1
|
Miedes D, Cilla A, Alegría A. Chemopreventive Effect of an In Vitro Digested and Fermented Plant Sterol-Enriched Wholemeal Rye Bread in Colon Cancer Cells. Foods 2023; 13:112. [PMID: 38201138 PMCID: PMC10778687 DOI: 10.3390/foods13010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Diet is crucial for the prevention of colorectal cancer. Whole grains are the source of beneficial compounds for this, such as fiber. The enrichment of wholemeal rye bread with plant sterols (PSs) could increase its beneficial effects. This study aimed to assess the potential antiproliferative effect of this enriched food on colon adenocarcinoma cells (Caco-2) compared with a non-enriched one. After a human oral chewing, simulated semi-dynamic gastrointestinal digestion and colonic fermentation in a simgi® system, fermentation liquids (FLs) obtained were used as treatment for cells. Cytotoxicity assay showed that samples diluted 1/5 (v/v) with DMEM are not toxic for non-tumoral cells, whereas they damage tumoral cells. Samples with PS (FLPS) produced a higher chemopreventive effect (vs. blank) in MTT and apoptosis assays, as well as higher gene expression of TP53 and Casp8. Nevertheless, FL0 (without PS) produced a higher chemopreventive effect in a cell cycle and reduced glutathione and calcium assays, besides producing higher gene expression of Casp3 and lower CCND1. The distinct antiproliferative effect of both FLs is attributed to differences in PSs, short chain fatty acids (lower concentration in FLPS vs. FL0) and antioxidant compounds. These results may support wholemeal rye bread consumption as a way of reducing the risk of colorectal cancer development, although further research would be needed.
Collapse
Affiliation(s)
| | - Antonio Cilla
- Nutrition and Food Science Area, Faculty of Pharmacy, University of Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Spain; (D.M.); (A.A.)
| | | |
Collapse
|
2
|
Potential Role of ROS in Butyrate- and Dietary Fiber-Mediated Growth Inhibition and Modulation of Cell Cycle-, Apoptosis- and Antioxidant-Relevant Proteins in LT97 Colon Adenoma and HT29 Colon Carcinoma Cells. Cancers (Basel) 2023; 15:cancers15020440. [PMID: 36672389 PMCID: PMC9857069 DOI: 10.3390/cancers15020440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of the present study was to examine whether reactive oxygen species (ROS) contribute to chemopreventive effects of fermentation supernatants (FS) of different dietary fibers (Synergy1®, oat-, barley-, yeast β-glucan, Curdlan) and butyrate as a fermentation metabolite. LT97 and HT29 cells were treated with butyrate and FS alone or with N-acetyl-cysteine (NAC) and their impact on ROS formation, cell growth, and protein expression (Cyclin D2, p21, PARP, Bid, GPx2) was investigated. Butyrate and FS significantly decreased cell growth. ROS levels were significantly increased, particularly in LT97 cells, while co-treatment with NAC decreased ROS formation and growth inhibitory effects in both cell lines. After treatment with butyrate and FS, Cyclin D2 expression was reduced in LT97 cells and p21 expression was increased in both cell lines. Levels of full-length PARP and Bid were decreased, while levels of cleaved PARP were enhanced. GPx2 expression was significantly reduced by fiber FS in HT29 cells. A notable effect of NAC on butyrate- and FS-modulated protein expression was observed exclusively for PARP and Bid in HT29 cells. From the present results, a contribution of ROS to growth inhibitory and apoptotic effects of butyrate and FS on LT97 and HT29 cells cannot be excluded.
