1
|
Ignjatović Đ, Nestorović N, Tomić M, Ristić N, Veličković N, Perović M, Manojlović-Stojanoski M. Effects of Prenatal Dexamethasone Treatment and Post-Weaning Moderate Fructose Intake on Synaptic Plasticity and Behavior in Adult Male Wistar Rat Offspring. BIOLOGY 2024; 13:547. [PMID: 39056739 PMCID: PMC11274266 DOI: 10.3390/biology13070547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Early-life glucocorticoid overexposure induces diverse neurodevelopmental outcomes regarding stress reactivity and cognition. Increased fructose consumption has also been associated with alterations in cognitive capacity and behavior. The present study investigated the effects of prenatal dexamethasone exposure on synaptic plasticity, locomotion, anxiety, and recognition memory in adult male Wistar rat offspring, and whether these effects are potentiated by postnatal fructose consumption. Pregnant female rats were treated with dexamethasone during late gestation and male offspring were supplemented with a moderate dose of fructose. Recognition memory, locomotion, and anxiety-like behavior were assessed using a novel object recognition test, open-field test, and elevated plus maze, respectively. Hippocampal synaptic plasticity was estimated by the levels of growth-associated protein 43 (GAP-43), synaptophysin, postsynaptic density protein 95, calcium/calmodulin-dependent kinase IIα, and their activating phosphorylations. Additionally, protein levels of the glucocorticoid receptor (GR) and its transcriptionally active phosphorylated form were evaluated. Prenatal dexamethasone treatment induced an anxiolytic-like effect, stimulation of exploratory behavior, and novelty preference associated with an increase in GR and GAP-43 protein levels in the hippocampus. Fructose overconsumption after weaning did not modify the effects of prenatal glucocorticoid exposure. Applied prenatal dexamethasone treatment may induce changes in reactions to novel situations in male Wistar rats.
Collapse
Affiliation(s)
- Đurđica Ignjatović
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (M.T.); (N.V.)
| | - Nataša Nestorović
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (N.N.); (N.R.)
| | - Mirko Tomić
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (M.T.); (N.V.)
| | - Nataša Ristić
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (N.N.); (N.R.)
| | - Nataša Veličković
- Department of Biochemistry, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (M.T.); (N.V.)
| | - Milka Perović
- Department of Neurobiology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia;
| | - Milica Manojlović-Stojanoski
- Department of Cytology, Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., 11000 Belgrade, Serbia; (N.N.); (N.R.)
| |
Collapse
|
2
|
Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon 2023; 9:e18896. [PMID: 37636431 PMCID: PMC10447940 DOI: 10.1016/j.heliyon.2023.e18896] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
The excessive intake of fructose in the regular human diet could be related to global increases in metabolic disorders. Sugar-sweetened soft drinks, mostly consumed by children, adolescents, and young adults, are the main source of added fructose. Dietary high-fructose can increase intestinal permeability and circulatory endotoxin by changing the gut barrier function and microbial composition. Excess fructose transports to the liver and then triggers inflammation as well as de novo lipogenesis leading to hepatic steatosis. Fructose also induces fat deposition in adipose tissue by stimulating the expression of lipogenic genes, thus causing abdominal adiposity. Activation of the inflammatory pathway by fructose in target tissues is thought to contribute to the suppression of the insulin signaling pathway producing systemic insulin resistance. Moreover, there is some evidence that high intake of fructose negatively affects both male and female reproductive systems and may lead to infertility. This review addresses dietary high-fructose-induced deteriorations that are obvious, especially in gut permeability, microbiota, abdominal fat accumulation, insulin signaling, and reproductive function. The recognition of the detrimental effects of fructose and the development of relevant new public health policies are necessary in order to prevent diet-related metabolic disorders.
Collapse
Affiliation(s)
| | | | - Fatma Akar
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Abu Bakar MH, Mohamad Khalid MSF, Nor Shahril NS, Shariff KA, Karunakaran T. Celastrol attenuates high-fructose diet-induced inflammation and insulin resistance via inhibition of 11β-hydroxysteroid dehydrogenase type 1 activity in rat adipose tissues. Biofactors 2022; 48:111-134. [PMID: 34676604 DOI: 10.1002/biof.1793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/27/2021] [Indexed: 11/10/2022]
Abstract
High fructose consumption has been linked to low-grade inflammation and insulin resistance that results in increased intracellular 11ß-hydroxysteroid dehydrogenase type 1 (11β-HSD1) activity. Celastrol, a pentacyclic triterpene, has been demonstrated to exhibit multifaceted targets to attenuate various metabolic diseases associated with inflammation. However, the underlying mechanisms by which celastrol exerts its attributive properties on high fructose diet (HFrD)-induced metabolic syndrome remain elusive. Herein, the present study was aimed to elucidate the mechanistic targets of celastrol co-administrations upon HFrD in rats and evaluate its potential to modulate 11β-HSD1 activity. Celastrol remarkably improved glucose tolerance, lipid profiles, and insulin sensitivity along with suppression of hepatic glucose production. In rat adipose tissues, celastrol attenuated nuclear factor-kappa B (NF-κB)-driven inflammation, reduced c-Jun N-terminal kinases (JNK) phosphorylation, and mitigated oxidative stress via upregulated genes expression involved in mitochondrial biogenesis. Furthermore, insulin signaling pathways were significantly improved through the restoration of Akt phosphorylation levels at Ser473 and Thr308 residues. Celastrol exhibited a potent, selective and specific inhibitor of intracellular 11β-HSD1 towards oxidoreductase activity (IC50 value = 4.3 nM) in comparison to other HSD-related enzymes. Inhibition of 11β-HSD1 expression in rat adipose microsomes reduced the availability of its cofactor NADPH and substrate H6PDH in couple to upregulated mRNA and protein expressions of glucocorticoid receptor. In conclusion, our results underscore the most likely conceivable mechanisms exhibited by celastrol against HFrD-induced metabolic dysregulations mainly through attenuating inflammation and insulin resistance, at least via specific inhibitions on 11β-HSD1 activity in adipose tissues.
