1
|
Akhter N, Kochumon S, Hasan A, Wilson A, Nizam R, Al Madhoun A, Al-Rashed F, Arefanian H, Alzaid F, Sindhu S, Al-Mulla F, Ahmad R. IFN-γ and LPS Induce Synergistic Expression of CCL2 in Monocytic Cells via H3K27 Acetylation. J Inflamm Res 2022; 15:4291-4302. [PMID: 35923906 PMCID: PMC9343018 DOI: 10.2147/jir.s368352] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background Overexpression of CCL2 (MCP-1) has been implicated in pathogenesis of metabolic conditions, such as obesity and T2D. However, the mechanisms leading to increased CCL2 expression in obesity are not fully understood. Since both IFN-γ and LPS levels are found to be elevated in obesity and shown to be involved in the regulation of metabolic inflammation and insulin resistance, we investigated whether these two agents could synergistically trigger the expression of CCL2 in obesity. Methods Monocytes (Human monocytic THP-1 cells) were stimulated with IFN-γ and LPS. CCL2 gene expression was determined by real-time RT-PCR. CCL2 protein was determined by ELISA. Signaling pathways were identified by using epigenetic inhibitors and STAT1 siRNA. Acetylation of H3K27 was analyzed by Western blotting. The acetylation level of histone H3K27 in the transcriptional initiation region of CCL2 gene was determined by ChIP-qPCR. Results Our results show that the co-incubation of THP-1 monocytes with IFN-γ and LPS significantly enhanced the expression of CCL2, compared to treatment with IFN-γ or LPS alone. Similar results were obtained using primary monocytes and macrophages. Interestingly, IFN-γ priming was found to be more effective than LPS priming in inducing synergistic expression of CCL2. Moreover, STAT1 deficiency significantly suppressed this synergy for CCL2 expression. Mechanistically, we showed that IFN-γ priming induced acetylation of lysine 27 on histone 3 (H3K27ac) in THP-1 cells. Chromatin immunoprecipitation (ChIP) assay followed by qRT-PCR revealed increased H3K27ac at the CCL2 promoter proximal region, resulting in stabilized gene expression. Furthermore, inhibition of histone acetylation with anacardic acid suppressed this synergistic response, whereas trichostatin A (TSA) could substitute IFN-γ in this synergy. Conclusion Our findings suggest that IFN-γ, in combination with LPS, has the potential to augment inflammation via the H3K27ac-mediated induction of CCL2 in monocytic cells in the setting of obesity.
Collapse
Affiliation(s)
- Nadeem Akhter
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Shihab Kochumon
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Amal Hasan
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ajit Wilson
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Ashraf Al Madhoun
- Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fatema Al-Rashed
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hossein Arefanian
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fawaz Alzaid
- Genetics & Bioinformatics, Dasman Diabetes Institute, Kuwait City, Kuwait
- Institut Necker Enfants Malades (INEM), French Institute of Health and Medical Research (INSERM), Immunity & Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Sardar Sindhu
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Animal and Imaging Core Facility, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Fahd Al-Mulla
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Rasheed Ahmad
- Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait
- Correspondence: Rasheed Ahmad, Immunology & Microbiology Department, Dasman Diabetes Institute, Kuwait City, Kuwait, Tel +965 2224 2999 Ext. 4311, Email
| |
Collapse
|
2
|
Yoshitake R, Hirose Y, Murosaki S, Matsuzaki G. Heat-killed Lactobacillus plantarum L-137 attenuates obesity and associated metabolic abnormalities in C57BL/6 J mice on a high-fat diet. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2020; 40:84-91. [PMID: 33996364 PMCID: PMC8099634 DOI: 10.12938/bmfh.2020-040] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/24/2020] [Indexed: 12/31/2022]
Abstract
Heat-killed Lactobacillus plantarum L-137 (HK L-137) has anti-allergic, antitumor, and antiviral effects in mice, as well as an anti-inflammatory effect in rats with metabolic syndrome through regulation of immunity. To evaluate the influence of HK L-137 on chronic inflammation in mice with diet-induced obesity, C57BL/6 J mice were fed a normal diet (16% of energy as fat) or a high-fat diet (62% of energy as fat) with or without 0.002% HK L-137 for 4 to 20 weeks. It was found that HK L-137 supplementation alleviated weight gain and elevation of plasma glucose, cholesterol, alanine aminotransferase, and aspartate transaminase levels in mice with diet-induced obesity. Expression of several inflammation-related genes, including F4/80, CD11c, and IL-1β, in the epididymal adipose tissue of these mice was significantly downregulated by HK L-137. In addition, plasma levels of lipopolysaccharide-binding protein, a marker of endotoxemia, tended to be decreased by administration of HK L-137. These findings suggest that HK L-137 supplementation ameliorates obesity-induced metabolic abnormalities and adipose tissue inflammation, possibly through improvement of intestinal permeability.