Collapse
|
3
|
Use of the β-Glucan-Producing Lactic Acid Bacteria Strains Levilactobacillus brevis and Pediococcus claussenii for Sourdough Fermentation-Chemical Characterization and Chemopreventive Potential of In Situ-Enriched Wheat and Rye Sourdoughs and Breads. Nutrients 2022; 14:nu14071510. [PMID: 35406123 PMCID: PMC9002695 DOI: 10.3390/nu14071510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to examine β-glucan production and the potential prebiotic and chemopreventive effects of wheat and rye sourdoughs and breads generated with wild-type and non-β-glucan-forming isogenic mutant strains of Levilactobacillus brevis and Pediococcus claussenii. Sourdough and bread samples were subjected to in vitro digestion and fermentation. Fermentation supernatants (FS) and pellets (FP) were analyzed (pH values, short-chain fatty acids (SCFA), ammonia, bacterial taxa) and the effects of FS on LT97 colon adenoma cell growth, viability, caspase-2 and -3 activity, genotoxic and antigenotoxic effects and on gene and protein expression of p21, cyclin D2, catalase and superoxide dismutase 2 (SOD2) were examined. Concentrations of SCFA were increased and concentrations of ammonia were partly reduced in the FS. The relative abundance of Bifidobacteriaceae was increased in all FPs. Treatment with FS reduced the growth and viability of LT97 cells and significantly increased caspase-2 and -3 activities without exhibiting genotoxic or antigenotoxic effects. The p21 mRNA and protein levels were increased while that of cyclin D2 was reduced. Catalase and SOD2 mRNA and protein expression were marginally induced. The presented results indicate a comparable chemopreventive potential of wheat and rye sourdoughs and breads without an additional effect of the formed β-glucan.
Collapse
|
4
|
Schlörmann W, Bockwoldt JA, Mayr MF, Lorkowski S, Dawczynski C, Rohn S, Ehrmann MA, Glei M. Fermentation profile, cholesterol-reducing properties and chemopreventive potential of β-glucans from Levilactobacillus brevis and Pediococcus claussenii - a comparative study with β-glucans from different sources. Food Funct 2021; 12:10615-10631. [PMID: 34585204 DOI: 10.1039/d1fo02175c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study was to investigate whether β-glucans obtained from the lactic acid bacteria (LAB) Levilactobacillus (L.) brevis and Pediococcus (P.) claussenii exhibit similar physiological effects such as cholesterol-binding capacity (CBC) as the structurally different β-glucans from oat, barley, and yeast as well as curdlan. After in vitro fermentation, fermentation supernatants (FSs) and/or -pellets (FPs) were analyzed regarding the concentrations of short-chain fatty acids (SCFAs), ammonia, bile acids, the relative abundance of bacterial taxa and chemopreventive effects (growth inhibition, apoptosis, genotoxicity) in LT97 colon adenoma cells. Compared to other glucans, the highest CBC was determined for oat β-glucan (65.9 ± 8.8 mg g-1, p < 0.05). Concentrations of SCFA were increased in FSs of all β-glucans (up to 2.7-fold). The lowest concentrations of ammonia (down to 0.8 ± 0.3 mmol L-1) and bile acids (2.5-5.2 μg mL-1) were detected in FSs of the β-glucans from oat, barley, yeast, and curdlan. The various β-glucans differentially modulated the relative abundance of bacteria families and reduced the Firmicutes/Bacteroidetes ratio. Treatment of LT97 cells with the FSs led to a significant dose-dependent growth reduction and increase in caspase-3 activity without exhibiting genotoxic effects. Though the different β-glucans show different fermentation profiles as well as cholesterol- and bile acid-reducing properties, they exhibit comparable chemopreventive effects.
Collapse
Affiliation(s)
- W Schlörmann
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - J A Bockwoldt
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M F Mayr
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany.
