1
|
Munekawa C, Okamura T, Majima S, River B, Kawai S, Kobayashi A, Nakajima H, Kitagawa N, Okada H, Senmaru T, Ushigome E, Nakanishi N, Hamaguchi M, Fukui M. Daidzein Inhibits Muscle Atrophy by Suppressing Inflammatory Cytokine- and Muscle Atrophy-Related Gene Expression. Nutrients 2024; 16:3084. [PMID: 39339684 PMCID: PMC11434955 DOI: 10.3390/nu16183084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Sarcopenic obesity, which is associated with a poorer prognosis than that of sarcopenia alone, may be positively affected by soy isoflavones, known inhibitors of muscle atrophy. Herein, we hypothesize that these compounds may prevent sarcopenic obesity by upregulating the gut metabolites with anti-inflammatory effects. METHODS To explore the effects of soy isoflavones on sarcopenic obesity and its mechanisms, we employed both in vivo and in vitro experiments. Mice were fed a high-fat, high-sucrose diet with or without soy isoflavone supplementation. Additionally, the mouse C2C12 myotube cells were treated with palmitic acid and daidzein in vitro. RESULTS The isoflavone considerably reduced muscle atrophy and the expression of the muscle atrophy genes in the treated group compared to the control group (Fbxo32, p = 0.0012; Trim63, p < 0.0001; Foxo1, p < 0.0001; Tnfa, p = 0.1343). Elevated levels of daidzein were found in the muscles and feces of the experimental group compared to the control group (feces, p = 0.0122; muscle, p = 0.0020). The real-time PCR results demonstrated that the daidzein decreased the expression of the palmitate-induced inflammation and muscle atrophy genes in the C2C12 myotube cells (Tnfa, p = 0.0201; Il6, p = 0.0008; Fbxo32, p < 0.0001; Hdac4, p = 0.0002; Trim63, p = 0.0114; Foxo1, p < 0.0001). Additionally, it reduced the palmitate-induced protein expression related to the muscle atrophy in the C2C12 myotube cells (Foxo1, p = 0.0078; MuRF1, p = 0.0119). CONCLUSIONS The daidzein suppressed inflammatory cytokine- and muscle atrophy-related gene expression in the C2C12 myotubes, thereby inhibiting muscle atrophy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan; (C.M.)
| | | |
Collapse
|
2
|
Sakuma K, Hamada K, Yamaguchi A, Aoi W. Current Nutritional and Pharmacological Approaches for Attenuating Sarcopenia. Cells 2023; 12:2422. [PMID: 37830636 PMCID: PMC10572610 DOI: 10.3390/cells12192422] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023] Open
Abstract
Sarcopenia is characterized by a gradual slowing of movement due to loss of muscle mass and quality, decreased power and strength, increased risk of injury from falls, and often weakness. This review will focus on recent research trends in nutritional and pharmacological approaches to controlling sarcopenia. Because nutritional studies in humans are fairly limited, this paper includes many results from nutritional studies in mammals. The combination of resistance training with supplements containing amino acids is the gold standard for preventing sarcopenia. Amino acid (HMB) supplementation alone has no significant effect on muscle strength or muscle mass in sarcopenia, but the combination of HMB and exercise (whole body vibration stimulation) is likely to be effective. Tea catechins, soy isoflavones, and ursolic acid are interesting candidates for reducing sarcopenia, but both more detailed basic research on this treatment and clinical studies in humans are needed. Vitamin D supplementation has been shown not to improve sarcopenia in elderly individuals who are not vitamin D-deficient. Myostatin inhibitory drugs have been tried in many neuromuscular diseases, but increases in muscle mass and strength are less likely to be expected. Validation of myostatin inhibitory antibodies in patients with sarcopenia has been positive, but excessive expectations are not warranted.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Kento Hamada
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan;
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Wataru Aoi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan;
| |
Collapse
|
3