Collapse
Affiliation(s)
- Mohamad Hafizi Abu Bakar
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | | | - Nor Shafiqah Nor Shahril
- Bioprocess Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Khairul Anuar Shariff
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | | |
Collapse
|
4
|
Yu S, Li C, Ji G, Zhang L. The Contribution of Dietary Fructose to Non-alcoholic Fatty Liver Disease. Front Pharmacol 2021; 12:783393. [PMID: 34867414 PMCID: PMC8637741 DOI: 10.3389/fphar.2021.783393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/02/2021] [Indexed: 12/26/2022] Open
Abstract
Fructose, especially industrial fructose (sucrose and high fructose corn syrup) is commonly used in all kinds of beverages and processed foods. Liver is the primary organ for fructose metabolism, recent studies suggest that excessive fructose intake is a driving force in non-alcoholic fatty liver disease (NAFLD). Dietary fructose metabolism begins at the intestine, along with its metabolites, may influence gut barrier and microbiota community, and contribute to increased nutrient absorption and lipogenic substrates overflow to the liver. Overwhelming fructose and the gut microbiota-derived fructose metabolites (e.g., acetate, butyric acid, butyrate and propionate) trigger the de novo lipogenesis in the liver, and result in lipid accumulation and hepatic steatosis. Fructose also reprograms the metabolic phenotype of liver cells (hepatocytes, macrophages, NK cells, etc.), and induces the occurrence of inflammation in the liver. Besides, there is endogenous fructose production that expands the fructose pool. Considering the close association of fructose metabolism and NAFLD, the drug development that focuses on blocking the absorption and metabolism of fructose might be promising strategies for NAFLD. Here we provide a systematic discussion of the underlying mechanisms of dietary fructose in contributing to the development and progression of NAFLD, and suggest the possible targets to prevent the pathogenetic process.
Collapse
Affiliation(s)
- Siyu Yu
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlin Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Kovačević S, Brkljačić J, Vojnović Milutinović D, Gligorovska L, Bursać B, Elaković I, Djordjevic A. Fructose Induces Visceral Adipose Tissue Inflammation and Insulin Resistance Even Without Development of Obesity in Adult Female but Not in Male Rats. Front Nutr 2021; 8:749328. [PMID: 34869524 PMCID: PMC8632624 DOI: 10.3389/fnut.2021.749328] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction: Obesity and related metabolic disturbances are frequently related to modern lifestyle and are characterized by excessive fructose intake. Visceral adipose tissue (VAT) inflammation has a central role in the development of insulin resistance, type 2 diabetes (T2D), and metabolic syndrome. Since sex-related differences in susceptibility and progression of metabolic disorders are not yet fully understood, our aim was to examine inflammation and insulin signaling in VAT of fructose-fed female and male adult rats. Methods: We analyzed effects of 9-week 10% fructose-enriched diet on energy intake, VAT mass and histology, and systemic insulin sensitivity. VAT insulin signaling and markers of VAT inflammation, and antioxidative defense status were also evaluated. Results: The fructose diet had no effect on VAT mass and systemic insulin signaling in the female and male rats, while it raised plasma uric acid, increased PPARγ level in the VAT, and initiated the development of a distinctive population of small adipocytes in the females. Also, adipose tissue insulin resistance, evidenced by increased PTP1B and insulin receptor substrate 1 (IRS1) inhibitory phosphorylation and decreased Akt activity, was detected. In addition, fructose stimulated the nuclear accumulation of NFκB, increased expression of proinflammatory cytokines (IL-1β, IL-6, and TNFα), and protein level of macrophage marker F4/80, superoxide dismutase 1, and glutathione reductase. In contrast to the females, the fructose diet had no effect on plasma uric acid and VAT inflammation in the male rats, but less prominent alterations in VAT insulin signaling were observed. Conclusion: Even though dietary fructose did not elicit changes in energy intake and led to obesity in the females, it initiated the proliferation of small-sized adipocytes capable of storing fats further. In contrast to the males, this state of VAT was accompanied with enhanced inflammation, which most likely contributed to the development of insulin resistance. The observed distinction could possibly originate from sex-related differences in uric acid metabolism. Our results suggest that VAT inflammation could precede obesity and start even before the measurable increase in VAT mass, making it a silent risk factor for the development of T2D. Our results emphasize that adipose tissue dysfunction, rather than its simple enlargement, could significantly contribute to the onset and development of obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Sanja Kovačević
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Brkljačić
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Vojnović Milutinović
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ljupka Gligorovska
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Biljana Bursać
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ivana Elaković
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Ana Djordjevic
- Department of Biochemistry, Institute for Biological Research "Siniša Stanković"-National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
6
|
Fructose Consumption Affects Glucocorticoid Signaling in the Liver of Young Female Rats. Nutrients 2020; 12:nu12113470. [PMID: 33198224 PMCID: PMC7698302 DOI: 10.3390/nu12113470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
