1
|
Jia Z, Wang Z. Photo-Crosslinking Hydrogel Based on Porcine Small Intestinal Submucosa Decellularized Matrix/Fish Collagen/GelMA for Culturing Small Intestinal Organoids and Repairing Intestinal Defects. Int J Mol Sci 2025; 26:663. [PMID: 39859377 PMCID: PMC11766382 DOI: 10.3390/ijms26020663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Organoid technology, as an innovative approach in biomedicine, exhibits promising prospects in disease modeling, pharmaceutical screening, regenerative medicine, and oncology research. However, the use of tumor-derived Matrigel as the primary method for culturing organoids has significantly impeded the clinical translation of organoid technology due to concerns about potential risks, batch-to-batch instability, and high costs. To address these challenges, this study innovatively introduced a photo-crosslinkable hydrogel made from a porcine small intestinal submucosa decellularized matrix (SIS), fish collagen (FC), and methacrylate gelatin (GelMA). The cost-effective hydrogel demonstrated excellent biocompatibility, tunable mechanical properties, rapid gelation properties, and low immunogenicity. Importantly, the proliferation and differentiation capacities of small intestinal organoids cultured in hydrogel were comparable to those in Matrigel, with no significant disparity observed. Furthermore, after one week of transplantation in nude mice, the hydrogel-organoid complex exhibited sustained structural and functional stability while preserving the differentiation characteristics of small intestinal organoids. Our study also demonstrated the effective potential of FC/SIS/GelMA hydrogel in accelerating the repair process of small intestinal defects, reducing the area of scar formation, and promoting the regeneration of both intestinal villi and smooth muscle tissue. In summary, this study presents a novel protocol for culturing small intestinal organoids, offering potential implications for future clinical applications and serving as an experimental foundation for the development of tissue-engineered intestines based on small intestinal organoids.
Collapse
Affiliation(s)
| | - Ziwei Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China;
| |
Collapse
|
2
|
Li Y, Lu Y, Zhao Y, Zhang N, Zhang Y, Fu Y. Deciphering the Wound-Healing Potential of Collagen Peptides and the Molecular Mechanisms: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26007-26026. [PMID: 39405278 DOI: 10.1021/acs.jafc.4c02960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2024]
Abstract
Collagen peptides have been reported to display various bioactivities and high bioavailability. Recently, increasing evidence has revealed the excellent wound-healing activity of collagen peptides, but their molecular mechanisms remain incompletely elucidated. This review systematically evaluates the therapeutic efficacy of collagen peptides from diverse sources based on various wound models. Furthermore, the structure-activity relationships of collagen peptides and wound-healing mechanisms are discussed and summarized. Characterized by their low molecular weight and abundant imino acids, collagen peptides facilitate efficient absorption by the body to deliver nutrition throughout the wound-healing process. The specific mechanism of collagen peptide for wound healing is mainly through up-regulation of related cytokines and participation in the activation of relevant signaling pathways, such as TGF-β/Smad and PI3K/Akt/mTOR, which can promote cell proliferation, angiogenesis, collagen synthesis and deposition, re-epithelialization, and ECM remodeling, ultimately achieving the effect of wound healing. Collagen peptides can offer a potential therapeutic approach for treating incision and excision wounds, mucosal injuries, burn wounds, and pressure ulcers, improving the efficiency of wound healing by about 10%-30%. The present review contributes to understanding of the wound-healing potential of collagen peptides and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Yunying Li
- College of Food Science, Southwest University, Chongqing 400715, China
- Westa College, Southwest University, Chongqing 400715, China
| | - Yujia Lu
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Yuchen Zhao
- Department of Epidemiology, Harvard University T.H. Chan School of Public Health, 677 Huntington Ave, Boston, Massachusetts 02115, United States
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
| |
Collapse
|
3
|
Liu H, Zhang L, Yu J, Shao S. Advances in the application and mechanism of bioactive peptides in the treatment of inflammation. Front Immunol 2024; 15:1413179. [PMID: 39247182 PMCID: PMC11377253 DOI: 10.3389/fimmu.2024.1413179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/06/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammation is a normal immune response in organisms, but it often triggers chronic diseases such as colitis and arthritis. Currently, the most widely used anti-inflammatory drugs are non-steroidal anti-inflammatory drugs, albeit they are accompanied by various adverse effects such as hypertension and renal dysfunction. Bioactive peptides (BAPs) provide therapeutic benefits for inflammation and mitigate side effects. Herein, this review focuses on the therapeutic effects of various BAPs on inflammation in different body parts. Emphasis is placed on the immunomodulatory mechanisms of BAPs in treating inflammation, such as regulating the release of inflammatory mediators, modulating MAPK and NF-κB signaling pathways, and reducing oxidative stress reactions for immunomodulation. This review aims to provide a reference for the function, application, and anti-inflammation mechanisms of BAPs.
