1
|
Tikunova SB, Thuma J, Davis JP. Mouse Models of Cardiomyopathies Caused by Mutations in Troponin C. Int J Mol Sci 2023; 24:12349. [PMID: 37569724 PMCID: PMC10419064 DOI: 10.3390/ijms241512349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Cardiac muscle contraction is regulated via Ca2+ exchange with the hetero-trimeric troponin complex located on the thin filament. Binding of Ca2+ to cardiac troponin C, a Ca2+ sensing subunit within the troponin complex, results in a series of conformational re-arrangements among the thin filament components, leading to an increase in the formation of actomyosin cross-bridges and muscle contraction. Ultimately, a decline in intracellular Ca2+ leads to the dissociation of Ca2+ from troponin C, inhibiting cross-bridge cycling and initiating muscle relaxation. Therefore, troponin C plays a crucial role in the regulation of cardiac muscle contraction and relaxation. Naturally occurring and engineered mutations in troponin C can lead to altered interactions among components of the thin filament and to aberrant Ca2+ binding and exchange with the thin filament. Mutations in troponin C have been associated with various forms of cardiac disease, including hypertrophic, restrictive, dilated, and left ventricular noncompaction cardiomyopathies. Despite progress made to date, more information from human studies, biophysical characterizations, and animal models is required for a clearer understanding of disease drivers that lead to cardiomyopathies. The unique use of engineered cardiac troponin C with the L48Q mutation that had been thoroughly characterized and genetically introduced into mouse myocardium clearly demonstrates that Ca2+ sensitization in and of itself should not necessarily be considered a disease driver. This opens the door for small molecule and protein engineering strategies to help boost impaired systolic function. On the other hand, the engineered troponin C mutants (I61Q and D73N), genetically introduced into mouse myocardium, demonstrate that Ca2+ desensitization under basal conditions may be a driving factor for dilated cardiomyopathy. In addition to enhancing our knowledge of molecular mechanisms that trigger hypertrophy, dilation, morbidity, and mortality, these cardiomyopathy mouse models could be used to test novel treatment strategies for cardiovascular diseases. In this review, we will discuss (1) the various ways mutations in cardiac troponin C might lead to disease; (2) relevant data on mutations in cardiac troponin C linked to human disease, and (3) all currently existing mouse models containing cardiac troponin C mutations (disease-associated and engineered).
Collapse
Affiliation(s)
- Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH 43210, USA (J.P.D.)
| | | | | |
Collapse
|
2
|
López-Dávila AJ, Chalovich JM, Zittrich S, Piep B, Matinmehr F, Málnási-Csizmadia A, Rauscher AÁ, Kraft T, Brenner B, Stehle R. Cycling Cross-Bridges Contribute to Thin Filament Activation in Human Slow-Twitch Fibers. Front Physiol 2020; 11:144. [PMID: 32265723 PMCID: PMC7105683 DOI: 10.3389/fphys.2020.00144] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
It has been shown that not only calcium but also strong binding myosin heads contribute to thin filament activation in isometrically contracting animal fast-twitch and cardiac muscle preparations. This behavior has not been studied in human muscle fibers or animal slow-twitch fibers. Human slow-twitch fibers are interesting since they contain the same myosin heavy chain isoform as the human heart. To explore myosin-induced activation of the thin filament in isometrically contracting human slow-twitch fibers, the endogenous troponin complex was exchanged for a well-characterized fast-twitch skeletal troponin complex labeled with the fluorescent dye N-((2-(Iodoacetoxy)ethyl)-N-methyl)amino-7-nitrobenz-2-oxa-1,3-diazole (fsTn-IANBD). The exchange was ≈70% complete (n = 8). The relative contributions of calcium and strong binding cross-bridges to thin filament activation were dissected by increasing the concentration of calcium from relaxing (pCa 7.5) to saturating levels (pCa 4.5) before and after incubating the exchanged fibers in the myosin inhibitor para-aminoblebbistatin (AmBleb). At pCa 4.5, the relative contributions of calcium and strong binding cross-bridges to thin filament activation were ≈69 and ≈31%, respectively. Additionally, switching from isometric to isotonic contraction at pCa 4.5 revealed that strong binding cross-bridges contributed ≈29% to thin filament activation (i.e., virtually the same magnitude obtained with AmBleb). Thus, we showed through two different approaches that lowering the number of strong binding cross-bridges, at saturating calcium, significantly reduced the activation of the thin filament in human slow-twitch fibers. The contribution of myosin to activation resembled that which was previously reported in rat cardiac and rabbit fast-twitch muscle preparations. This method could be applied to slow-twitch human fibers obtained from the soleus muscle of cardiomyopathy patients. Such studies could lead to a better understanding of the effect of point mutations of the cardiac myosin head on the regulation of muscle contraction and could lead to better management by pharmacological approaches.