| | - S Lorkowski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Nutritional Biochemistry and Physiology, Dornburger Straße 25, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - C Dawczynski
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Junior Research Group Nutritional Concepts, Dornburger Straße 29, 07743 Jena, Germany.,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - S Rohn
- Technische Universität Berlin, Institute of Food Technology and Food Chemistry, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - M A Ehrmann
- Technical University of Munich, Chair of Technical Microbiology, Gregor-Mendel-Straße 4, 85354 Freising, Germany
| | - M Glei
- Friedrich Schiller University Jena, Institute of Nutritional Sciences, Department of Applied Nutritional Toxicology, Dornburger Straße 24, 07743 Jena, Germany. .,Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
5
|
Schlörmann W, Atanasov J, Lorkowski S, Dawczynski C, Glei M. Thermal Processing has no Impact on Chemopreventive Effects of Oat and Barley Kernels in LT97 Colon Adenoma Cells. Nutr Cancer 2020; 73:2708-2719. [PMID: 33305613 DOI: 10.1080/01635581.2020.1856892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The unique dietary fiber composition with high contents of β-glucan contributes to the health-promoting properties of oat and barley and may mediate a reduction of colon cancer risk. In the present study, chemopreventive effects of oat and barley (beta®barley) kernels were investigated. In order to address the impact of thermal processing on these effects, kernels were roasted (150-180 °C, approx. 20 min), digested and fermented using an In Vitro human digestion model. Concentrations of short-chain fatty acids (SCFA) and ammonia were determined in fermentation supernatants (FS). Growth inhibition, apoptosis, DNA integrity and gene expression of catalase were analyzed in LT97 colon adenoma cells. Concentrations of SCFA, particularly butyrate, were higher in oat/barley FS (2.2-fold, on average), while ammonia levels were significantly lower (0.7-fold, on average) than in the fermentation control. Treatment of LT97 cells with FS of oat/barley kernels led to a significant time- and dose-dependent growth reduction, a significant increase in caspase-3 activity and enhanced levels of catalase mRNA, without exhibiting genotoxic effects. In general, the results indicate a chemopreventive potential of In Vitro fermented oat and waxy winter barley mediated mainly by growth inhibitory and apoptotic effects, which are preserved after thermal processing.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| | - Julia Atanasov
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.,Department of Nutritional Biochemistry and Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Christine Dawczynski
- Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany.,Junior Research Group Nutritional Concepts, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Michael Glei
- Department of Nutritional Toxicology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, Germany.,Competence Cluster for Nutrition, Cardiovascular Health (nutriCARD) Halle-Jena-Leipzig, Germany
| |
Collapse
|
6
|
Impact of processing degree on fermentation profile and chemopreventive effects of oat and waxy barley in LT97 colon adenoma cells. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03645-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractThe chemopreventive effects of β-glucan-rich cereals such as oat and barley (beta®barley) have been examined previously, but studies comparing fermentation characteristics and chemopreventive effects of oat and barley of different processing stages are rare. Therefore, the present study aims at investigating the fermentation end points (pH values, concentrations of short-chain fatty acids (SCFA) and ammonia) in fermentation supernatants (FS) obtained from differently processed oat and barley samples (kernels, thick and thin flakes). Chemopreventive effects of FS, such as growth inhibition, apoptosis, and induction of cell cycle- and redox-relevant genes (p21, SOD2), were analysed in LT97 colon adenoma cells. After fermentation, pH values were reduced (∆ pH − 1.3, on average) and SCFA concentrations were increased (∆ + 59 mmol/L, on average) with a shift towards butyrate formation in FS obtained from oat and barley samples compared to the fermentation negative control (FS blank). Ammonia was reduced more effectively in FS obtained from barley (∆ − 4.6 mmol/L, on average) than from oat samples (∆ − 1.0 mmol/L, on average). Treatment of LT97 cells with FS resulted in a time- and dose-dependent reduction of cell number, an increase in caspase-3 activity (up to 9.0-fold after 24 h, on average) and an induction of p21 (2.1-fold, on average) and SOD2 (2.3-fold, on average) mRNA expression, while no genotoxic effects were observed. In general, the results indicate no concrete effect of the type of cereal or processing stage on fermentation and chemopreventive effects of oat and barley.
Collapse
|
7
|
Differential effects of inulin or its fermentation metabolites on gut barrier and immune function of porcine intestinal epithelial cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103855] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Schlörmann W, Atanasov J, Lorkowski S, Dawczynski C, Glei M. Study on chemopreventive effects of raw and roasted β-glucan-rich waxy winter barley using an in vitro human colon digestion model. Food Funct 2020; 11:2626-2638. [DOI: 10.1039/c9fo03009c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fermentation supernatants of barley flakes exhibit chemopreventive effects in LT97 colon adenoma cells without impact of roasting.