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Meschi T. Accounting Gut Microbiota as the Mediator of Beneficial Effects of Dietary (Poly)phenols on Skeletal Muscle in Aging. Nutrients 2023; 15:nu15102367. [PMID: 37242251 DOI: 10.3390/nu15102367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Sarcopenia, the age-related loss of muscle mass and function increasing the risk of disability and adverse outcomes in older people, is substantially influenced by dietary habits. Several studies from animal models of aging and muscle wasting indicate that the intake of specific polyphenol compounds can be associated with myoprotective effects, and improvements in muscle strength and performance. Such findings have also been confirmed in a smaller number of human studies. However, in the gut lumen, dietary polyphenols undergo extensive biotransformation by gut microbiota into a wide range of bioactive compounds, which substantially contribute to bioactivity on skeletal muscle. Thus, the beneficial effects of polyphenols may consistently vary across individuals, depending on the composition and metabolic functionality of gut bacterial communities. The understanding of such variability has recently been improved. For example, resveratrol and urolithin interaction with the microbiota can produce different biological effects according to the microbiota metabotype. In older individuals, the gut microbiota is frequently characterized by dysbiosis, overrepresentation of opportunistic pathogens, and increased inter-individual variability, which may contribute to increasing the variability of biological actions of phenolic compounds at the skeletal muscle level. These interactions should be taken into great consideration for designing effective nutritional strategies to counteract sarcopenia.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Antonio Nouvenne
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11/1, 43124 Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria di Parma, Via Antonio Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
4
|
Functional Nutrients to Ameliorate Neurogenic Muscle Atrophy. Metabolites 2022; 12:metabo12111149. [DOI: 10.3390/metabo12111149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Neurogenic muscle atrophy is a debilitating condition that occurs from nerve trauma in association with diseases or during aging, leading to reduced interaction between motoneurons and skeletal fibers. Current therapeutic approaches aiming at preserving muscle mass in a scenario of decreased nervous input include physical activity and employment of drugs that slow down the progression of the condition yet provide no concrete resolution. Nutritional support appears as a precious tool, adding to the success of personalized medicine, and could thus play a relevant part in mitigating neurogenic muscle atrophy. We herein summarize the molecular pathways triggered by denervation of the skeletal muscle that could be affected by functional nutrients. In this narrative review, we examine and discuss studies pertaining to the use of functional ingredients to counteract neurogenic muscle atrophy, focusing on their preventive or curative means of action within the skeletal muscle. We reviewed experimental models of denervation in rodents and in amyotrophic lateral sclerosis, as well as that caused by aging, considering the knowledge generated with use of animal experimental models and, also, from human studies.
Collapse
|
5
|
Li Y, Liu Y, Tan R, Liu Y. Effect of flavonoids on skeletal muscle mass, strength and physical performance in middle-aged and older adults with or without Sarcopenia: A meta-analysis of randomized controlled trials. Front Nutr 2022; 9:1013449. [PMID: 36299989 PMCID: PMC9589257 DOI: 10.3389/fnut.2022.1013449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
The role of flavonoids in regulating the synthesis and function of skeletal muscles is increasingly recognized. However, randomized controlled trials have yielded inconsistent results on the influence of flavonoids on human muscular parameters. Therefore, we performed a meta-analysis to evaluate the possible effects of flavonoids on sarcopenia-related parameters in middle-aged and elderly people. Eligible literature and randomized controlled trials reports have been extensively searched from PubMed, Cochrane Library, Web of Science, and EMBASE databases until April 2022. A total of 20 articles involving 796 participants were available for the meta-analysis. There were significant benefits for participants in appendicular muscle mass gain (SMD = 0.29; 95% CI: 0.07, 0.52; P = 0.01) and 6-min walk distance (SMD = 0.37; 95% CI: 0.01, 0.73; P = 0.05). A subgroup analysis indicated that flavonoid significantly improves appendicular muscle mass (SMD = 0.50; 95% CI: 0.21, 0.80; P < 0.01) and Timed-Up and Go test (SMD = −0.47; 95% CI: −0.85, −0.09; P = 0.02) in Sarcopenia population. Our results provide insight into the effects of flavonoids on skeletal muscle mass and gait speed for those without exercise. However, there was no significant improvement in the subjects' muscle strength.
