1
|
Sahu D, Bishwal SC, Malik MZ, Sahu S, Kaushik SR, Sharma S, Saini E, Arya R, Rastogi A, Sharma S, Sen S, Singh RKB, Liu CJ, Nanda RK, Panda AK. Troxerutin-Mediated Complement Pathway Inhibition is a Disease-Modifying Treatment for Inflammatory Arthritis. Front Cell Dev Biol 2022; 10:845457. [PMID: 35433699 PMCID: PMC9009527 DOI: 10.3389/fcell.2022.845457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
Troxerutin (TXR) is a phytochemical reported to possess anti-inflammatory and hepatoprotective effects. In this study, we aimed to exploit the antiarthritic properties of TXR using an adjuvant-induced arthritic (AIA) rat model. AIA-induced rats showed the highest arthritis score at the disease onset and by oral administration of TXR (50, 100, and 200 mg/kg body weight), reduced to basal level in a dose-dependent manner. Isobaric tags for relative and absolute quantitative (iTRAQ) proteomics tool were employed to identify deregulated joint homogenate proteins in AIA and TXR-treated rats to decipher the probable mechanism of TXR action in arthritis. iTRAQ analysis identified a set of 434 proteins with 65 deregulated proteins (log2 case/control≥1.5) in AIA. Expressions of a set of important proteins (AAT, T-kininogen, vimentin, desmin, and nucleophosmin) that could classify AIA from the healthy ones were validated using Western blot analysis. The Western blot data corroborated proteomics findings. In silico protein–protein interaction study of tissue-proteome revealed that complement component 9 (C9), the major building blocks of the membrane attack complex (MAC) responsible for sterile inflammation, get perturbed in AIA. Our dosimetry study suggests that a TXR dose of 200 mg/kg body weight for 15 days is sufficient to bring the arthritis score to basal levels in AIA rats. We have shown the importance of TXR as an antiarthritic agent in the AIA model and after additional investigation, its arthritic ameliorating properties could be exploited for clinical usability.
Collapse
Affiliation(s)
- Debasis Sahu
- Product Development Cell, National Institute of Immunology, New Delhi, India
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, United States
- *Correspondence: Debasis Sahu, ; Ranjan Kumar Nanda, ; Amulya Kumar Panda,
| | - Subasa Chandra Bishwal
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Md. Zubbair Malik
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sukanya Sahu
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sandeep Rai Kaushik
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Shikha Sharma
- Amity Institute of Forensic Sciences, Amity University, Noida, India
| | - Ekta Saini
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Rakesh Arya
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Archana Rastogi
- Department of Pathology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Sandeep Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | - Shanta Sen
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - R. K. Brojen Singh
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chuan-Ju Liu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, United States
| | - Ranjan Kumar Nanda
- Translational Health Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
- *Correspondence: Debasis Sahu, ; Ranjan Kumar Nanda, ; Amulya Kumar Panda,
| | - Amulya Kumar Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India
- *Correspondence: Debasis Sahu, ; Ranjan Kumar Nanda, ; Amulya Kumar Panda,
| |
Collapse
|
2
|
Li H, Yang M, Lou D. Troxerutin regulates HIF-1α by activating JAK2/STAT3 signaling to inhibit oxidative stress, inflammation, and apoptosis of cardiomyocytes induced by H 2 O 2. Drug Dev Res 2021; 83:552-563. [PMID: 34622462 DOI: 10.1002/ddr.21885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 11/06/2022]
Abstract
Heart failure (HF) is greatly threatening human health and affecting morbidity and mortality worldwide. Troxerutin can alleviate myocardial injury induced by ischemia and hypoxia. The present study aimed to investigate the protective effect of troxerutin on H2 O2 -induced cardiomyocytes and the underlying molecular mechanism. Primary mouse cardiomyocytes morphology induced by H2 O2 in a different duration time was observed by a microscope. After indicated treatment, the viability and apoptosis of cardiomyocytes were detected by CCK-8 assay and flow cytometry analysis. The expression of inflammatory factors and oxidative stress biomarkers was detected by Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and assay kits. Hypoxia inducible factor-1a (HIF-1α) expression was determined by western blot analysis, RT-qPCR analysis and immunofluorescence staining. The apoptosis-related protein expression and the phosphorylation level of janus-activated kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) were detected by the western blot analysis. As a result, after the H2 O2 treatment in a different duration time, the primary mouse cardiomyocytes gradually stopped beating and the morphology of cardiomyocytes treated with H2 O2 was changed significantly from fusiform shape to round shape. The viability of cardiomyocytes was decreased after H2 O2 induction. The HIF-1α expression was increased after the H2 O2 treatment within 30 min while decreased over 30 min. In addition, troxerutin improved viability and suppressed apoptosis, inflammation and oxidative stress of H2 O2 -induced cardiomyocytes, which was reversed by KC7F2 (a HIF-1α inhibitor) or CHZ868 (a JAK inhibitor). To sum up, troxerutin could regulate HIF-1α by activating JAK2/STAT3 signaling to inhibit oxidative stress, inflammation, and apoptosis of cardiomyocytes induced by H2 O2 .
