities. The modulation of gut microbial population by phenolics was also reviewed in order to understand the two-way phenolic-microbiota interaction. Clostridium and Eubacterium genera, which are phylogenetically associated, are other common elements involved in the metabolism of many phenolics. The health benefits from phenolic consumption should be attributed to their bioactive metabolites and also to the modulation of the intestinal bacterial population.
Collapse
Affiliation(s)
- María V Selma
- Research Group on Quality, Safety and Bioactivity of Plant Foods, Department of Food Science and Technology, CEBAS-CSIC, Murcia, Spain
| | | | | |
Collapse
|