Collapse
Affiliation(s)
- Haiyang Liu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Lulu Zhang
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
| | - Jingmou Yu
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| | - Shengwen Shao
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, Huzhou University, Huzhou, China
| |
Collapse
|
4
|
Markov PA, Sokolov AS, Artemyeva IA, Gilmutdinova IR, Fesyun AD, Eremin PS. Collagen hydrogel protects intestinal epithelial cells from indomethacin-induced damage: results of an in vitro experiment. BULLETIN OF REHABILITATION MEDICINE 2024; 23:25-33. [DOI: 10.38025/2078-1962-2024-23-2-25-33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2025]
Abstract
INTRODUCTION. Indomethacin is a derivative of indoleacetic acid and has anti-inflammatory, analgesic and antipyretic effects. However, the results of numerous studies show that indomethacin, like many other nonsteroidal anti-inflammatory drugs (NSAIDs), have an inhibitory effect on the viability and functional activity of enterocytes. In this regard, the search for new ways to reduce the severity of side effects from the use of NSAIDs remains relevant. One of these approaches may be to enrich patients’ diets with non-drug biologically active compounds, including proteins. However, the effect of dietary proteins and biologically active peptides on NSAID-induced damage to the wall of the small intestine and stomach has not been sufficiently studied.
AIM. To evaluate the ability of a collagen-containing dietary supplement to protect human duodenal epithelial cells (HuTu-80 line) from indomethacin-induced damage.
MATERIALS AND METHODS. The composite collagen-containing hydrogel was provided by «FIRST ALIVE COLLAGEN» LLC (Russia) and is a registered dietary supplement. The work used a commercial culture of human skin fibroblast cells and human duodenal epithelial cells (line HuTu-80). The viability of intestinal cells and fibroblasts was assessed using light and fluorescence microscopy and flow cytometry methods.
RESULTS AND DISCUSSION. It has been established that indomethacin inhibits cell growth, causes apoptosis and death of enterocytes, and also leads to the accumulation of cells in the S-phase, which indicates a disruption in the regulation of the cell cycle. It was revealed that collagen hydrogel prevents cell death caused by indomethacin and reduces the number of apoptotic cells in the population. The protective effect of collagen hydrogel is characterized by normalization of the cell cycle of enterocytes and restoration of their growth and proliferative activity.
CONCLUSION. Thus, collagen hydrogel, in vitro, is able to reduce the pathogenic effect of indomethacin on human intestinal epithelial cells. The protective effect of collagen hydrogel is characterized by maintaining viability, inhibiting apoptotic processes, and maintaining cell cycle stability. The results obtained indicate the prospects of using a dietary supplement based on a composite collagen hydrogel as a prophylactic agent to reduce the risk of NSAID-associated gastrointestinal diseases. However, to confirm the therapeutic effectiveness of the dietary supplement, further research is necessary, both using experimental animal modeling of NSAID-associated diseases of the human gastrointestinal tract, and clinical studies.