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Shanxi Chinese Medical Hospital, Taiyuan, Shanxi, China
| | - Min Yang
- Department of Medical Oncology, The Second Affiliate Hospital of Zhe Jiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Danfei Lou
- Department of Geriatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Cahyani DM, Miatmoko A, Hariawan BS, Purwantari KE, Sari R. N-nitrosodiethylamine induces inflammation of liver in mice. J Basic Clin Physiol Pharmacol 2021; 32:505-510. [PMID: 34214328 DOI: 10.1515/jbcpp-2020-0475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 12/09/2022]
Abstract
OBJECTIVES For designing early treatment for liver cancer, it is important to prepare an animal model to evaluate cancer prevention treatment by using inflammation disease. The hepatocarcinogenic N-Nitrosodiethylamine (NDEA) has been reportedly able to produce free radicals that cause liver inflammation leading to liver carcinoma. This study aimed to evaluate the inflammation disease model of mice induced with hepatocarcinogenic NDEA for five weeks induction. METHODS The BALB-c mice were induced with NDEA 25 mg/kg of body weight once a week for five weeks intraperitonially and it was then evaluated for the body weight during study periods. The mice were then sacrificed and excised for evaluating their organs including physical and morphological appearances and histopathology evaluations. RESULTS The results showed a significant decrease of body weight of mice after five times induction of 25 mg NDEA/kgBW per week intraperitonially. Different morphological appearances and weight of mice organs specifically for liver and spleen had also been observed. The histopathology examination showed that there were hepatic lipidosis and steatohepatitis observed in liver and spleen, respectively that might indicate the hepatocellular injury. CONCLUSIONS It can be concluded that inducing mice with NDEA intraperitonially resulted in fatty liver disease leading to progress of cancer disease.
Collapse
Affiliation(s)
- Devy Maulidya Cahyani
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | | | - Kusuma Eko Purwantari
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Retno Sari
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
4
|
Imani A, Maleki N, Bohlouli S, Kouhsoltani M, Sharifi S, Maleki Dizaj S. Molecular mechanisms of anticancer effect of rutin. Phytother Res 2021; 35:2500-2513. [PMID: 33295678 DOI: 10.1002/ptr.6977] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/13/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Because of the extensive biological functions of natural substances such as bioflavonoids, and their high safety and low costs, they could have high priority application in the health care system. The antioxidant properties of rutin, a polyphenolic bioflavonoid, have been well documented and demonstrated a wide range of pharmacological applications in cancer research. Since chemotherapeutic drugs have a wide range of side effects and rutin is a safe anticancer agent with minor side effects so recent investigations are performed for study of mechanisms of its anticancer effect. Both in-vivo and in-vitro examinations on anticancer mechanisms of this natural agent have been widely carried out. Regulation of different cellular signaling pathways such as Wnt/β-catenin, p53-independent pathway, PI3K/Akt, JAK/STAT, MAPK, p53, apoptosis as well as NF-ĸB signaling pathways helps to mediate the anticancer impacts of this agent. This study tried to review the molecular mechanisms of rutin anticancer effect on various types of cancer. Deep exploration of these anticancer mechanisms can facilitate the development of this beneficial compound for its application in the treatment of different cancers.