Collapse
Affiliation(s)
| | - Joseph M Chalovich
- Department of Biochemistry and Molecular Biology, Brody School of Medicine, East Carolina University, Greenville, NC, United States
| | - Stefan Zittrich
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Birgit Piep
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Faramarz Matinmehr
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Andras Málnási-Csizmadia
- MTA-ELTE Motor Pharmacology Research Group, Department of Biochemistry, Eötvös Loránd University, Budapest, Hungary
| | | | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hanover, Germany
| | - Robert Stehle
- Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
3
|
Nakano SJ, Walker JS, Walker LA, Li X, Du Y, Miyamoto SD, Sucharov CC, Garcia AM, Mitchell MB, Ambardekar AV, Stauffer BL. Increased myocyte calcium sensitivity in end-stage pediatric dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 2019; 317:H1221-H1230. [PMID: 31625780 DOI: 10.1152/ajpheart.00409.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dilated cardiomyopathy (DCM) is the most common cause of heart failure (HF) in children, resulting in high mortality and need for heart transplantation. The pathophysiology underlying pediatric DCM is largely unclear; however, there is emerging evidence that molecular adaptations and response to conventional HF medications differ between children and adults. To gain insight into alterations leading to systolic dysfunction in pediatric DCM, we measured cardiomyocyte contractile properties and sarcomeric protein phosphorylation in explanted pediatric DCM myocardium (N = 8 subjects) compared with nonfailing (NF) pediatric hearts (N = 8 subjects). Force-pCa curves were generated from skinned cardiomyocytes in the presence and absence of protein kinase A. Sarcomeric protein phosphorylation was quantified with Pro-Q Diamond staining after gel electrophoresis. Pediatric DCM cardiomyocytes demonstrate increased calcium sensitivity (pCa50 =5.70 ± 0.0291), with an associated decrease in troponin (Tn)I phosphorylation compared with NF pediatric cardiomyocytes (pCa50 =5.59 ± 0.0271, P = 0.0073). Myosin binding protein C and TnT phosphorylation are also lower in pediatric DCM, whereas desmin phosphorylation is increased. Pediatric DCM cardiomyocytes generate peak tension comparable to that of NF pediatric cardiomyocytes [DCM 29.7 mN/mm2, interquartile range (IQR) 21.5-49.2 vs. NF 32.8 mN/mm2, IQR 21.5-49.2 mN/mm2; P = 0.6125]. In addition, cooperativity is decreased in pediatric DCM compared with pediatric NF (Hill coefficient: DCM 1.56, IQR 1.31-1.94 vs. NF 1.94, IQR 1.36-2.86; P = 0.0425). Alterations in sarcomeric phosphorylation and cardiomyocyte contractile properties may represent an impaired compensatory response, contributing to the detrimental DCM phenotype in children.NEW & NOTEWORTHY Our study is the first to demonstrate that cardiomyocytes from infants and young children with dilated cardiomyopathy (DCM) exhibit increased calcium sensitivity (likely mediated by decreased troponin I phosphorylation) compared with nonfailing pediatric cardiomyocytes. Compared with published values in adult cardiomyocytes, pediatric cardiomyocytes have notably decreased cooperativity, with a further reduction in the setting of DCM. Distinct adaptations in cardiomyocyte contractile properties may contribute to a differential response to pharmacological therapies in the pediatric DCM population.
Collapse
Affiliation(s)
- Stephanie J Nakano
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - John S Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Xiaotao Li
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Yanmei Du
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Shelley D Miyamoto
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Carmen C Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Anastacia M Garcia
- Division of Cardiology, Department of Pediatrics, University of Colorado Denver, Aurora, Colorado
| | - Max B Mitchell
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado Denver, Aurora, Colorado
| | - Amrut V Ambardekar
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado
| | - Brian L Stauffer
- Division of Cardiology, Department of Medicine, University of Colorado Denver, Aurora, Colorado.,Division of Cardiology, Department of Medicine, Denver Health and Hospital Authority, Denver, Colorado
| |
Collapse
|
4
|
Potluri PR, Cordina NM, Kachooei E, Brown LJ. Characterization of the L29Q Hypertrophic Cardiomyopathy Mutation in Cardiac Troponin C by Paramagnetic Relaxation Enhancement Nuclear Magnetic Resonance. Biochemistry 2019; 58:908-917. [PMID: 30620548 DOI: 10.1021/acs.biochem.8b01140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The key events in regulating muscle contraction involve the troponin (Tn) heterotrimeric protein complex in which the binding to and release of Ca2+ from the highly conserved troponin C (TnC) subunit trigger a series of structural changes within Tn, and the other thin filament proteins, to result in contraction. In the heart, the control of contraction and relaxation events can be altered by many single-point mutations that may result in cardiomyopathy and sometimes sudden cardiac death. Here we have examined the structural effects of one hypertrophic cardiomyopathy mutation, L29Q, on Ca2+-induced structural transitions within whole TnC. This mutation is of particular interest as several physiological and structural studies have indicated that the response of TnC to Ca2+ binding is altered in the presence of the L29Q mutation, but the structural nature of these changes continues to be debated. In addition, little is known about the effect of this mutation in the Ca2+ free state. Here we have used paramagnetic relaxation enhancement nuclear magnetic resonance (PRE-NMR) to assess the structural effects arising from the L29Q mutation. PRE-NMR distances obtained from a nitroxide spin-label at Cys84 showed that the L29Q mutation perturbs the structure of the TnC N-domain in the presence and absence of Ca2+, with a more "open" TnC N-domain observed in the apo form. In addition, binding of Ca2+ to the TnC-L29Q construct triggers a change in the orientation between the two domains of TnC. Together, these structural perturbations, revealed by PRE-NMR, provide insight into the pathogenesis of this mutation.