Collapse
Affiliation(s)
- Pavel A. Markov
- National Medical Research Center for Rehabilitation and Balneology
| | | | | | | | | | - Petr S. Eremin
- National Medical Research Center for Rehabilitation and Balneology
| |
Collapse
|
5
|
Zhu N, Liu R, Xu M, Li Y. The Potential of Bioactive Fish Collagen Oligopeptides against Hydrogen Peroxide-Induced NIH/3T3 and HUVEC Damage: The Involvement of the Mitochondria. Nutrients 2024; 16:1004. [PMID: 38613037 PMCID: PMC11013636 DOI: 10.3390/nu16071004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2024] [Revised: 03/23/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Extensive in vivo investigations have demonstrated the antioxidant properties of fish collagen oligopeptides (FCOPs). One of the main causes of aging and chronic non-communicable diseases is oxidative stress. Therefore, FCOPs have a broad range of applications in illness prevention and delaying aging from the standpoint of the "food is medicine" theory. However, the mechanisms that underpin the antioxidant activity of FCOPs are not completely understood. The specific objective of this essay was to investigate the antioxidant effect of FCOPs and its possible mechanism at the cellular level. Mouse embryonic fibroblasts NIH/3T3 and human vein endothelial cells (HUVECs) were exposed to 200 µM hydrogen peroxide containing different concentrations of FCOPs for 4 h and were supplemented with different concentrations of FCOPs for 24 h. Normal growth medium without FCOPs was applied for control cells. An array of assays was used to evaluate the implications of FCOPs on cellular oxidative stress status, cellular homeostasis, inflammatory levels, and mitochondrial function. We found that FCOPs exerted a protective effect by inhibiting reactive oxygen species (ROS) production, enhancing superoxide dismutase (SOD) and endothelial nitric oxide synthase (eNOS) activities and cell viability, inhibiting cell cycle arrest in the G1 phase, suppressing interleukin-1β (IL-1β), IL-6, matrix metalloproteinase-3 (MMP-3) and intercellular adhesion molecule-1(ICAM-1) secretion, downregulating nuclear factor-kappa B (NF-κB) activity, protecting mitochondrial membrane potential, and increasing ATP synthesis and NAD+ activities in both cells. FCOPs had a stronger antioxidant impact on NIH/3T3 than on HUVECs, simultaneously increasing glutathione peroxidase (GSH-Px) activity and decreasing malondialdehyde (MDA) content in NIH/3T3. These findings indicate that FCOPs have antioxidant effects on different tissue cells damaged by oxidative stress. FCOPs were therefore found to promote cellular homeostasis, inhibit inflammation, and protect mitochondria. Meanwhile, better health outcomes will be achieved by thoroughly investigating the effective dose and intervention time of FCOPs, as the absorption efficiency of FCOPs varies in different tissue cells.
Collapse
Affiliation(s)
- Na Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Department of Nutrition and Food Hygiene, College of Public Health, Inner Mongolia Medical University, Hohhot 010059, China
| | - Rui Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China; (N.Z.); (R.L.); (M.X.)
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University, Beijing 100191, China
| |
Collapse
|
6
|
Zhou J, Yan X, Bi X, Lu S, Liu X, Yang C, Shi Y, Luo L, Yin Z. γ-Glutamylcysteine rescues mice from TNBS-driven inflammatory bowel disease through regulating macrophages polarization. Inflamm Res 2023; 72:603-621. [PMID: 36690783 DOI: 10.1007/s00011-023-01691-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/21/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE To explore the molecular mechanism of γ-glutamylcysteine (γ-GC) in response to inflammation in vivo and in vitro on regulating the polarization of macrophages. METHODS The expressions of gene or protein were assessed by qPCR and Western blot assays, respectively. Cell viability was investigated by CCK-8 assay. Eight-week-old male BALB/c mice were established to examine the therapeutic effects of γ-GC in vivo. The release of TNF-α and IL-4 was determined by ELISA assay. Macrophages polarization was identified by flow cytometry assay. RESULTS Our data showed that γ-GC treatment significantly improved the survival, weight loss, and colon tissue damage of IBD mice. Furthermore, we established M1- and M2-polarized macrophages, respectively, and our findings provided evidence that γ-GC switched M1/M2-polarized macrophages through activating AMPK/SIRT1 axis and inhibiting inflammation-related signaling pathway. CONCLUSION Collectively, both in vivo and in vitro experiments suggested that γ-GC has the potential to become a promising novel therapeutic dipeptide for the treatment of IBD, which provide new ideas for the treatment of inflammatory diseases in the future.
Collapse
Affiliation(s)
- Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xiaowen Bi
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Xianli Liu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Chen Yang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Yingying Shi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing, 210046, People's Republic of China.
| |
Collapse
|
7
|
Lee M, Kim D, Park SH, Jung J, Cho W, Yu AR, Lee J. Fish Collagen Peptide (Naticol Ⓡ) Protects the Skin from Dryness, Wrinkle Formation, and Melanogenesis Both In Vitro and In Vivo. Prev Nutr Food Sci 2022; 27:423-435. [PMID: 36721753 PMCID: PMC9843708 DOI: 10.3746/pnf.2022.27.4.423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023] Open
Abstract
Consistent ultraviolet B (UVB) radiation exposure results in dry skin, wrinkles, and melanogenesis. In this study, we investigated whether fish collagen peptide (NaticolⓇ) could inhibit photoaging and oxidative stress in skin exposed to UVB using cell and animal models. We measured the skin hydration, histological observations, antioxidant activities, moisturizing-related factors, collagen synthesis-related factors, and melanogenesis-related factors in skin cells and animal skin using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and Western blot assay. NaticolⓇ collagen improved skin moisturization via hyaluronic acid and ceramide synthesis-related factors in HaCaT cells and SHK-I hairless mice that were exposed to UVB. In addition, NaticolⓇ collagen inhibited wrinkle formation in Hs27 cells and SHK-I hairless mice exposed to UVB and restrained melanogenesis in 3-isobutyl-1-methylxanthine-induced B16F10 cells and UVB-irradiated SHK-I hairless mice. On the basis of these findings, we propose that ingestion of Naticol Ⓡ collagen might be valuable for preventing skin photoaging.