Collapse
Affiliation(s)
- Amir Imani
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Maleki
- Department of Prosthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Bohlouli
- Department of Oral Medicine, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Kouhsoltani
- Oral and Maxillofacial Department of Pathology, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Simin Sharifi
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Ahmadi Z, Mohammadinejad R, Roomiani S, Afshar EG, Ashrafizadeh M. Biological and Therapeutic Effects of Troxerutin: Molecular Signaling Pathways Come into View. J Pharmacopuncture 2021; 24:1-13. [PMID: 33833895 PMCID: PMC8010425 DOI: 10.3831/kpi.2021.24.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 04/19/2019] [Accepted: 03/04/2021] [Indexed: 01/01/2023] Open
Abstract
Flavonoids consist a wide range of naturally occurring compounds which are exclusively found in different fruits and vegetables. These medicinal herbs have a number of favourable biological and therapeutic activities such as antioxidant, neuroprotective, renoprotective, anti-inflammatory, anti-diabetic and anti-tumor. Troxerutin, also known as vitamin P4, is a naturally occurring flavonoid which is isolated from tea, coffee and cereal grains as well as vegetables. It has a variety of valuable pharmacological and therapeutic activities including antioxidant, anti-inflammatory, anti-diabetic and anti-tumor. These pharmacological impacts have been demonstrated in in vitro and in vivo studies. Also, clinical trials have revealed the efficacy of troxerutin for management of phlebocholosis and hemorrhoidal diseases. In the present review, we focus on the therapeutic effects and biological activities of troxerutin as well as its molecular signaling pathways.
Collapse
Affiliation(s)
- Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sahar Roomiani
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Sun J, Chen W, Wen B, Zhang M, Sun H, Yang X, Zhao W, La L, An H, Pang J, Gao L, He S. Biejiajian Pill Inhibits Carcinogenesis and Metastasis via the Akt/GSK-3β/Snail Signaling Pathway in Hepatocellular Carcinoma. Front Pharmacol 2021; 12:610158. [PMID: 33762939 PMCID: PMC7982731 DOI: 10.3389/fphar.2021.610158] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/14/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is among the most usual cancers globally. In China, Biejiajian pill (BJJP), Traditional Chinese Medicine clinical prescription, is broadly utilized for the prevention and therapy of HCC. However, the mechanisms by which BJJP exerts its effects on the prevention of tumor invasion and metastasis are still largely unknown. In this study, in vitro multiple hepatic cancer cell lines and an in vivo xenograft mice model were used to validate the preventive effects and molecular mechanisms of BJJP in HCC. We established that BJJP significantly repressed the proliferation, metastasis and infiltration of HCC cells. Furthermore, BJJP remarkably suppressed HCC cell migration, as well as invasion via epithelial-mesenchymal transition (EMT) by modulating Snail expression, which was associated with the repression of Akt/GSK-3β/Snail signaling axis activation. In vivo HCC xenograft results indicated that BJJP delayed HCC development and efficiently inhibited lung metastasis. Taken together, BJJP was shown to be an effective therapeutic agent against HCC through repression of the Akt/GSK-3β/Snail signaling cascade and EMT.
Collapse
Affiliation(s)
- Jialing Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Weicong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Bin Wen
- Department of Traditional Chinese Medicine, The Air Force Hospital of Southern Theater Command, Guangzhou, China
| | - Mingjia Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Haitao Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xuemei Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wenting Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei La
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haiyan An
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jie Pang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lei Gao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Songqi He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Zamanian M, Bazmandegan G, Sureda A, Sobarzo-Sanchez E, Yousefi-Manesh H, Shirooie S. The Protective Roles and Molecular Mechanisms of Troxerutin (Vitamin P4) for the Treatment of Chronic Diseases: A Mechanistic Review. Curr Neuropharmacol 2020; 19:97-110. [PMID: 32386493 PMCID: PMC7903491 DOI: 10.2174/1570159x18666200510020744] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/21/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022] Open
Abstract
Troxerutin (TRX), a semi-synthetic bioflavonoid derived from rutin, has been reported to exert several pharmacological effects including antioxidant, anti-inflammatory, antihyperlipidemic, and nephroprotective. However, the related molecular details and its mechanisms remain poorly understood. In the present review, we presented evidences from the diversity in vitro and in vivo studies on the therapeutic potential of TRX against neurodegenerative, diabetes, cancer and cardiovascular diseases with the purpose to find molecular pathways related to the treatment efficacy. TRX has a beneficial role in many diseases through multiple mechanisms including, increasing antioxidant enzymes and reducing oxidative damage, decreasing in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and increasing the antiapoptotic BCL-2, increasing the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and downregulating the nuclear factor κB (NFκ). TRX also reduces acetylcholinesterase activity and upregulates phosphoinositide 3- kinase/Akt signaling pathway in Alzheimer's disease models. Natural products such as TRX may develop numerous and intracellular pathways at several steps in the treatment of many diseases. Molecular mechanisms of action are revealing novel, possible combinational beneficial approaches to treat multiple pathological conditions.