Collapse
Affiliation(s)
- Rieko Yoshitake
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of The Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Yoshitaka Hirose
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of The Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Shinji Murosaki
- Nihon Pharmaceutical University, Kitaadachi-gun, Saitama 362-0806, Japan
| | - Goro Matsuzaki
- Molecular Microbiology Group, Department of Infectious Diseases, Tropical Biosphere Research Center, University of The Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
3
|
Huang X, Yan D, Xu M, Li F, Ren M, Zhang J, Wu M. Interactive association of lipopolysaccharide and free fatty acid with the prevalence of type 2 diabetes: A community-based cross-sectional study. J Diabetes Investig 2019; 10:1438-1446. [PMID: 30950561 PMCID: PMC6825935 DOI: 10.1111/jdi.13056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/22/2019] [Accepted: 04/02/2019] [Indexed: 12/25/2022] Open
Abstract
AIMS/INTRODUCTION Increased blood lipopolysaccharide (LPS) or free fatty acid (FFA) levels correlate with an increased risk of type 2 diabetes. The purpose of the present study was to evaluate the interactive effect of serum LPS and FFA levels on the prevalence of type 2 diabetes. MATERIALS AND METHODS This cross-sectional study included 2,553 community-dwelling Chinese adults. Fasting serum LPS levels were determined using the Limulus Amebocyte Lysate Chromogenic Endpoint assay, and FFA levels were determined using an enzymatic method. The participants were divided into three groups according to the tertiles of LPS or FFA levels or nine groups according to the tertiles of LPS and FFA levels. The odd ratios (ORs) for type 2 diabetes were estimated using logistic regression analysis. RESULTS We found that higher serum LPS or FFA levels were associated with higher high-sensitivity C-reactive protein levels (P < 0.001), homeostatic model assessment of insulin resistance levels (P < 0.001) and ORs for type 2 diabetes (P < 0.01). Meanwhile, there were significant interactions between LPS and FFA in terms of the high-sensitivity C-reactive protein level (P < 0.001), homeostatic model assessment of insulin resistance level (P < 0.001) and ORs for type 2 diabetes (P < 0.001). In the fully adjusted logistic regression model, the OR for participants with type 2 diabetes in the higher LPS and FFA level group were 6.58 (95% confidence interval 3.05-14.18, P < 0.001) compared with that in participants in the lower LPS and FFA level group. CONCLUSIONS The interaction between LPS and FFA was associated with an increased risk of type 2 diabetes in community-dwelling Chinese adults.