The effects of early-life fructose consumption on hepatic signaling pathways and their relation to the development of metabolic disorders in later life are not fully understood. To investigate whether fructose overconsumption at a young age induces alterations in glucocorticoid signaling that might contribute to development of metabolic disturbances, we analysed glucocorticoid receptor hormone-binding parameters and expression of its target genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase and glucose-6-phosphatase) and lipid metabolism (lipin-1), as well as redox and inflammatory status in the liver of female rats subjected to a fructose-rich diet immediately after weaning. The fructose diet increased hepatic corticosterone concentration, 11β-hydroxysteroid dehydrogenase type 1 level, glucocorticoid receptor protein level and hormone-binding activity, as well as lipin-1 level. The expression of glucose-6-phosphatase was reduced in fructose-fed rats, while phosphoenolpyruvate carboxykinase remained unaltered. The fructose-rich diet increased the level of fructose transporter GLUT2, while the expression of fructolytic enzymes fructokinase and aldolase B remained unaltered. The diet also affected pro-inflammatory pathways, but had no effect on the antioxidant defence system. In conclusion, a fructose-rich diet applied immediately after weaning promoted lipogenesis and enhanced hepatic glucocorticoid signaling, possibly to protect against inflammatory damage, but without an effect on gluconeogenesis and antioxidant enzymes. Yet, prolonged treatment might ultimately lead to more pronounced metabolic disturbances.
Collapse
|
7
|
Saxton SN, Clark BJ, Withers SB, Eringa EC, Heagerty AM. Mechanistic Links Between Obesity, Diabetes, and Blood Pressure: Role of Perivascular Adipose Tissue. Physiol Rev 2019; 99:1701-1763. [PMID: 31339053 DOI: 10.1152/physrev.00034.2018] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Obesity is increasingly prevalent and is associated with substantial cardiovascular risk. Adipose tissue distribution and morphology play a key role in determining the degree of adverse effects, and a key factor in the disease process appears to be the inflammatory cell population in adipose tissue. Healthy adipose tissue secretes a number of vasoactive adipokines and anti-inflammatory cytokines, and changes to this secretory profile will contribute to pathogenesis in obesity. In this review, we discuss the links between adipokine dysregulation and the development of hypertension and diabetes and explore the potential for manipulating adipose tissue morphology and its immune cell population to improve cardiovascular health in obesity.
Collapse
Affiliation(s)
- Sophie N Saxton
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Ben J Clark
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Sarah B Withers
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Etto C Eringa
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| | - Anthony M Heagerty
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom; School of Environment and Life Sciences, University of Salford, Salford, United Kingdom; and Department of Physiology, VU University Medical Centre, Amsterdam, Netherlands
| |
Collapse
|
8
|
Loza-Medrano SS, Baiza-Gutman LA, Manuel-Apolinar L, García-Macedo R, Damasio-Santana L, Martínez-Mar OA, Sánchez-Becerra MC, Cruz-López M, Ibáñez-Hernández MA, Díaz-Flores M. High fructose-containing drinking water-induced steatohepatitis in rats is prevented by the nicotinamide-mediated modulation of redox homeostasis and NADPH-producing enzymes. Mol Biol Rep 2019; 47:337-351. [PMID: 31650383 DOI: 10.1007/s11033-019-05136-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/10/2019] [Indexed: 01/15/2023]
Abstract
An imbalance in the redox state, increased levels of lipid precursors and overactivation of de novo lipogenesis determine the development of fibrosis during nonalcoholic steatohepatitis (NASH). We evaluated the modulation of NADPH-producing enzymes associated with the antifibrotic, antioxidant and antilipemic effects of nicotinamide (NAM) in a model of NASH induced by excess fructose consumption. Male rats were provided drinking water containing 40% fructose for 16 weeks. During the last 12 weeks of fructose administration, water containing NAM was provided to some of the rats for 5 h/day. The biochemical profiles and the ghrelin, leptin, lipoperoxidation and TNF-α levels in serum and the glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and NADP+-dependent isocitric dehydrogenase (IDP) levels, the reduced/oxidized glutathione (GSH/GSSG) and reduced/oxidized nicotinamide adenine dinucleotide (phosphate) (NAD(P)H/NAD(P)+) ratios, and the levels of various lipogenic and fibrotic markers in the liver were evaluated. The results showed that hepatic fibrosis induced by fructose consumption was associated with weight gain, hunger-satiety system dysregulation, hyperinsulinemia, dyslipidemia, lipoperoxidation and inflammation. Moreover, increased levels of hepatic G6PD and ME activity and expression, the NAD(P)H/NAD(P)+ ratios, and GSSG concentration and increased expression of lipogenic and fibrotic markers were detected, and these alterations were attenuated by NAM administration. Specifically, NAM diminished the activity and expression of G6PD and ME, and this effect was associated with a decrease in the NADPH/NADP+ ratios, increased GSH levels and decreased lipoperoxidation and inflammation, ameliorating fibrosis and NASH development. NAM reduces liver steatosis and fibrosis by regulating redox homeostasis through a G6PD- and ME-dependent mechanism.