Collapse
Affiliation(s)
| | - Gholamreza Bazmandegan
- Clinical Research Development Unit, Ali-Ibn Abi-Talib Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), Health Research Institute of the Balearic Islands (IdISBa) and CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación e Innovación en Salud, Facultyad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Hasan Yousefi-Manesh
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, 13145-784, Tehran, Iran
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
8
|
Gao S, Wang T, Huang X, Jin Y, Xu Y, Xi Y, Zhang J, Luo Y, Xu H, Guo H, Ke D, Wang J. Exploring the protective effect of Modified Xiaochaihu Decoction against hepatic steatosis and inflammation by network pharmacology and validation in ageing rats. Chin Med 2020. [DOI: 10.1186/s13020-020-00378-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abstract
Background
Based on therapy with syndrome differentiation and clinical studies on Xiaochaihu decoction (XCHD), we hypothesize that Modified Xiaochaihu Decoction (MXD) has an ability to ameliorate non-alcoholic fatty liver disease (NAFLD). This study aims to elucidate the pharmacological efficacy of MXD and its mechanism in the treatment of NAFLD by network pharmacology and experimental validation.
Methods
The active ingredients in MXD and their potential targets were identified using network analysis followed by experimental validation. First, we used data on the ingredients and targets obtained from professional database and related literature to do PPI network analysis, GO functional analysis, and KEGG pathway enrichment analysis. Core targets identified by network pharmacology were then tested in natural ageing female rats model. Indexes of lipid and glucose homeostasis were determined enzymatically and/or histologically. Gene expression was analyzed by real-time PCR and/or Western blot (WB).
Results
In total, 4009 NAFLD-related targets and 1953 chemical ingredients of MXD were obtained. In-depth network analysis of 140 common targets indicated that MXD played a critical role in anti-NAFLD via multiple targets and pathways. Based on the data of PPI analysis, GO functional enrichment analysis, KEGG pathway enrichment analysis, and literatures on the mechanism of NAFLD, we chose the core targets related to lipid metabolism (SREBP-1c, ChREBP, FASN, PPARα, and ACACA) and inflammation (IL-6 and NF-κB) to do further study. Significantly, in further animal verification experiment we using naturally ageing rats with NAFLD as a model, we found that MXD administration ameliorated age-related NAFLD and mechanistically down-regulated the mRNA/protein expression of core targets in lipid metabolism and inflammation related pathways such as FASN, ACACA, IL-6, and NF-κB. In addition, 12 of 24 potential ingredients acting on verified targets came from BC, and 11 of 24 potential ingredients acting on verified targets were derived from SM, implying that both BC and SM served as the key role in MXD against NAFLD.
Conclusion
The bioinformatics data and in vivo experimental results suggest that the MXD-induced amelioration of NAFLD may be predominantly related to modulation of lipid metabolism and inflammation. Both BC and SM serve as the key role in MXD against NAFLD. These results may provide novel evidence for clinical implication of MXD.