Collapse
Affiliation(s)
- W. Schlörmann
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| | - J. Atanasov
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| | - S. Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD)
- Halle-Jena-Leipzig
- Germany
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
| | - C. Dawczynski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD)
- Halle-Jena-Leipzig
- Germany
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
| | - M. Glei
- Friedrich Schiller University Jena
- Institute of Nutritional Sciences
- Department of Nutritional Toxicology
- 07743 Jena
- Germany
| |
Collapse
|
9
|
Yin DT, Fu Y, Zhao XH. In vitro activities of inulin fermentation products to HCT-116 cells enhanced by the cooperation between exogenous strains and adult faecal microbiota. Int J Food Sci Nutr 2018; 69:814-823. [PMID: 29318896 DOI: 10.1080/09637486.2017.1418844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inulin was fermented by adult faecal microbiota and 10 exogenous strains for 24 or 48 h. The contents of acetate, propionate, butyrate and lactate were quantified in the fermented products, and the growth-inhibitory and apoptosis-inducing effects on a human colon cell line (HCT-116 cells) were assessed. Most of these strains increased contents of acetate, propionate and butyrate, and promoted lactate conversion. Correlation analysis suggested that butyrate and lactate in the fermentation products were positively and negatively correlated with the measured inhibition ratios (p < .05). The results were mostly consistent with the verification trial results using standard acid solutions. The fermentation products could cause apoptosis via inducing DNA fragmentation and increasing total apoptotic populations in the treated cells. Moreover, the fermentation products with higher growth-inhibitory activities demonstrated the increased apoptosis-inducing properties. In conclusion, these strains could cooperate with adult faecal microbiota to confer inulin fermentation products with higher anti-colon cancer activity.
Collapse
Affiliation(s)
- Dan-Ting Yin
- a Key Laboratory of Dairy Science, Ministry of Education , Northeast Agricultural University , Harbin , People's Republic of China
| | - Yu Fu
- b Department of Food Science, Faculty of Science , University of Copenhagen , Frederiksberg C , Denmark
| | - Xin-Huai Zhao
- a Key Laboratory of Dairy Science, Ministry of Education , Northeast Agricultural University , Harbin , People's Republic of China.,c Department of Food Science , Northeast Agricultural University , Harbin , People's Republic of China
| |
Collapse
|
10
|
Chemopreventive Potential of Raw and Roasted Pistachios Regarding Colon Carcinogenesis. Nutrients 2017; 9:nu9121368. [PMID: 29258268 PMCID: PMC5748818 DOI: 10.3390/nu9121368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/12/2022] Open
Abstract
Pistachios are rich in health-promoting bioactive compounds such as B vitamins, γ-tocopherol, polyphenols and dietary fiber, which could contribute to the reduction of colon cancer risk in terms of chemoprevention (Fischer, S.; Glei, M. Health-Potential of Nuts. Ernaehrungs Umsch. Int. 2013, 60, 206-215.). Since pistachios are often consumed roasted, the present study aims at investigating the influence of different roasting conditions (RC) on potential chemopreventive effects of pistachios in colon adenoma cells such as growth and apoptosis, genotoxic- and anti-genotoxic effects and modulation of gene expression of detoxifying enzymes (CAT, SOD2, GPx1, and GSTP1). Fermentation supernatants (FS) were obtained from raw and roasted (RC1 = 141 °C/25 min, RC2 = 160 °C/15 min and RC3 = 185 °C/21 min) pistachios after in vitro fermentation. FS of pistachios significantly reduced LT97 cell growth in a time- and dose-dependent manner. Compared to the blank control, pistachio FS (2.5%) led to a significant average reduction of H₂O₂-induced DNA damage (1.5-fold). Levels of CAT mRNA were significantly increased (1.3-fold, on average for 5% FS). Pistachio FS (5%) significantly increased the number of early apoptotic cells (up to 2.1-fold) and levels of caspase-3 activities (up to 6.9-fold). The present results confirm a chemopreventive potential of pistachios, which is mediated by growth inhibition, induction of apoptosis and anti-genotoxic effects, as well as induction of CAT. These effects remain mostly unaffected by roasting.