Collapse
Affiliation(s)
- Xiuji Huang
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Dan Yan
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mingtong Xu
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Feng Li
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meng Ren
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jin Zhang
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Muchao Wu
- Department of EndocrinologySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
4
|
Tanaka Y, Hirose Y, Yamamoto Y, Yoshikai Y, Murosaki S. Daily intake of heat-killed Lactobacillus plantarum L-137 improves inflammation and lipid metabolism in overweight healthy adults: a randomized-controlled trial. Eur J Nutr 2019; 59:2641-2649. [PMID: 31620886 PMCID: PMC7413902 DOI: 10.1007/s00394-019-02112-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE The effects of heat-killed Lactobacillus plantarum L-137 (HK L-137) on inflammation and lipid metabolism were investigated in overweight volunteers. METHODS One hundred healthy subjects with a body mass index from 23.0 to 29.9 (51 men and 49 women; mean age: 41.4 years) were enrolled in this randomized, double-blind, placebo-controlled, parallel group study. Subjects were randomly assigned to daily administration of a tablet containing HK L-137 (10 mg) or a placebo tablet for 12 weeks. Blood samples were collected every 4 weeks to measure biomarkers of lipid metabolism and inflammatory mediators. RESULTS The percent change of concanavalin A-induced proliferation of peripheral blood mononuclear cells was significantly larger in the HK L-137 group than in the control group, similar to previous studies. The decreases of aspartate aminotransferase and alanine aminotransferase over time were significantly larger in the HK L-137 group than in the control group, as were the decreases of total cholesterol, low-density lipoprotein cholesterol, and the leukocyte count at one time point. These effects of HK L-137 were stronger in the subjects with higher C-reactive protein levels. CONCLUSIONS These findings suggest that daily intake of HK L-137 can improve inflammation and lipid metabolism in subjects at risk of inflammation.
Collapse
Affiliation(s)
- Yusuke Tanaka
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan.
| | - Yoshitaka Hirose
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan
| | - Yoshihiro Yamamoto
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan
| | - Yasunobu Yoshikai
- Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shinji Murosaki
- Research Division, Research and Development Institute, House Wellness Foods Corp., Imoji 3-20, Itami, Hyogo, 664-0011, Japan
| |
Collapse
|
5
|
Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol 2017; 30:719-727. [PMID: 28933050 DOI: 10.1007/s40620-017-0432-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
6
|
Wang J, Ghosh SS, Ghosh S. Curcumin improves intestinal barrier function: modulation of intracellular signaling, and organization of tight junctions. Am J Physiol Cell Physiol 2017; 312:C438-C445. [PMID: 28249988 DOI: 10.1152/ajpcell.00235.2016] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 02/17/2017] [Accepted: 02/17/2017] [Indexed: 12/14/2022]
Abstract
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as type 2 diabetes and atherosclerosis) has shifted the focus from high-fat high-cholesterol containing Western-type diet (WD)-induced changes in gut microbiota per se to release of gut bacteria-derived products (e.g., LPS) into circulation due to intestinal barrier dysfunction as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. We demonstrated earlier that oral supplementation with curcumin attenuates WD-induced development of type 2 diabetes and atherosclerosis. Poor bioavailability of curcumin has precluded the establishment of a causal relationship between oral supplementation and it is in vivo effects. We hypothesized that curcumin attenuates WD-induced chronic inflammation and associated metabolic diseases by modulating the function of intestinal epithelial cells (IECs) and the intestinal barrier function. The objective of the present study was to delineate the underlying mechanisms. The human IEC lines Caco-2 and HT-29 were used for these studies and modulation of direct as well as indirect effects of LPS on intracellular signaling as well as tight junctions were examined. Pretreatment with curcumin significantly attenuated LPS-induced secretion of master cytokine IL-1β from IECs and macrophages. Furthermore, curcumin also reduced IL-1β-induced activation of p38 MAPK in IECs and subsequent increase in expression of myosin light chain kinase involved in the phosphorylation of tight junction proteins and ensuing disruption of their normal arrangement. The major site of action of curcumin is, therefore, likely the IECs and the intestinal barrier, and by reducing intestinal barrier dysfunction, curcumin modulates chronic inflammatory diseases despite poor bioavailability.