Collapse
|
9
|
Saranya T, Kavithaa K, Paulpandi M, Ramya S, Preethi S, Balachandar V, Narayanasamy A. Enhanced apoptogenesis and oncogene regulatory mechanism of troxerutin in triple negative breast cancer cells. Toxicol Res (Camb) 2020; 9:230-238. [PMID: 32670554 DOI: 10.1093/toxres/tfaa029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/12/2020] [Accepted: 04/16/2020] [Indexed: 11/14/2022] Open
Abstract
Triple negative breast carcinoma (TNBC) is an aggressive form of cancer, with high rates of morbidity, mortality, poor prognosis and limited therapeutic options. The objective of the present study was to elaborate the anticancer activity of Troxerutin (TXN) in TNBC/MDA-MB-231 cells. Herein, we demonstrated the inhibitory effects of TXN on the breast cancer cell growth via induction of apoptosis. Mitochondrial membrane potential (∆Ψm), DNA damage and apoptotic nuclear changes were analyzed by flowcytometry, AO/EtBr and Hoechst staining, respectively. Furthermore, apoptotic protein and gene expressions were analyzed by western blot and reverse transcription polymerase chain reaction (RT-PCR), respectively. Our results indicated that TXN induces apoptosis as evidenced by inhibit the cell proliferation, enhanced apoptotic activation, altered mitochondrial membrane potential and elevated level of DNA damage in TNBC cells. Furthermore, the TXN inhibit anti-apoptotic protein expression with the subsequent upregulation of Cytochrome c, Caspase-9 and Caspase-3. Thus, TXN induces apoptosis in TNBC cells through inducing nuclear damage and altered apoptotic marker expressions. Therefore, TXN might be used as a potential therapeutic agent for the treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- Thiruvenkataswamy Saranya
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Krishnamoorthy Kavithaa
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Manickam Paulpandi
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Sennimalai Ramya
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Sivashanmugam Preethi
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Vellingiri Balachandar
- Human Molecular Cytogenetics & Stem Cell Laboratory, Department of Human Genetics & Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| |
Collapse
|
10
|
de Miranda JAL, Martins CDS, Fideles LDS, Barbosa MLL, Barreto JEF, Pimenta HB, Freitas FOR, Pimentel PVDS, Teixeira CS, Scafuri AG, dos Santos Luciano MC, Araújo JL, Rocha JA, Vieira IGP, Ricardo NMPS, da Silva Campelo M, Ribeiro MENP, de Castro Brito GA, Cerqueira GS. Troxerutin Prevents 5-Fluorouracil Induced Morphological Changes in the Intestinal Mucosa: Role of Cyclooxygenase-2 Pathway. Pharmaceuticals (Basel) 2020; 13:E10. [PMID: 31936203 PMCID: PMC7169416 DOI: 10.3390/ph13010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 02/06/2023] Open
Abstract
Intestinal mucositis is a common complication associated with 5-fluorouracil (5-FU), a chemotherapeutic agent used for cancer treatment. Troxerutin (TRX), a semi-synthetic flavonoid extracted from Dimorphandra gardneriana, has been reported as a potent antioxidant and anti-inflammatory agent. In the present study, we aimed to evaluate the effect of TRX on 5-FU-induced intestinal mucositis. Swiss mice were randomly divided into seven groups: Saline, 5-FU, TRX-50, TRX-100, TRX-150, Celecoxib (CLX), and CLX + TRX-100. The weight of mice was measured daily. After treatment, the animals were euthanized and segments of the small intestine were collected to evaluate histopathological alterations (morphometric analysis), levels of malondialdehyde (MDA), myeloperoxidase (MPO), glutathione (GSH), mast and goblet cell counts, immunohistochemical analysis, and cyclooxygenase-2 (COX-2) activity. Compared to the saline treatment, the 5-FU treatment induced intense weight loss and reduction in villus height. TRX treatment (100 mg/kg) prevented the 5-FU-induced histopathological changes and decreased oxidative stress by decreasing the MDA levels and increasing GSH concentration. TRX attenuated inflammatory process by decreasing MPO activity, intestinal mastocytosis, and COX-2 expression. TRX also reversed the depletion of goblet cells. Our findings suggest that TRX at a concentration of 100 mg/kg had chemopreventive effects on 5-FU-induced intestinal mucositis via COX-2 pathway.
Collapse
Affiliation(s)
- João Antônio Leal de Miranda
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Conceição da Silva Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Lázaro de Sousa Fideles
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Maria Lucianny Lima Barbosa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - João Erivan Façanha Barreto
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Helder Bindá Pimenta
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Francisco Orlando Rafael Freitas
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Paulo Vitor de Souza Pimentel
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Claudio Silva Teixeira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Ariel Gustavo Scafuri
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Maria Claudia dos Santos Luciano
- Nucleus of Research and Development of Medications (NPDM), Federal University of Ceará, Coronel Nunes of Melo Street, 100, Fortaleza 60430-275, Brazil;
| | - Joabe Lima Araújo
- Research Group in Natural Sciences and Biotechnology, Federal University of Maranhão, s/n Avenue Aurila Maria Santos Barros of Sousa, Frei Alberto Beretta, Grajaú-MA 65940-000, Brazil; (J.L.A.); (J.A.R.)
