1
|
Barranco MM, Zecchinati F, Perdomo VG, Habib MJ, Rico MJ, Rozados VR, Salazar M, Fusini ME, Scharovsky OG, Villanueva SSM, Mainetti LE, García F. Intestinal ABC transporters: Influence on the metronomic cyclophosphamide-induced toxic effect in an obese mouse mammary cancer model. Toxicol Appl Pharmacol 2024; 492:117130. [PMID: 39426530 DOI: 10.1016/j.taap.2024.117130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 09/26/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Metronomic chemotherapy (MCT) is a cancer therapeutic approach characterized by low dose drug chronic administration and limited or null toxicity. Obesity-induced metabolic alterations worsen cancer prognosis and influence the intestinal biochemical barrier, altering the Multidrug resistance-associated protein 2 (Mrp2) and Multidrug resistance protein-1 (Mdr-1), efflux pumps that transport chemotherapeutic drugs. Obesity and cancer are frequent co-morbidities; thus, our aim was to evaluate the effectiveness and toxicity of MCT with cyclophosphamide (Cy) in obese mice with metabolic alterations bearing a mammary adenocarcinoma. Simultaneously, the expression and activities of intestinal Mrp2 and Mdr-1 were assessed. CBi male mice, were fed with chow diet (C) or diet with 40 % of fat (HFD). After 16 weeks, metabolic alterations were confirmed by biochemical and morphological parameters. At that time-point, HFD group showed decreased expressions of Mrp2 mRNA (53 %) as well as Mdr-1a and Mdr-1b (42 % and 59 %, respectively), compared to C (P < 0.05). This result correlated with decreased intestinal Mrp2 and Mdr-1 efflux activities (64 % and 45 %, respectively), compared to C (P < 0.05). Ultimately, mice were challenged with M-406 mammary adenocarcinoma; when the tumor was palpable, mice were distributed into 4 groups. The % inhibition of tumor growth with Cy (30 mg/kg/day) in C + Cy was higher than that of HFD + Cy (P = 0.052). Besides, it was observed a 21 % diminution in body weight and leukopenia in the HFD + Cy group. Conclusion: Obesity-induced metabolic alterations impair intestinal Mrp2 and Mdr-1 functions, bringing about increments in Cy absorption, leading to toxicity; in addition, the antitumor effectiveness of MCT decreased in obese animals.
Collapse
Affiliation(s)
- María Manuela Barranco
- Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CONICET-Rosario. Rosario, Santa Fe, Argentina
| | - Felipe Zecchinati
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Fisiología Experimental-CONICET. Rosario, Santa Fe, Argentina
| | - Virginia Gabriela Perdomo
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Facultad de Ciencias Bioquímicas y Farmacéuticas-Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Martín José Habib
- Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - María José Rico
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Viviana Rosa Rozados
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Mario Salazar
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Laboratorio de Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Matías Ezequiel Fusini
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Olga Graciela Scharovsky
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CIC-UNR, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | | | - Leandro Ernesto Mainetti
- CONICET-Rosario. Rosario, Santa Fe, Argentina.; Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina
| | - Fabiana García
- Laboratorio de Fisiología Metabólica, Facultad de Ciencias Médicas, Universidad Nacional de Rosario. Rosario, Santa Fe, Argentina.; CONICET-Rosario. Rosario, Santa Fe, Argentina..
| |
Collapse
|
2
|
Dumlu Bilgin G, Büyükuslu N, Eyüpoğlu OE, Cumbul A. Co-administration of curcumin and polyamines in high-fat diet induced obese rats: Assessment of changes in serum polyamine levels and some tissue parameters. Prostaglandins Other Lipid Mediat 2023; 169:106784. [PMID: 37726052 DOI: 10.1016/j.prostaglandins.2023.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/21/2023]
Abstract
Obesity is a non-communicable chronic disease that continues to increase around the world. Recently, it has been shown that curcumin positively affects lipid, energy metabolism, and body weight change. Moreover, polyamines are aliphatic polycations, which can be found in all mammalian cells and foods and have been shown to prevent obesity through many different mechanisms. However, whether the co-administration of curcumin and polyamines has synergistic effects has yet to be clarified. Our study aimed to examine the effects of curcumin and polyamines on obesity and to assess the changes in serum polyamine levels and tissue parameters. 28 Sprague-Dawley male rats were fed a high-fat diet for 10 weeks to develop obesity, and then they were randomly divided into 4 groups as the control group (CONT), curcumin group (CUR), polyamine group (POL), curcumin and polyamine group (CUR+POL) and supplements were administered for 6 weeks. As a result, the lowest feed consumption in rats was recorded in the CUR+POL group, and the group with the lowest weight after supplements was the POL group, then the CUR+POL, CONT, and CUR groups, respectively. N-acetyl putrescine and GABA levels increased significantly after obesity development. The total histopathological score in fat, liver, and kidney tissues increased significantly in the CONT group. In the CUR+POL group, damage to the tissues was in the direction of recovery compared to the other groups, and the expression of NF-κB was significantly low. These results suggest that combined curcumin and polyamines may have protective effects.