Collapse
Affiliation(s)
- Yuzhuo Li
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China,Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yun Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China,Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Rongshao Tan
- Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Yan Liu
- Department of Nephrology, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China,Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China,*Correspondence: Yan Liu
| |
Collapse
|
6
|
Human Adipose-Derived Stem Cells Delay Muscular Atrophy after Peripheral Nerve Injury in Rats. Cell Biochem Biophys 2022; 80:555-562. [PMID: 35802247 DOI: 10.1007/s12013-022-01082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/21/2022] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Given that denervation atrophy often occurs in muscle after peripheral nerve injury, the effects of injections of human adipose-derived stem cells (hADSCs) and platelet-rich plasma (PRP) into muscle after peripheral nerve injury were examined. METHODS hADSCs were isolated from human subcutaneous fat tissue, and PRP was prepared from rat whole blood before injection into a rat sciatic nerve injury model. Muscle atrophy was evaluated by quantitating the gross musculature and muscle fiber area and walking footprint analysis. RESULTS At 4 weeks post-surgery, there were significant differences in the sciatic functional index between experimental (injected with hADSCs, PRP, or combined hADSCs + PRP) and non-operated groups (p < 0.0001), but no significant differences were observed between the different treatment groups (p > 0.05). Post hoc Bonferroni tests also showed significant differences in the wet muscle weight ratios of hADSC, PRP, and combined groups compared to PBS group. The gastrocnemius muscle fiber area was larger in hADSC group and the combined group compared to PBS group at 4 weeks post-surgery. CONCLUSION The injection of hADSCs delays muscular atrophy after sciatic nerve injury in rats; thus, hADSCs are a promising alternative for regenerating atrophied muscle.
Collapse
|
7
|
Polyphenols and Their Effects on Muscle Atrophy and Muscle Health. Molecules 2021; 26:molecules26164887. [PMID: 34443483 PMCID: PMC8398525 DOI: 10.3390/molecules26164887] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Skeletal muscle atrophy is the decrease in muscle mass and strength caused by reduced protein synthesis/accelerated protein degradation. Various conditions, such as denervation, disuse, aging, chronic diseases, heart disease, obstructive lung disease, diabetes, renal failure, AIDS, sepsis, cancer, and steroidal medications, can cause muscle atrophy. Mechanistically, inflammation, oxidative stress, and mitochondrial dysfunction are among the major contributors to muscle atrophy, by modulating signaling pathways that regulate muscle homeostasis. To prevent muscle catabolism and enhance muscle anabolism, several natural and synthetic compounds have been investigated. Recently, polyphenols (i.e., natural phytochemicals) have received extensive attention regarding their effect on muscle atrophy because of their potent antioxidant and anti-inflammatory properties. Numerous in vitro and in vivo studies have reported polyphenols as strongly effective bioactive molecules that attenuate muscle atrophy and enhance muscle health. This review describes polyphenols as promising bioactive molecules that impede muscle atrophy induced by various proatrophic factors. The effects of each class/subclass of polyphenolic compounds regarding protection against the muscle disorders induced by various pathological/physiological factors are summarized in tabular form and discussed. Although considerable variations in antiatrophic potencies and mechanisms were observed among structurally diverse polyphenolic compounds, they are vital factors to be considered in muscle atrophy prevention strategies.