| | - Jefferson Almeida Rocha
- Research Group in Natural Sciences and Biotechnology, Federal University of Maranhão, s/n Avenue Aurila Maria Santos Barros of Sousa, Frei Alberto Beretta, Grajaú-MA 65940-000, Brazil; (J.L.A.); (J.A.R.)
| | - Icaro Gusmão Pinto Vieira
- Technological Development Park, Federal University of Ceará, Humberto Monte Avenue, 2977, Pici Campus, Fortaleza 60440-900, Brazil;
| | - Nágila Maria Pontes Silva Ricardo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Matheus da Silva Campelo
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Maria Elenir Nobre Pinho Ribeiro
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Pici Campus, Fortaleza 60440-900, Brazil; (N.M.P.S.R.); (M.d.S.C.); (M.E.N.P.R.)
| | - Gerly Anne de Castro Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| | - Gilberto Santos Cerqueira
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, s/n Delmiro of Farias Street, Porangabuçu Campus, Fortaleza 60416-030, Brazil; (C.d.S.M.); (L.d.S.F.); (M.L.L.B.); (J.E.F.B.); (H.B.P.); (F.O.R.F.); (P.V.d.S.P.); (C.S.T.); (A.G.S.); (G.A.d.C.B.); (G.S.C.)
| |
Collapse
|
11
|
Hou LS, Cui ZY, Sun P, Piao HQ, Han X, Song J, Wang G, Zheng S, Dong XX, Gao L, Zhu Y, Lian LH, Nan JX, Wu YL. Rutin mitigates hepatic fibrogenesis and inflammation through targeting TLR4 and P2X7 receptor signaling pathway in vitro and in vivo. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103700] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
12
|
Thomas NS, George K, Selvam AAA. Anticancer mechanism of troxerutin via targeting Nrf2 and NF-κB signalling pathways in hepatocarcinoma cell line. Toxicol In Vitro 2019; 54:317-329. [DOI: 10.1016/j.tiv.2018.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022]
|
13
|
Thomas NS, George K, Selvam AAA. Troxerutin subdues hepatic tumorigenesis via disrupting the MDM2-p53 interaction. Food Funct 2019; 9:5336-5349. [PMID: 30259932 DOI: 10.1039/c8fo01111g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the leading cause of cancer death worldwide that lacks proper medical prognosis and treatment. In the present study, the anti-tumoral potential of troxerutin (TX), an ethnomedicine, was examined in relation to its effects on the promoter 2-acetylaminofluorene (2-AAF) in N-nitrosodiethylamine (NDEA) initiated HCC, as compared to its effects on HCC induced by NDEA alone. Liver samples from each experimental group were collected and evaluated for histological, biochemical and cellular characterization. The protein expressions of apoptotic and cell proliferation markers were determined via immunohistochemistry and western blotting. Molecular docking was also performed to delineate the inhibitory mechanism of TX on HCC. The results show that only higher doses of TX showed a significant reduction in the incidence of hepatic nodule formation, and they also counteracted NDEA plus 2-AAF induced alterations in the enzymic status. The frequencies of glutathione-S-transferase and proliferating cell nuclear antigen, markers of S phase progression, were markedly reduced during TX treatment. TX also modulated the imbalance in the MDM2-p53 interaction. The molecular docking results confirmed the interaction of TX with the upstream kinases that regulate apoptosis. This study provides evidence that a copious dose of TX is required to counteract the differential mitoinhibitory effect of 2-AAF in NDEA initiated hepatomas, and TX exhibits an anti-tumoral effect via suppressing oxidative stress, regulating liver function enzymes, inhibiting inflammatory responses and modulating MDM2-p53 interactions, thus inducing apoptosis, and thereby suggesting that TX may provide promising therapeutic effects for the chemoprevention of HCC.