Collapse
Affiliation(s)
- S S Loza-Medrano
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico.,Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06725, México City, Mexico
| | - L A Baiza-Gutman
- Laboratorio en Biología del Desarrollo, Unidad de Morfología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Estado de México, Mexico
| | - L Manuel-Apolinar
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - R García-Macedo
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06725, México City, Mexico
| | - L Damasio-Santana
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, México City, Mexico
| | - O A Martínez-Mar
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06725, México City, Mexico
| | - M C Sánchez-Becerra
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06725, México City, Mexico
| | - M Cruz-López
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06725, México City, Mexico
| | - M A Ibáñez-Hernández
- Laboratorio de Terapia Génica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - M Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades (1er. Piso), "Bernardo Sepúlveda" Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, C.P. 06725, México City, Mexico.
| |
Collapse
|
9
|
The effects of prenatal dexamethasone exposure and fructose challenge on pituitary-adrenocortical activity and anxiety-like behavior in female offspring. Tissue Cell 2019; 62:101309. [PMID: 32433017 DOI: 10.1016/j.tice.2019.101309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 11/20/2022]
Abstract
Prenatal glucocorticoid overexposure could largely influence pituitary-adrenal activity and anxiety-like behavior in offspring. Our aim was to study the possible potentiating effect of moderate dose of fructose - common ingredient of today's diet - on prenatal glucocorticoid treatment-induced hypothalamo-pituitary-adrenal (HPA) axis changes. Pregnant female rats were treated with multiple dexamethasone (Dx) doses (3 x 0.5 mg/kg/b.m. Dx; 16th-18th gestational day). Half of female offspring from control and Dx treated dams were supplemented with 10% fructose solution, from weaning till adulthood. Immunohistochemistry, unbiased stereological evaluation and hormonal analysis are used to provide the morpho-functional state of pituitary and adrenal gland. Anxiety-like behavior was assessed using the light/dark box test and the elevated plus maze test. Prenatally Dx exposed females, with or without fructose consumption, had markedly reduced adrenocortical volume (p < 0.05) comparing to controls. Increased basal plasma ACTH level in these females (p < 0.05) maintained corticosterone concentration at control level produced by smaller adrenal glands. In parallel, anxiety-like behavior was shown by both tests used. In conclusion, prenatal Dx exposure cause negative psychophysiological outcome reflected in increased HPA axis activity and anxiety behavior in female offspring, while moderately increased fructose consumption failed to evoke any alteration or to potentiate effects of prenatal Dx exposure.
Collapse
|
10
|
Raja Gopal Reddy M, Mahesh M, Manne M, Putcha UK, Jeyakumar SM. Vitamin A and its metabolic pathway play a determinant role in high-fructose-induced triglyceride accumulation of the visceral adipose depot of male Wistar rats. Cell Biochem Funct 2019; 37:578-590. [PMID: 31495961 DOI: 10.1002/cbf.3434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 12/17/2022]
Abstract
Here, we tested a hypothesis that vitamin A and/or its metabolic pathways are involved in the high-fructose-mediated alteration in adipose tissue biology. For this purpose, weanling male Wistar rats were provided with one of the following diets: control (C), control with vitamin A deficiency (C-VAD), high fructose (HFr), and HFr with VAD (HFr-VAD) for 16 weeks, except that half of the C-VAD diet-fed rats were shifted to HFr diet (C-VAD(s)HFr), after 8-week period. Compared with control, feeding of HFr diet significantly increased the triglyceride content (P ≤ .01) and thus adipocyte size (hypertrophy) (P ≤ .001) in visceral adipose depot; retroperitoneal white adipose tissue (RPWAT) and these changes were corroborated with de novo lipogenesis, as evidenced by the increased glycerol-3-phosphate dehydrogenase activity (P ≤ .01) and up-regulation of lipogenic pathway transcripts, fructose transporter, and aldehyde dehydrogenase 1 A1. On the contrary, the absence of vitamin A in the HFr diet (HFr-VAD) failed to exert these changes; however, it induced adipocyte hyperplasia. Further, vitamin A deficiency-mediated changes were reversed by replenishment, as evident from the group that was shifted from C-VAD to HFr diet. In conclusion, vitamin A and its metabolic pathway play a key determinant role in the high-fructose-induced triglyceride accumulation and adipocyte hypertrophy of visceral white adipose depot. SIGNIFICANCE OF THE STUDY: Here, we report the metabolic impact of high-fructose feeding under vitamin A-sufficient and vitamin A-deficient conditions. Feeding of high-fructose diet induced triglyceride accumulation and adipocyte hypertrophy of the visceral white adipose depots. These changes corroborated with augmented expression of vitamin A and lipid metabolic pathway genes. Contrarily, absence of vitamin A in the high-fructose diet did not elicit such responses, while vitamin A replenishment reversed the changes exerted by vitamin A deficiency. To our knowledge, this is the first study to report the role of vitamin A and its metabolic pathway in the high-fructose-induced triglyceride synthesis and its accumulation in visceral adipose depot and thus provide a new insight and scope to understand these nutrients interaction in clinical conditions.