Collapse
Affiliation(s)
- Jing Wang
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Siddhartha S Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Shobha Ghosh
- Department of Internal Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
7
|
Endotoxins are associated with visceral fat mass in type 1 diabetes. Sci Rep 2016; 6:38887. [PMID: 27958332 PMCID: PMC5153626 DOI: 10.1038/srep38887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/14/2016] [Indexed: 01/24/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS), potent inducers of inflammation, have been associated with chronic metabolic disturbances. Obesity is linked to dyslipidemia, increased body adiposity, and endotoxemia. We investigated the cross-sectional relationships between serum LPS activity and body adiposity as well as inflammation in 242 subjects with type 1 diabetes. Body fat distribution was measured by DXA and serum LPS activity by the limulus amebocyte lysate end-point assay. Since no interaction between visceral fat mass and sex was observed, data were pooled for the subsequent analyses. LPS was independently associated with visceral fat mass, when adjusted for traditional risk factors (age, sex, kidney status, hsCRP, insulin sensitivity). In the multivariate analysis, serum LPS activity and triglyceride concentrations had a joint effect on visceral fat mass, independent of these factors alone. A combination of high LPS and high hsCRP concentrations was also observed in those with the largest visceral fat mass. In conclusion, high serum LPS activity levels were associated with visceral fat mass in subjects with type 1 diabetes strengthening its role in the development of central obesity, inflammation and insulin resistance.
Collapse
|
8
|
Lactobacillus gasseri SBT2055 inhibits adipose tissue inflammation and intestinal permeability in mice fed a high-fat diet. J Nutr Sci 2016; 5:e23. [PMID: 27293560 PMCID: PMC4891558 DOI: 10.1017/jns.2016.12] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
The probiotic Lactobacillus gasseri SBT2055 (LG2055) has anti-obesity effects. Obesity is closely correlated with inflammation in adipose tissue, and maintaining adipose tissue in a less-inflamed state requires intestinal integrity or a barrier function to protect the intestine from the disruption that can be caused by a high-fat diet (HFD). Here, we examined the anti-inflammatory and intestinal barrier-protecting effects of LG2055 in C57BL/6 mice fed a normal-fat diet (NFD), HFD, or the HFD containing LG2055 (HFD-LG) for 21 weeks. HFD-LG intake significantly prevented HFD-induced increases in body weight, visceral fat mass, and the ratio of inflammatory-type macrophages to anti-inflammatory ones in adipose tissue. Mice fed the HFD showed higher intestinal permeability to a fluorescent dextran administered by oral administration and an elevated concentration of antibodies specific to lipopolysaccharides (LPS) in the blood compared with those fed the NFD, suggesting an increased penetration of the gut contents into the systemic circulation. These elevations of intestinal permeability and anti-LPS antibody levels were significantly suppressed in mice fed the HFD-LG. Moreover, treatment with LG2055 cells suppressed an increase in the cytokine-induced permeability of Caco-2 cell monolayers. These results suggest that LG2055 improves the intestinal integrity, reducing the entry of inflammatory substances like LPS from the intestine, which may lead to decreased inflammation in adipose tissue.
Collapse
Key Words
- Anti-inflammation effects
- Anti-obesity effects
- Diet-induced obesity
- FBS, fetal bovine serum
- FCM, flow cytometry buffer
- FD-4, fluorescein isothiocyanate–dextran
- FITC, fluorescein isothiocyanate
- HFD, high-fat diet
- HFD-LG, high-fat diet containing Lactobacillus gasseri SBT2055
- IFN-γ, interferon-γ
- Intestinal barrier function
- LPS, lipopolysaccharide
- LY, Lucifer yellow
- Lactobacillus gasseri SBT2055
- M1, classically activated macrophages
- M2, alternatively activated macrophages
- NFD, normal-fat diet
- SVF, stromal–vascular fraction
- TEER, trans-epithelial electrical resistance
Collapse
|