Collapse
|
8
|
Natural Compounds Attenuate Denervation-Induced Skeletal Muscle Atrophy. Int J Mol Sci 2021; 22:ijms22158310. [PMID: 34361076 PMCID: PMC8348757 DOI: 10.3390/ijms22158310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/14/2022] Open
Abstract
The weight of skeletal muscle accounts for approximately 40% of the whole weight in a healthy individual, and the normal metabolism and motor function of the muscle are indispensable for healthy life. In addition, the skeletal muscle of the maxillofacial region plays an important role not only in eating and swallowing, but also in communication, such as facial expressions and conversations. In recent years, skeletal muscle atrophy has received worldwide attention as a serious health problem. However, the mechanism of skeletal muscle atrophy that has been clarified at present is insufficient, and a therapeutic method against skeletal muscle atrophy has not been established. This review provides views on the importance of skeletal muscle in the maxillofacial region and explains the differences between skeletal muscles in the maxillofacial region and other regions. We summarize the findings to change in gene expression in muscle remodeling and emphasize the advantages and disadvantages of denervation-induced skeletal muscle atrophy model. Finally, we discuss the newly discovered beneficial effects of natural compounds on skeletal muscle atrophy.
Collapse
|
9
|
Chen LR, Chen KH. Utilization of Isoflavones in Soybeans for Women with Menopausal Syndrome: An Overview. Int J Mol Sci 2021; 22:3212. [PMID: 33809928 PMCID: PMC8004126 DOI: 10.3390/ijms22063212] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 12/23/2022] Open
Abstract
Based on their nutrient composition, soybeans and related foods have been considered to be nutritious and healthy for humans. Particularly, the biological activity and subsequent benefits of soy products may be associated with the presence of isoflavone in soybeans. As an alternative treatment for menopause-related symptoms, isoflavone has gained much popularity for postmenopausal women who have concerns related to undergoing hormone replacement therapy. However, current research has still not reached a consensus on the effects of isoflavone on humans. This overview is a summary of the current literature about the processing of soybeans and isoflavone types (daidzein, genistein, and S-equol) and supplements and their extraction and analysis as well as information about the utilization of isoflavones in soybeans. The processes of preparation (cleaning, drying, crushing and dehulling) and extraction of soybeans are implemented to produce refined soy oil, soy lecithin, free fatty acids, glycerol and soybean meal. The remaining components consist of inorganic constituents (minerals) and the minor components of biologically interesting small molecules. Regarding the preventive effects on diseases or cancers, a higher intake of isoflavones is associated with a moderately lower risk of developing coronary heart disease. It may also reduce the risks of breast and colorectal cancer as well as the incidence of breast cancer recurrence. Consumption of isoflavones or soy foods is associated with reduced risks of endometrial and bladder cancer. Regarding the therapeutic effects on menopausal syndrome or other diseases, isoflavones have been found to alleviate vasomotor syndromes even after considering placebo effects, reduce bone loss in the spine and ameliorate hypertension and in vitro glycemic control. They may also alleviate depressive symptoms during pregnancy. On the other hand, isoflavones have not shown definitive effects regarding improving cognition and urogenital symptoms. Because of lacking standardization in the study designs, such as the ingredients and doses of isoflavones and the durations and outcomes of trials, it currently remains difficult to draw overall conclusions for all aspects of isoflavones. These limitations warrant further investigations of isoflavone use for women's health.
Collapse
Affiliation(s)
- Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 10049, Taiwan;
- Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu 30010, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
10
|
Oxfeldt M, Dalgaard LB, Risikesan J, Johansen FT, Hansen M. Influence of Fermented Red Clover Extract on Skeletal Muscle in Early Postmenopausal Women: A Double-Blinded Cross-Over Study. Nutrients 2020; 12:E3587. [PMID: 33238442 PMCID: PMC7700192 DOI: 10.3390/nu12113587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: To investigate effects of supplementation with a fermented red clover (RC) extract on signaling proteins related to muscle protein synthesis and breakdown at rest and in response to a resistance exercise bout. Methods: Ten postmenopausal women completed a double-blinded cross-over trial with two different intervention periods performed in random order: (A) RC extract twice daily for 14 days, and (B) placebo drink twice daily for 14 days. The intervention periods were separated by a two-week washout period. After each intervention period a muscle tissue sample was obtained before and three hours after a one-legged resistance exercise bout. Muscle strength was assessed before and after each intervention period. Results: Protein expression of FOXO1 and FOXO3a, two key transcription factors involved in protein degradation, were significantly lower and HSP27, a protein involved in cell protection and prevention of protein aggregation was significantly higher following RC extract compared to placebo. No significant treatment × time interaction was observed for muscle protein expression in response to exercise. However, p-mTOR, p-p70S6k and HSP90 protein content were significantly increased in response to exercise in both groups. Conclusions: This study demonstrates that RC extract supplementation downregulates molecular markers of muscle protein degradation compared to placebo in postmenopausal women.