Collapse
Affiliation(s)
| | - Malleswarapu Mahesh
- Lipid Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Munikumar Manne
- Biomedical Informatics Centre, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Uday Kumar Putcha
- Pathology Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
11
|
Hernández-Díazcouder A, Romero-Nava R, Carbó R, Sánchez-Lozada LG, Sánchez-Muñoz F. High Fructose Intake and Adipogenesis. Int J Mol Sci 2019; 20:E2787. [PMID: 31181590 PMCID: PMC6600229 DOI: 10.3390/ijms20112787] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/04/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023] Open
Abstract
In modern societies, high fructose intake from sugar-sweetened beverages has contributed to obesity development. In the diet, sucrose and high fructose corn syrup are the main sources of fructose and can be metabolized in the intestine and transported into the systemic circulation. The liver can metabolize around 70% of fructose intake, while the remaining is metabolized by other tissues. Several tissues including adipose tissue express the main fructose transporter GLUT5. In vivo, chronic fructose intake promotes white adipose tissue accumulation through activating adipogenesis. In vitro experiments have also demonstrated that fructose alone induces adipogenesis by several mechanisms, including (1) triglycerides and very-low-density lipoprotein (VLDL) production by fructose metabolism, (2) the stimulation of glucocorticoid activation by increasing 11β-HSD1 activity, and (3) the promotion of reactive oxygen species (ROS) production through uric acid, NOX and XOR expression, mTORC1 signaling and Ang II induction. Moreover, it has been observed that fructose induces adipogenesis through increased ACE2 expression, which promotes high Ang-(1-7) levels, and through the inhibition of the thermogenic program by regulating Sirt1 and UCP1. Finally, microRNAs may also be involved in regulating adipogenesis in high fructose intake conditions. In this paper, we propose further directions for research in fructose participation in adipogenesis.
Collapse
Affiliation(s)
- Adrián Hernández-Díazcouder
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
| | - Rodrigo Romero-Nava
- Departamento de Ciencias de la Salud, Área de Investigación Médica, Universidad Autónoma Metropolitana Iztapalapa, Mexico city 09340, Mexico.
- Laboratorio de investigación en Farmacología, Hospital Infantil de México Federico Gómez, Mexico city 06720, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| | - Roxana Carbó
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - L Gabriela Sánchez-Lozada
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología Ignacio Chávez, Mexico city 14080, Mexico.
- Sección de Postgraduados, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico city 11340, Mexico.
| |
Collapse
|
12
|
Strober JW, Brady MJ. Dietary Fructose Consumption and Triple-Negative Breast Cancer Incidence. Front Endocrinol (Lausanne) 2019; 10:367. [PMID: 31244777 PMCID: PMC6581676 DOI: 10.3389/fendo.2019.00367] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
In the past century the western world has found a way to combat most communicative diseases; however, throughout that time the prevalence of obesity, hyperglycemia, and hyperlipidemia have drastically increased. These symptoms characterize metabolic syndrome-a non-communicable disease which has become one of the greatest health hazards of the world. During this same time period the western diet had dramatically changed. Homecooked meals have been replaced by highly-processed, calorically dense foods. This conversion to the current western diet was highlighted by the incorporation of high-fructose corn syrup (HFCS) into sweetened beverages and foods. The consumption of large amounts of dietary sugar, and fructose in particular, has been associated with an altered metabolic state, both systemically and in specific tissues. This altered metabolic state has many profound effects and is associated with many diseases, including diabetes, cardiovascular disease, and even cancer (1). Specific types of cancer, like triple-negative breast cancer (TNBC), are both responsive to dietary factors and exceptionally difficult to treat, illustrating the possibility for preventative care through dietary intervention in at risk populations. To treat these non-communicable diseases, including obesity, diabetes, and cancer, it is imperative to understand systemic and localized metabolic abnormalities that drive its progression. This review will specifically explore the links between increased dietary fructose consumption, development of metabolic disturbances and increased incidence of TNBC.
Collapse
Affiliation(s)
- Jordan W. Strober
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, United States
| | - Matthew J. Brady
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, United States
- Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, United States
- *Correspondence: Matthew J. Brady
| |
Collapse
|
13
|
Corona-Pérez A, Díaz-Muñoz M, Cuevas-Romero E, Luna-Moreno D, Valente-Godínez H, Vázquez-Martínez O, Martínez-Gómez M, Rodríguez-Antolín J, Nicolás-Toledo L. Interactive effects of chronic stress and a high-sucrose diet on nonalcoholic fatty liver in young adult male rats. Stress 2017; 20:608-617. [PMID: 28969511 DOI: 10.1080/10253890.2017.1381840] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glucocorticoids have been implicated in nonalcoholic fatty liver diseases (NAFLD). The influence of a palatable diet on the response to stress is controversial. This study explored whether a high-sucrose diet could protect from hepatic steatosis induced by chronic restraint stress in young adult rats. Male Wistar rats aged 21 days were allocated into four groups (n = 6-8 per group): control, chronic restraint stress, 30% sucrose diet, and 30% sucrose diet plus chronic restraint stress. After being exposed to either tap water or sucrose solution during eight weeks, half of the rats belonging to each group were subject or not to repeated restraint stress (1 h per day, 5 days per week) during four weeks. Triacylglycerol (TAG), oxidative stress, activity of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1), infiltration of immune cells, and glycogen amount in the liver were quantified. Serum concentrations of corticosterone and testosterone were also measured. The stressed group showed normal serum concentrations of corticosterone and did not have hepatic steatosis. However, this group showed increased glycogen, inflammation, mild fibrosis, oxidative stress, and a high activity of 11β-HSD-1 in the liver. The group exposed to the high-sucrose diet had lower concentrations of corticosterone, hepatic steatosis and moderate fibrosis. The group subject to high-sucrose diet plus chronic restraint stress showed low concentrations of corticosterone, hepatic steatosis, oxidative stress, and high concentrations of testosterone. Thus, restraint stress and a high-sucrose diet each generate different components of nonalcoholic fatty liver in young adult rats. The combination of both the factors could promote a faster development of NAFLD.