Collapse
|
11
|
In vitro–fermented raw and roasted walnuts induce expression of CAT and GSTT2 genes, growth inhibition, and apoptosis in LT97 colon adenoma cells. Nutr Res 2017; 47:72-80. [DOI: 10.1016/j.nutres.2017.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/18/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022]
|
12
|
Yin DT, Zhao XH. Impact of exogenous strains on in vitro fermentation and anti-colon cancer activities of maize resistant starch and xylo-oligosaccharides. STARCH-STARKE 2017. [DOI: 10.1002/star.201700064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dan-Ting Yin
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin P.R. China
| | - Xin-Huai Zhao
- Key Laboratory of Dairy Science, Ministry of Education; Northeast Agricultural University; Harbin P.R. China
- Department of Food Science; Northeast Agricultural University; Harbin P.R. China
| |
Collapse
|
13
|
Schlörmann W, Fischer S, Saupe C, Dinc T, Lorkowski S, Glei M. Influence of roasting on the chemopreventive potential of in vitro fermented almonds in LT97 colon adenoma cells. Int J Food Sci Nutr 2017; 69:52-63. [PMID: 28583046 DOI: 10.1080/09637486.2017.1334140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The consumption of almonds may contribute to the prevention of colon cancer due to their unique composition of health promoting compounds. Since almonds are often consumed roasted, the impact of different roasting (R) conditions (R1 = 139.2 °C/25 min, R2 = 161.5 °C/20 min and R3 = 170.8 °C/15 min) on chemopreventive effects of in vitro-fermented almonds was analysed in LT97 colon adenoma cells. Fermentation supernatants (FS) of raw and roasted almonds had no genotoxic effects. FS obtained from raw or mildly roasted almonds (R1) significantly increased mRNA levels of CAT (4.6-fold), SOD2 (5.6-fold) and GSTP1 (3.9-fold) but not of GPx1. FS of almonds significantly reduced the growth of LT97 cells in a time- and dose-dependent manner. Treatment with 5% almonds FS increased the number of early apoptotic cells (17.4%, on average) and caspase-3 activity (4.9-fold, on average). The results indicate a chemopreventive potential of in vitro-fermented almonds which is largely independent of the roasting process.
Collapse
Affiliation(s)
- Wiebke Schlörmann
- a Department of Nutritional Toxicology , Institute of Nutrition, Friedrich Schiller University Jena , Jena , Germany.,b Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) , Halle-Jena-Leipzig , Germany
| | - Sonja Fischer
- a Department of Nutritional Toxicology , Institute of Nutrition, Friedrich Schiller University Jena , Jena , Germany
| | - Christian Saupe
- a Department of Nutritional Toxicology , Institute of Nutrition, Friedrich Schiller University Jena , Jena , Germany
| | - Tülin Dinc
- a Department of Nutritional Toxicology , Institute of Nutrition, Friedrich Schiller University Jena , Jena , Germany
| | - Stefan Lorkowski
- b Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) , Halle-Jena-Leipzig , Germany.,c Department of Nutritional Biochemistry and Physiology , Friedrich Schiller University Jena, Institute of Nutrition , Jena , Germany
| | - Michael Glei
- a Department of Nutritional Toxicology , Institute of Nutrition, Friedrich Schiller University Jena , Jena , Germany.,b Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD) , Halle-Jena-Leipzig , Germany
| |
Collapse
|
14
|
Schlörmann W, Lamberty J, Lorkowski S, Ludwig D, Mothes H, Saupe C, Glei M. Chemopreventive potential ofin vitrofermented nuts in LT97 colon adenoma and primary epithelial colon cells. Mol Carcinog 2017; 56:1461-1471. [DOI: 10.1002/mc.22606] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/29/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Wiebke Schlörmann
- Department of Nutritional Toxicology; Friedrich Schiller University Jena, Institute of Nutrition; Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD); Halle-Jena-Leipzig Germany
| | - Julia Lamberty
- Department of Nutritional Toxicology; Friedrich Schiller University Jena, Institute of Nutrition; Jena Germany