Collapse
Affiliation(s)
- Gözde Dumlu Bilgin
- Yeditepe University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Turkey.
| | - Nihal Büyükuslu
- Istanbul Medipol University, Faculty of Health Sciences, Department of Nutrition and Dietetics, İstanbul, Turkey
| | - Ozan Emre Eyüpoğlu
- Istanbul Medipol University, School of Pharmacy, Department of Biochemistry, İstanbul, Turkey
| | - Alev Cumbul
- Yeditepe University, Faculty of Medicine, Department of Histology and Embryology, İstanbul, Turkey
| |
Collapse
|
3
|
Bertoncini-Silva C, Fassini PG, Carlos D, de Paula NA, Ramalho LNZ, Rodrigues Giuliani M, Pereira ÍS, Guimarães JB, Suen VMM. The Dose-Dependent Effect of Curcumin Supplementation on Inflammatory Response and Gut Microbiota Profile in High-Fat Fed C57BL/6 Mice. Mol Nutr Food Res 2023; 67:e2300378. [PMID: 37818762 DOI: 10.1002/mnfr.202300378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/01/2023] [Indexed: 10/13/2023]
Abstract
SCOPE The prevalence of obesity has increased, with excessive consumption of high-fat foods being one of the primary causes. Curcumin, a polyphenol extracted from Curcuma longa L., exhibits anti-inflammatory activity. The study aims to investigate the effects of curcumin supplementation in different doses on the biochemical profile, inflammatory response, and gut microbiota profile in mice that are fed with high-fat diet (HFD). METHODS AND RESULTS C57BL/6 male mice are fed a standard diet, or a HFD with or without different doses of curcumin (50, 250, and 500 mg kg-1 of body weight). Throughout the experimental period, food intake and body weight are assessed weekly. At euthanasia, blood, stool, and tissue samples are collected for biochemical, histological, and molecular analyses. Curcumin increases the IL-10 protein expression in the white adipose tissue. In the liver, there is a reduction in tumor necrosis factor alpha (TNF-α) and an increase in IL-10 gene expression. Also, curcumin promotes the growth of butyrogenic bacteria, such as Clostridium clusters IV and XIVa. CONCLUSIONS The findings suggest that curcumin has the potential to improve the inflammatory response and modulate healthy gut microbiota. Further studies are needed to clarify the role of curcumin as a preventive and effective strategy for obesity.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Priscila Giacomo Fassini
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Daniela Carlos
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Natália Aparecida de Paula
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Leandra Náira Zambelli Ramalho
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Marina Rodrigues Giuliani
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Ítalo Sousa Pereira
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Jhefferson Barbosa Guimarães
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Ribeirão Preto Medical School, University of São Paulo, Avenida Bandeirantes, 3900 Monte Alegre, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
4
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Rodrigues M, Bertoncini-Silva C, Joaquim A, Machado C, Ramalho L, Carlos D, Fassini P, Suen V. Beneficial effects of eugenol supplementation on gut microbiota and hepatic steatosis in high-fat-fed mice. Food Funct 2022; 13:3381-3390. [DOI: 10.1039/d1fo03619j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the increase in the prevalence of obesity, new therapies have emerged and Eugenol has been shown to be beneficial in metabolic changes and gut microbiota. This study aimed...
Collapse
|
6
|
Zordan AJCM, Bertoncini-Silva C, Joaquim AG, Rodrigues M, Machado CD, Carlos D, Foss-Freitas MC, Suen VMM. Gingerol supplementation does not change glucose tolerance, lipid profile and does not prevent weight gain in C57BL/6 mice fed a high-fat diet. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2020.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
7
|
Costa MC, Lima TFO, Arcaro CA, Inacio MD, Batista-Duharte A, Carlos IZ, Spolidorio LC, Assis RP, Brunetti IL, Baviera AM. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J Nutr Biochem 2020; 76:108303. [DOI: 10.1016/j.jnutbio.2019.108303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/17/2019] [Accepted: 11/12/2019] [Indexed: 12/23/2022]
|