Collapse
Affiliation(s)
- Nisha Susan Thomas
- Department of Biochemistry and Biotechnology, Annamalai University, Tamil Nadu, India.
| | | | | |
Collapse
|
14
|
Yang X, Xu W, Huang K, Zhang B, Wang H, Zhang X, Gong L, Luo Y, He X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity. FASEB J 2018; 33:2212-2227. [PMID: 30247986 DOI: 10.1096/fj.201800742r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Lipotoxicity is the most common cause of severe kidney disease, with few treatment options available today. Precision toxicology can improve detection of subtle intracellular changes in response to exogenous substrates; thus, it facilitates in-depth research on bioactive molecules that may interfere with the onset of certain diseases. In the current study, troxerutin significantly relieved nephrotoxicity, increased endurance, and improved systemic energy metabolism and renal inflammation in OTA-induced nephrotic mice. Lipidomics showed that troxerutin effectively reduced the levels of triglycerides, phosphatidylcholines, and phosphatidylethanolamines in nephropathy. The mechanism was partly attributable to troxerutin in alleviating the aberrantly up-regulated expression of sphingomyelinase, the cystic fibrosis transmembrane conductance regulator, and chloride channel 2. Renal tubular epithelial cells, the main site of toxin-induced accumulation of lipids in the kidney, were subjected to transcriptomic profiling, which uncovered several metabolic factors relevant to aberrant lipid and lipoprotein metabolism. Our work provides new insights into the molecular features of toxin-induced lipotoxicity in renal tubular epithelial cells in vivo and demonstrates the function of troxerutin in alleviating OTA-induced nephrosis and associated systemic energy metabolism disorders.-Yang, X., Xu, W., Huang, K., Zhang, B., Wang, H., Zhang, X., Gong, L., Luo, Y., He, X. Precision toxicology shows that troxerutin alleviates ochratoxin A-induced renal lipotoxicity.
Collapse
Affiliation(s)
- Xuan Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Beijing Laboratory for Food Quality and Safety, Beijing, China
| | - Boyang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Haomiao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xueqin Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Lijing Gong
- China Academy of Sport and Health Sciences, Beijing Sport University, Beijing, China
| | - Yunbo Luo
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism-Food Safety, Ministry of Agriculture, China
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Safety Assessment of Genetically Modified Organism-Food Safety, Ministry of Agriculture, China
| |
Collapse
|
15
|
A novel anti-osteoporotic agent that protects against postmenopausal bone loss by regulating bone formation and bone resorption. Life Sci 2018; 209:409-419. [PMID: 30096387 DOI: 10.1016/j.lfs.2018.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 07/01/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023]
Abstract
AIMS Postmenopausal osteoporosis is a bone metabolism disease that is caused by an imbalance between bone-resorbing osteoclast and bone-forming osteoblast actions. Herein, we describe the role of troxerutin (TRX), a trihydroxyethylated derivative of rutin, in ovariectomy (OVX)-induced osteoporosis and its effects on the regulation of osteoclasts and osteoblasts. MAIN METHODS In vivo, OVX female mice were intraperitoneally injected with either saline, 50 mg/kg TRX, or 150 mg/kg TRX for 6 weeks and then sacrificed for micro-computed tomography analyses, histological analyses, and biomechanical testing. In vitro, RAW264.7 cell-derived osteoclasts and MC3T3-E1 cell-derived osteoblasts were treated with different concentrations of TRX to examine the effect of TRX on osteoclastogenesis and bone resorption, as well as on osteogenesis and mineralization. KEY FINDINGS In this study, we demonstrated that TRX prevented cortical and trabecular bone loss in ovariectomized mice by reducing osteoclastogenesis and promoting osteogenesis in vivo. In vitro, TRX inhibited the formation and activity of RAW264.7-derived osteoclasts and the expression of nuclear factor of activated T-cells 1 and cathepsin K. Meanwhile, TRX improved the osteogenesis and mineralization of MC3T3-E1 by enhancing the expression of Runt-related transcription factor 2, Osterix, and collagen type 1 alpha 1. SIGNIFICANCE Our data demonstrated that TRX could prevent OVX-induced osteoporosis and be used in a novel treatment for postmenopausal osteoporosis.