| | - Stefan Lorkowski
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD); Halle-Jena-Leipzig Germany
- Department of Nutritional Biochemistry and Physiology; Friedrich Schiller University Jena, Institute of Nutrition; Jena Germany
| | - Diana Ludwig
- Department of Nutritional Toxicology; Friedrich Schiller University Jena, Institute of Nutrition; Jena Germany
| | - Henning Mothes
- Department of General; Visceral and Vascular Surgery, Friedrich Schiller University Jena; Jena Germany
| | - Christian Saupe
- Department of Nutritional Toxicology; Friedrich Schiller University Jena, Institute of Nutrition; Jena Germany
| | - Michael Glei
- Department of Nutritional Toxicology; Friedrich Schiller University Jena, Institute of Nutrition; Jena Germany
- Competence Cluster for Nutrition and Cardiovascular Health (nutriCARD); Halle-Jena-Leipzig Germany
| |
Collapse
|
15
|
Van Hecke T, Wouters A, Rombouts C, Izzati T, Berardo A, Vossen E, Claeys E, Van Camp J, Raes K, Vanhaecke L, Peeters M, De Vos WH, De Smet S. Reducing Compounds Equivocally Influence Oxidation during Digestion of a High-Fat Beef Product, which Promotes Cytotoxicity in Colorectal Carcinoma Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1600-1609. [PMID: 26836477 DOI: 10.1021/acs.jafc.5b05915] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We studied the formation of malondialdehyde, 4-hydroxy-nonenal, and hexanal (lipid oxidation products, LOP) during in vitro digestion of a cooked low-fat and high-fat beef product in response to the addition of reducing compounds. We also investigated whether higher LOP in the digests resulted in a higher cyto- and genotoxicity in Caco-2, HT-29 and HCT-116 cell lines. High-fat compared to low-fat beef digests contained approximately 10-fold higher LOP concentrations (all P < 0.001), and induced higher cytotoxicity (P < 0.001). During digestion of the high-fat product, phenolic acids (gallic, ferulic, chlorogenic, and caffeic acid) displayed either pro-oxidant or antioxidant behavior at lower and higher doses respectively, whereas ascorbic acid was pro-oxidant at all doses, and the lipophilic reducing compounds (α-tocopherol, quercetin, and silibinin) all exerted a clear antioxidant effect. During digestion of the low-fat product, the hydrophilic compounds and quercetin were antioxidant. Decreases or increases in LOP concentrations amounted to 100% change versus controls.
Collapse
Affiliation(s)
- Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - An Wouters
- Center for Oncological Research, University of Antwerp , B-2610 Wilrijk, Belgium
| | - Caroline Rombouts
- Cell Systems and Cellular Imaging Research Group, Ghent University , B-9000 Ghent, Belgium
- Laboratory of Chemical Analysis, Ghent University , B-9820 Merelbeke, Belgium
| | - Tazkiyah Izzati
- Cell Systems and Cellular Imaging Research Group, Ghent University , B-9000 Ghent, Belgium
| | - Alberto Berardo
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - Els Vossen
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - Erik Claeys
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - John Van Camp
- Unit of Food Chemistry and Human Nutrition, Ghent University , B-9000 Ghent, Belgium
| | - Katleen Raes
- Laboratory of Food Microbiology and Biotechnology, Ghent University , B-8500 Kortrijk, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Ghent University , B-9820 Merelbeke, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp , B-2610 Wilrijk, Belgium
| | - Winnok H De Vos
- Cell Systems and Cellular Imaging Research Group, Ghent University , B-9000 Ghent, Belgium
- Laboratory of Cell Biology & Histology, University of Antwerp , B-2020 Antwerp, Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| |
Collapse
|
16
|
Influence of miRNA-106b and miRNA-135a on butyrate-regulated expression of p21 and Cyclin D2 in human colon adenoma cells. GENES AND NUTRITION 2015; 10:50. [PMID: 26559563 DOI: 10.1007/s12263-015-0500-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/27/2015] [Indexed: 12/23/2022]