Collapse
Affiliation(s)
- Adriana Corona-Pérez
- a Doctorado en Ciencias Biológicas , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| | - Mauricio Díaz-Muñoz
- b Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología , Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México , Querétaro , México
| | - Estela Cuevas-Romero
- c Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| | - Dalia Luna-Moreno
- d CONACyT-Facultad de Ciencias Naturales , Universidad Autónoma de Querétaro , Querétaro , México
| | - Héctor Valente-Godínez
- b Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología , Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México , Querétaro , México
| | - Olivia Vázquez-Martínez
- b Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología , Campus UNAM-Juriquilla, Universidad Nacional Autónoma de México , Querétaro , México
| | - Margarita Martínez-Gómez
- c Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
- e Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas , Universidad Nacional Autónoma de México , México-CDMX , México
| | - Jorge Rodríguez-Antolín
- c Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| | - Leticia Nicolás-Toledo
- c Centro Tlaxcala de Biología de la Conducta , Universidad Autónoma de Tlaxcala , Tlaxcala , México
| |
Collapse
|
14
|
Prince PD, Santander YA, Gerez EM, Höcht C, Polizio AH, Mayer MA, Taira CA, Fraga CG, Galleano M, Carranza A. Fructose increases corticosterone production in association with NADPH metabolism alterations in rat epididymal white adipose tissue. J Nutr Biochem 2017; 46:109-116. [PMID: 28499147 DOI: 10.1016/j.jnutbio.2017.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/12/2017] [Accepted: 02/25/2017] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome is an array of closely metabolic disorders that includes glucose intolerance/insulin resistance, central obesity, dyslipidemia, and hypertension. Fructose, a highly lipogenic sugar, has profound metabolic effects in adipose tissue, and has been associated with the etiopathology of many components of the metabolic syndrome. In adipocytes, the enzyme 11 β-HSD1 amplifies local glucocorticoid production, being a key player in the pathogenesis of central obesity and metabolic syndrome. 11 β-HSD1 reductase activity is dependent on NADPH, a cofactor generated by H6PD inside the endoplasmic reticulum. Our focus was to explore the effect of fructose overload on epididymal white adipose tissue (EWAT) machinery involved in glucocorticoid production and NADPH and oxidants metabolism. Male Sprague-Dawley rats fed with a fructose solution (10% (w/v) in tap water) during 9 weeks developed some characteristic features of metabolic syndrome, such as hypertriglyceridemia, and hypertension. In addition, high levels of plasma and EWAT corticosterone were detected. Activities and expressions of H6PD and 11 β-HSD1, NAPDH content, superoxide anion production, expression of NADPH oxidase 2 subunits, and indicators of oxidative metabolism were measured. Fructose overloaded rats showed an increased potential in oxidant production respect to control rats. In parallel, in EWAT from fructose overloaded rats we found higher expression/activity of H6PD and 11 β-HSD1, and NADPH/NADP+ ratio. Our in vivo results support that fructose overload installs in EWAT conditions favoring glucocorticoid production through higher H6PD expression/activity supplying NADPH for enhanced 11 β-HSD1 expression/activity, becoming this tissue a potential extra-adrenal source of corticosterone under these experimental conditions.
Collapse
Affiliation(s)
- Paula D Prince
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Yanina A Santander
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Estefania M Gerez
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina
| | - Christian Höcht
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina
| | - Ariel H Polizio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Marcos A Mayer
- CONICET, Buenos Aires, Argentina; Fundación CESIM, Santa Rosa, La Pampa, Argentina; Universidad de La Pampa, Facultad de Ciencias Naturales, Santa Rosa, La Pampa, Argentina
| | - Carlos A Taira
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Cesar G Fraga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Monica Galleano
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Buenos Aires, Argentina; CONICET- Universidad de Buenos Aires, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Buenos Aires, Argentina
| | - Andrea Carranza
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Farmacología, Cátedra de Farmacología, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Cardiológicas (ININCA), Buenos Aires, Argentina.