Collapse
Affiliation(s)
- Mikkel Oxfeldt
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Line Barner Dalgaard
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Jeyanthini Risikesan
- Department of Clinical Medicine, Diabetes and Hormones Diseases, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Frank Ted Johansen
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| | - Mette Hansen
- Department of Public Health, Aarhus University, 8000 Aarhus C, Denmark; (M.O.); (L.B.D.); (F.T.J.)
| |
Collapse
|
11
|
Kojima K, Asai K, Kubo H, Sugitani A, Kyomoto Y, Okamoto A, Yamada K, Ijiri N, Watanabe T, Hirata K, Kawaguchi T. Isoflavone Aglycones Attenuate Cigarette Smoke-Induced Emphysema via Suppression of Neutrophilic Inflammation in a COPD Murine Model. Nutrients 2019; 11:nu11092023. [PMID: 31470503 PMCID: PMC6769447 DOI: 10.3390/nu11092023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 12/27/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a lung disease caused by chronic exposure to cigarette smoke, increases the number of inflammatory cells such as macrophages and neutrophils and emphysema. Isoflavone is a polyphenolic compound that exists in soybeans. Daidzein and genistein, two types of isoflavones, have been reported to have anti-inflammatory effects in various organs. We hypothesized that the daidzein-rich soy isoflavone aglycones (DRIAs) attenuate cigarette smoke-induced emphysema in mice. Mice were divided into four groups: the (i) control group, (ii) isoflavone group, (iii) smoking group, and (iv) isoflavone + smoking group. The number of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and the airspace enlargement using the mean linear intercept (MLI) were determined 12 weeks after smoking exposure. Expressions of neutrophilic inflammatory cytokines and chemokines were also examined. In the isoflavone + smoking group, the number of neutrophils in BALF and MLI was significantly less than that in the smoking group. Furthermore, the gene-expressions of TNF-α and CXCL2 (MIP-2) in the isoflavone + smoking group were significantly less than those in the smoking group. Supplementation of the COPD murine model with DRIAs significantly attenuates pathological changes of COPD via suppression of neutrophilic inflammation.
Collapse
Affiliation(s)
- Kazuya Kojima
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuhisa Asai
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan.
| | - Hiroaki Kubo
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Arata Sugitani
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Yohkoh Kyomoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Atsuko Okamoto
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuhiro Yamada
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Naoki Ijiri
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Tetsuya Watanabe
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Kazuto Hirata
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | - Tomoya Kawaguchi
- Department of Respiratory Medicine, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| |
Collapse
|
12
|
Sakuma K, Yamaguchi A. Drugs of Muscle Wasting and Their Therapeutic Targets. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:463-481. [PMID: 30390265 DOI: 10.1007/978-981-13-1435-3_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Muscle wasting and weakness such as cachexia, atrophy, and sarcopenia are characterized by marked decreases in the protein content, myonuclear number, muscle fiber size, and muscle strength. This chapter focuses on the recent advances of pharmacological approach for attenuating muscle wasting.A myostatin-inhibiting approach is very intriguing to prevent sarcopenia but not muscular dystrophy in humans. Supplementation with ghrelin is also an important candidate to combat sarcopenia as well as cachexia. Treatment with soy isoflavone, trichostatin A (TSA), and cyclooxygenase 2 (Cox2) inhibitors seems to be effective modulators attenuating muscle wasting, although further systematic research is needed on this treatment in particular concerning side effects.
Collapse
Affiliation(s)
- Kunihiro Sakuma
- Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, Tokyo, Japan.
| | - Akihiko Yamaguchi
- Department of Physical Therapy, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| |
Collapse
|