Collapse
Affiliation(s)
- Minhee Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Dakyung Kim
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Seong-Hoo Park
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Jaeeun Jung
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - Wonhee Cho
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea
| | - A Ram Yu
- Department of Plant Science and Technology, Chung-Ang University, Gyeonggi 17546, Korea,Technical Assistance Department, The Food Industry Promotional Agency of Korea, Jeonbuk 54576, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi 17104, Korea,Clinical Nutrition Institute, Kyung Hee University, Seoul 02447, Korea,
Correspondence to Jeongmin Lee, E-mail:
| |
Collapse
|
8
|
Anik MI, Mahmud N, Masud AA, Khan MI, Islam MN, Uddin S, Hossain MK. Role of Reactive Oxygen Species in Aging and Age-Related Diseases: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4028-4054. [PMID: 36043942 DOI: 10.1021/acsabm.2c00411] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
Abstract
Research on the role of reactive oxygen species (ROS) in the aging process has advanced significantly over the last two decades. In light of recent findings, ROS takes part in the aging process of cells along with contributing to various physiological signaling pathways. Antioxidants being cells' natural defense mechanism against ROS-mediated alteration, play an imperative role to maintain intracellular ROS homeostasis. Although the complete understanding of the ROS regulated aging process is yet to be fully comprehended, current insights into various sources of cellular ROS and their correlation with the aging process and age-related diseases are portrayed in this review. In addition, results on the effect of antioxidants on ROS homeostasis and the aging process as well as their advances in clinical trials are also discussed in detail. The future perspective in ROS-antioxidant dynamics on antiaging research is also marshaled to provide future directions for ROS-mediated antiaging research fields.
Collapse
Affiliation(s)
- Muzahidul I Anik
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Niaz Mahmud
- Department of Biomedical Engineering, Military Institute of Science and Technology, Dhaka 1216, Bangladesh
| | - Abdullah Al Masud
- Department of Chemical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Md Ishak Khan
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Md Nurul Islam
- Department of Bioregulatory Sciences, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Shihab Uddin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - M Khalid Hossain
- Institute of Electronics, Atomic Energy Research Establishment, Bangladesh Atomic Energy Commission, Dhaka 1349, Bangladesh
- Interdisciplinary Graduate School of Engineering Science, Kyushu University, Fukuoka 816-8580, Japan
| |
Collapse
|
9
|
LMWP (S3-3) from the Larvae of Musca domestica Alleviate D-IBS by Adjusting the Gut Microbiota. Molecules 2022; 27:molecules27144517. [PMID: 35889391 PMCID: PMC9324334 DOI: 10.3390/molecules27144517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/09/2022] [Revised: 07/03/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Diarrhea-based Irritable Bowel Syndrome (D-IBS) and diarrhea are both associated with ecological imbalance of the gut microbiota. Low Molecular Weight Peptides (LMWP) from the larvae of Musca domestica have been shown to be effective in the treatment of diarrhea and regulation of gut microbiota. Meanwhile, the single polypeptide S3-3 was successfully isolated and identified from LMWP in our previous studies. It remains unclear exactly whether and how LMWP (S3-3) alleviate D-IBS through regulating gut microbiota. We evaluated the gut microbiota and pharmacology to determine the regulation of gut microbiota structure and the alleviating effect on D-IBS through LMWP (S3-3). The rates of loose stools, abdominal withdrawal reflex (AWR) and intestinal tract motility results revealed that LMWP (S3-3) from the larvae of Musca domestica had a regulating effect against diarrhea, visceral hypersensitivity and gastrointestinal (GI) dysfunction in D-IBS model mice. Additionally, 16S rRNA gene sequencing was utilized to examine the gut microbiota, which suggests that LMWP induce structural changes in the gut microbiota and alter the levels of the following gut microbiota: Bacteroidetes, Proteobacteria and Verrucomicrobia. LMWP putatively functioned through regulating 5-HT, SERT, 5-HT2AR, 5-HT3AR and 5-HT4R according to the results of ELISA, qRT-PCR and IHC. The findings of this study will contribute to further understanding how LMWP (S3-3) attenuate the effects of D-IBS on diarrhea, visceral hypersensitivity and GI dysfunction.
Collapse
|