| |
Collapse
|
15
|
Priyadarshini E, Anuradha CV. Glucocorticoid Antagonism Reduces Insulin Resistance and Associated Lipid Abnormalities in High-Fructose-Fed Mice. Can J Diabetes 2016; 41:41-51. [PMID: 27614803 DOI: 10.1016/j.jcjd.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 06/07/2016] [Accepted: 06/13/2016] [Indexed: 01/17/2023]
Abstract
OBJECTIVES High intake of dietary fructose causes perturbation in lipid metabolism and provokes lipid-induced insulin resistance. A rise in glucocorticoids (GCs) has recently been suggested to be involved in fructose-induced insulin resistance. The objective of the study was to investigate the effect of GC blockade on lipid abnormalities in insulin-resistant mice. METHODS Insulin resistance was induced in mice by administering a high-fructose diet (HFrD) for 60 days. Mifepristone (RU486), a GC antagonist, was administered to HFrD-fed mice for the last 18 days, and the intracellular and extracellular GC levels, the glucocorticoid receptor (GR) activation and the expression of GC-regulated genes involved in lipid metabolism were examined. RESULTS HFrD elevated the intracellular GC content in both liver and adipose tissue and enhanced the GR nuclear translocation. The plasma GC level remained unchanged. The levels of free fatty acids and triglycerides in plasma were elevated, accompanied by increased plasma insulin and glucose levels and decreased hepatic glycogen content. Treatment with RU486 reduced plasma lipid levels, tissue GC levels and the expression of GC-targeted genes involved in lipid accumulation, and it improved insulin sensitivity. CONCLUSIONS This study demonstrated that HFrD-induced lipid accumulation and insulin resistance are mediated by enhanced GC in liver and adipose tissue and that GC antagonism might reduce fructose-induced lipid abnormalities and insulin resistance.
Collapse
|
16
|
Fructose and stress induce opposite effects on lipid metabolism in the visceral adipose tissue of adult female rats through glucocorticoid action. Eur J Nutr 2016; 56:2115-2128. [DOI: 10.1007/s00394-016-1251-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/14/2016] [Indexed: 12/16/2022]
|
17
|
Bray B, Scholl JL, Tu W, Watt MJ, Renner KJ, Forster GL. Amphetamine withdrawal differentially affects hippocampal and peripheral corticosterone levels in response to stress. Brain Res 2016; 1644:278-87. [PMID: 27208490 DOI: 10.1016/j.brainres.2016.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/20/2016] [Accepted: 05/16/2016] [Indexed: 12/29/2022]
Abstract
Amphetamine withdrawal is associated with heightened anxiety-like behavior, which is directly driven by blunted stress-induced glucocorticoid receptor-dependent serotonin release in the ventral hippocampus. This suggests that glucocorticoid availability in the ventral hippocampus during stress may be reduced during amphetamine withdrawal. Therefore, we tested whether amphetamine withdrawal alters either peripheral or hippocampal corticosterone stress responses. Adult male rats received amphetamine (2.5mg/kg, ip) or saline for 14 days followed by 2 weeks of withdrawal. Contrary to our prediction, microdialysis samples from freely-moving rats revealed that restraint stress-induced corticosterone levels in the ventral hippocampus are enhanced by amphetamine withdrawal relative to controls. In separate groups of rats, plasma corticosterone levels increased immediately after 20min of restraint and decreased to below stress-naïve levels after 1h, indicating negative feedback regulation of corticosterone following stress. However, plasma corticosterone responses were similar in amphetamine-withdrawn and control rats. Neither amphetamine nor stress exposure significantly altered protein expression or enzyme activity of the steroidogenic enzymes 11β-hydroxysteroid dehydrogenase (11β-HSD1) or hexose-6-phosphate dehydrogenase (H6PD) in the ventral hippocampus. Our findings demonstrate for the first time that amphetamine withdrawal potentiates stress-induced corticosterone in the ventral hippocampus, which may contribute to increased behavioral stress sensitivity previously observed during amphetamine withdrawal. However, this is not mediated by either changes in plasma corticosterone or hippocampal steroidogenic enzymes. Establishing enhanced ventral hippocampal corticosterone as a direct cause of greater stress sensitivity may identify the glucocorticoid system as a novel target for treating behavioral symptoms of amphetamine withdrawal.
Collapse
Affiliation(s)
- Brenna Bray
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Jamie L Scholl
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Wenyu Tu
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Michael J Watt
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Kenneth J Renner
- Department of Biology, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| | - Gina L Forster
- Division of Basic Biomedical Sciences, Center for Brain and Behavior Research, University of South Dakota, 414 East Clark St, Vermillion, SD, United States.
| |
Collapse
|
18
|
Long-Term Fructose Intake Increases Adipogenic Potential: Evidence of Direct Effects of Fructose on Adipocyte Precursor Cells. Nutrients 2016; 8:198. [PMID: 27049396 PMCID: PMC4848667 DOI: 10.3390/nu8040198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/11/2016] [Accepted: 03/22/2016] [Indexed: 11/22/2022] Open
Abstract
We have previously addressed that fructose rich diet (FRD) intake for three weeks increases the adipogenic potential of stromal vascular fraction cells from the retroperitoneal adipose tissue (RPAT). We have now evaluated the effect of prolonged FRD intake (eight weeks) on metabolic parameters, number of adipocyte precursor cells (APCs) and in vitro adipogenic potential from control (CTR) and FRD adult male rats. Additionally, we have examined the direct fructose effects on the adipogenic capacity of normal APCs. FRD fed rats had increased plasma levels of insulin, triglyceride and leptin, and RPAT mass and adipocyte size. FACS studies showed higher APCs number and adipogenic potential in FRD RPAT pads; data is supported by high mRNA levels of competency markers: PPARγ2 and Zfp423. Complementary in vitro experiments indicate that fructose-exposed normal APCs displayed an overall increased adipogenic capacity. We conclude that the RPAT mass expansion observed in eight week-FRD fed rats depends on combined accelerated adipogenesis and adipocyte hypertrophy, partially due to a direct effect of fructose on APCs.