Collapse
|
16
|
Bianchi M, Canavesi R, Aprile S, Grosa G, Del Grosso E. Troxerutin, a mixture of O-hydroxyethyl derivatives of the natural flavonoid rutin: Chemical stability and analytical aspects. J Pharm Biomed Anal 2017; 150:248-257. [PMID: 29258044 DOI: 10.1016/j.jpba.2017.12.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/07/2017] [Accepted: 12/08/2017] [Indexed: 01/09/2023]
Abstract
Troxerutin (TRX) is a mixture of semisynthetic hydroxyethylrutosides (Hers) arising from hydroxyethylation of rutin, a natural occurring flavonoid. TRX is commonly used for its anti-oxidant and anti-inflammatory properties in chronic venous insufficiency and other vascular disorders. In recent studies, the protective effects of TRX in Alzheimer's disease, colon carcinogenesis and hepatocellular carcinoma are emerged. However, the chemical stability of TRX has never been studied. Hence, the aims of the work were to study the TRX chemical stability through a forced degradation study and to develop and validate a new stability indicating LC-UV method for determination of TRX. In order to perform the study, TRX stability was tested in various stress conditions analysing the degradation samples by LC-MS. Three degradation products (DPs; D1, D2 and D3, 3',4',7-Tri-O-(β-hydroxyethyl)quercetin, 3',4',5,7-Tetra-O-(β-hydroxyethyl)quercetin and 3',4'-Di-O-(β-hydroxyethyl)quercetin respectively) arising from degradation in acidic conditions were identified and synthesized: among them, D1 resulted the stability indicator for hydrolytic degradation. Furthermore, a stability-indicating LC-UV method for simultaneous determination of triHer (3',4',7-Tri-O-(β-hydroxyethyl)rutin, the principal component of the mixture) and D1 was developed and validated. The LC-UV method consisted in a gradient elution on a Phenomenex Kinetex EVO C18 (150 × 3 mm, 5 μm) with acetonitrile and ammonium bicarbonate buffer (10 mM, pH 9.2). The method was linear for triHer (20-60 μg mL-1) and D1 (5.1-35 μg mL-1). The intraday and interday precision were determined and expressed as RSDs: all the values were ≤ 2% for both triHer and D1. The method demonstrated also to be accurate and robust and the average recoveries were 98.8 and 97.9% for triHer and D1, respectively. Moreover, the method resulted selective and specific for all of the components present in the degradation pattern of TRX (diHer (3',4'-Di-O-(β-hydroxyethyl)rutin), triHer, tetraHer (3',4',5,7-Tetra-O-(β-hydroxyethyl)rutin), D3, D1 and D2) and it was successfully applied for the stability studies of both drug substances and drug products.
Collapse
Affiliation(s)
- Michele Bianchi
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Rossana Canavesi
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Giorgio Grosa
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Erika Del Grosso
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
17
|
Zamanian M, Shamsizadeh A, Esmaeili Nadimi A, Hajizadeh M, Allahtavakoli F, Rahmani M, Kaeidi A, Safari Khalegh H, Allahtavakoli M. Short-term effects of troxerutin (vitamin P4) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats. Can J Physiol Pharmacol 2017; 95:708-713. [PMID: 28187266 DOI: 10.1139/cjpp-2016-0653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the current study, the effects of troxerutin (TRX) on muscle fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue of rats was investigated. Forty male Wistar rats were randomly divided into 4 groups and designated as control and TRX treatment at 75 (TRX75), 150 (TRX150), and 300 mg/kg per day (TRX300). The treated groups and control group received TRX and water orally for 7 days. After an exhaustive swimming test on the 7th day, all animals were euthanized immediately and several biochemical parameters related to fatigue and gene expression of Bcl-2 and Bax in the hepatic tissue were measured. Our results showed that the exhaustion swimming time in the TRX300 groups significantly increased 1.2-fold compared with the control group (P < 0.001). TRX300 significantly reduced ALT (P < 0.05) activity and increased liver SOD activity compared with the control group (P < 0.01). Additionally, TRX significantly reduced the liver mRNA expressions of Bax (P < 0.001) and increased the Bcl-2/Bax ratio (P < 0.001) compared with the control group. Based on our data, TRX possesses anti-apoptotic and hepatoprotective action following exhaustive swimming exercise.
Collapse
Affiliation(s)
- Mohammad Zamanian
- a Physiology-Pharmacology Research Centre and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Shamsizadeh
- a Physiology-Pharmacology Research Centre and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Esmaeili Nadimi
- b Department of Cardiology, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammadreza Hajizadeh
- c Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mohammadreza Rahmani
- a Physiology-Pharmacology Research Centre and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ayat Kaeidi
- a Physiology-Pharmacology Research Centre and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Hamidreza Safari Khalegh
- a Physiology-Pharmacology Research Centre and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Allahtavakoli
- a Physiology-Pharmacology Research Centre and Department of Physiology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|