Abstract
Epigenetic and posttranslational modifications of the expression of cell cycle-relevant genes or proteins like p21, e.g., by miRNAs are crucial mechanisms in the development or prevention of colon cancer. The present study investigated the influence of butyrate and trichostatin A (TSA) as histone deacetylase inhibitors on the expression of colon cancer-relevant miRNA (miR-135a, miR-135b, miR-24, miR-106b, miR-let-7a) in LT97 colon adenoma cells as a model of an early stage of colon carcinogenesis. The impact of distinct miRNAs (miR-106b, miR-135a) on butyrate-mediated regulation of p21 and Cyclin D2 gene and protein expression as well as the effect on LT97 cell proliferation (non-transfected, miR-106b and miR-135a mimic transfected) was analyzed. Butyrate and partial TSA reduced the expression of miR-135a, miR-135b, miR-24 and miR-let-7a (~0.5-fold, 24 h) and miR-24, miR-106b and miR-let-7a (~0.5-0.7-fold, 48 h) in LT97 cells. Levels of p21 mRNA and protein were significantly increased by butyrate and TSA (~threefold and 4.5-fold, respectively, 24 h) in non-transfected but not in miR-106b transfected LT97 cells. Levels of Cyclin D2 mRNA were significantly reduced by butyrate and TSA (~0.3-fold, 24 h) in non-transfected and miR-135a-transfected LT97 cells, whereas protein levels were predominantly not influenced. MiR-106b and miR-135a significantly reduced butyrate-/TSA-mediated inhibition of LT97 cell proliferation (72 h). These results indicate that butyrate is able to modify colon cancer-relevant miRNAs like miR-106b and miR-135a which are involved in the regulation of cell cycle-relevant genes like p21 and might influence inhibition of adenoma cell proliferation.
Collapse
|
17
|
In vitro fermentation of nuts results in the formation of butyrate and c9,t11 conjugated linoleic acid as chemopreventive metabolites. Eur J Nutr 2015; 55:2063-73. [PMID: 26286349 DOI: 10.1007/s00394-015-1020-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/10/2015] [Indexed: 01/09/2023]
Abstract
PURPOSE The consumption of foods rich in dietary fiber and polyunsaturated fatty acids such as nuts can contribute to a healthy diet. Therefore, the formation of fermentation end-products which might exert chemopreventive effects regarding colon cancer was investigated after an in vitro simulated digestion and fermentation of nuts using human fecal microbiota. METHODS Fermentation supernatants (FS) and pellets (FP) were obtained after an in vitro fermentation of hazelnuts, almonds, macadamia, pistachios and walnuts. Short-chain fatty acids (SCFA) and bile acids (BA) in FS as well as fatty acids in FP were analyzed via gas chromatography. Malondialdehyde (MDA) levels in FS were determined photometrically. RESULTS Fermentation of nuts resulted in 1.9- to 2.8-fold higher concentrations of SCFA compared to the control and a shift of molar ratios toward butyrate production. In vitro fermentation resulted in the formation of vaccenic acid (C18:1t11, 32.1 ± 3.2 % FAME; fatty acid methyl ester) and conjugated linoleic acid (c9,t11 CLA, 2.4 ± 0.7 % FAME) exclusively in fermented walnut samples. Concentrations of secondary BA deoxycholic-/iso-deoxycholic acid (6.8-24.1-fold/4.9-10.9-fold, respectively) and levels of MDA (1.3-fold) were significantly reduced in fermented nut samples compared to the control. CONCLUSION This is the first study that demonstrates the ability of the human fecal microbiota to convert polyunsaturated fatty acids from walnuts to c9,t11 CLA as a potential chemopreventive metabolite. In addition, the production of butyrate and reduction in potential carcinogens such as secondary BA and lipid peroxidation products might contribute to the protective effects of nuts regarding colon cancer development.
Collapse
|
18
|
Pistollato F, Giampieri F, Battino M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem Toxicol 2015; 75:58-70. [DOI: 10.1016/j.fct.2014.11.004] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022]
|