Collapse
|
19
|
Fructose-enriched diet induces inflammation and reduces antioxidative defense in visceral adipose tissue of young female rats. Eur J Nutr 2015; 56:151-160. [PMID: 26433940 DOI: 10.1007/s00394-015-1065-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/25/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE The consumption of refined, fructose-enriched food continuously increases and has been linked to development of obesity, especially in young population. Low-grade inflammation and increased oxidative stress have been implicated in the pathogenesis of obesity-related disorders including type 2 diabetes. In this study, we examined alterations in inflammation and antioxidative defense system in the visceral adipose tissue (VAT) of fructose-fed young female rats, and related them to changes in adiposity and insulin sensitivity. METHODS We examined the effects of 9-week fructose-enriched diet applied immediately after weaning on nuclear factor κB (NF-κB) intracellular distribution, and on the expression of pro-inflammatory cytokines (IL-1β and TNFα) and key antioxidative enzymes in the VAT of female rats. Insulin signaling in the VAT was evaluated at the level of insulin receptor substrate-1 (IRS-1) protein and its inhibitory phosphorylation on Ser307. RESULTS Fructose-fed rats had increased VAT mass along with increased NF-κB nuclear accumulation and elevated IL-1β, but not TNFα expression. The protein levels of antioxidative defense enzymes, mitochondrial manganese superoxide dismutase 2, and glutathione peroxidase, were reduced, while the protein content of IRS-1 and its inhibitory phosphorylation were not altered by fructose diet. CONCLUSIONS The results suggest that fructose overconsumption-related alterations in pro-inflammatory markers and antioxidative capacity in the VAT of young female rats can be implicated in the development of adiposity, but do not affect inhibitory phosphorylation of IRS-1.
Collapse
|
20
|
Goedecke JH, Chorell E, Livingstone DEW, Stimson RH, Hayes P, Adams K, Dave JA, Victor H, Levitt NS, Kahn SE, Seckl JR, Walker BR, Olsson T. Glucocorticoid receptor gene expression in adipose tissue and associated metabolic risk in black and white South African women. Int J Obes (Lond) 2014; 39:303-11. [PMID: 24854429 DOI: 10.1038/ijo.2014.94] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/07/2014] [Accepted: 05/18/2014] [Indexed: 12/30/2022]
Abstract
BACKGROUND Black women have lower visceral adipose tissue (VAT) but are less insulin sensitive than white women; the mechanisms responsible are unknown. OBJECTIVE The study aimed to test the hypothesis that variation in subcutaneous adipose tissue (SAT) sensitivity to glucocorticoids might underlie these differences. METHODS Body fatness (dual energy X-ray absorptiometry) and distribution (computerized tomography), insulin sensitivity (SI, intravenous and oral glucose tolerance tests), and expression of 11β-hydroxysteroid dehydrogenase-1 (11HSD1), hexose-6-phosphate dehydrogenase and glucocorticoid receptor-α (GRα), as well as genes involved in adipogenesis and inflammation were measured in abdominal deep SAT, superficial SAT and gluteal SAT (GLUT) depots of 56 normal-weight or obese black and white premenopausal South African (SA) women. We used a combination of univariate and multivariate statistics to evaluate ethnic-specific patterns in adipose gene expression and related body composition and insulin sensitivity measures. RESULTS Although 11HSD1 activity and mRNA did not differ by ethnicity, GRα mRNA levels were significantly lower in SAT of black compared with white women, particularly in the GLUT depot (0.52±0.21 vs 0.91±0.26 AU, respectively, P<0.01). In black women, lower SAT GRα mRNA levels were associated with increased inflammatory gene transcript levels and abdominal SAT area, and reduced adipogenic gene transcript levels, VAT/SAT ratio and SI. Abdominal SAT 11HSD1 activity associated with increased VAT area and decreased SI in white, but not in black women. CONCLUSIONS In black SA women, downregulation of GRα mRNA levels with obesity and reduced insulin sensitivity, possibly via increased SAT inflammation, is associated with reduced VAT accumulation.
Collapse
Affiliation(s)
- J H Goedecke
- 1] Non-Communicable Disease Research Unit, South African Medical Research Council, Cape Town, South Africa [2] UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Cape Town, South Africa
| | - E Chorell
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| | - D E W Livingstone
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - R H Stimson
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - P Hayes
- Divison of Surgery, Department of Plastic Surgery, University of Cape Town, Cape Town, South Africa
| | - K Adams
- Divison of Surgery, Department of Plastic Surgery, University of Cape Town, Cape Town, South Africa
| | - J A Dave
- Division of Diabetes and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - H Victor
- UCT/MRC Research Unit for Exercise Science and Sports Medicine, Department of Human Biology, Cape Town, South Africa
| | - N S Levitt
- Division of Diabetes and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - S E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, VA Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| | - J R Seckl
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - B R Walker
- Endocrinology Unit, University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, Scotland, UK
| | - T Olsson
- Department of Public Health and Clinical Medicine, Umeå University, Umea, Sweden
| |
Collapse
|