Collapse
Affiliation(s)
- Phani R Potluri
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Nicole M Cordina
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Ehsan Kachooei
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| | - Louise J Brown
- Department of Molecular Sciences , Macquarie University , Sydney , NSW 2109 , Australia
| |
Collapse
|
5
|
Chung JH, Biesiadecki BJ, Ziolo MT, Davis JP, Janssen PML. Myofilament Calcium Sensitivity: Role in Regulation of In vivo Cardiac Contraction and Relaxation. Front Physiol 2016; 7:562. [PMID: 28018228 PMCID: PMC5159616 DOI: 10.3389/fphys.2016.00562] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 11/13/2022] Open
Abstract
Myofilament calcium sensitivity is an often-used indicator of cardiac muscle function, often assessed in disease states such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). While assessment of calcium sensitivity provides important insights into the mechanical force-generating capability of a muscle at steady-state, the dynamic behavior of the muscle cannot be sufficiently assessed with a force-pCa curve alone. The equilibrium dissociation constant (Kd) of the force-pCa curve depends on the ratio of the apparent calcium association rate constant (kon) and apparent calcium dissociation rate constant (koff) of calcium on TnC and as a stand-alone parameter cannot provide an accurate description of the dynamic contraction and relaxation behavior without the additional quantification of kon or koff, or actually measuring dynamic twitch kinetic parameters in an intact muscle. In this review, we examine the effect of length, frequency, and beta-adrenergic stimulation on myofilament calcium sensitivity and dynamic contraction in the myocardium, the effect of membrane permeabilization/mechanical- or chemical skinning on calcium sensitivity, and the dynamic consequences of various myofilament protein mutations with potential implications in contractile and relaxation behavior.
Collapse
Affiliation(s)
- Jae-Hoon Chung
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Medical Scientist Training Program and Biomedical Sciences Graduate Program, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Brandon J Biesiadecki
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Mark T Ziolo
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Jonathan P Davis
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Internal Medicine, The Ohio State University Wexner Medical CenterColumbus, OH, USA
| |
Collapse
|
6
|
Marques MDA, de Oliveira GAP. Cardiac Troponin and Tropomyosin: Structural and Cellular Perspectives to Unveil the Hypertrophic Cardiomyopathy Phenotype. Front Physiol 2016; 7:429. [PMID: 27721798 PMCID: PMC5033975 DOI: 10.3389/fphys.2016.00429] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Inherited myopathies affect both skeletal and cardiac muscle and are commonly associated with genetic dysfunctions, leading to the production of anomalous proteins. In cardiomyopathies, mutations frequently occur in sarcomeric genes, but the cause-effect scenario between genetic alterations and pathological processes remains elusive. Hypertrophic cardiomyopathy (HCM) was the first cardiac disease associated with a genetic background. Since the discovery of the first mutation in the β-myosin heavy chain, more than 1400 new mutations in 11 sarcomeric genes have been reported, awarding HCM the title of the “disease of the sarcomere.” The most common macroscopic phenotypes are left ventricle and interventricular septal thickening, but because the clinical profile of this disease is quite heterogeneous, these phenotypes are not suitable for an accurate diagnosis. The development of genomic approaches for clinical investigation allows for diagnostic progress and understanding at the molecular level. Meanwhile, the lack of accurate in vivo models to better comprehend the cellular events triggered by this pathology has become a challenge. Notwithstanding, the imbalance of Ca2+ concentrations, altered signaling pathways, induction of apoptotic factors, and heart remodeling leading to abnormal anatomy have already been reported. Of note, a misbalance of signaling biomolecules, such as kinases and tumor suppressors (e.g., Akt and p53), seems to participate in apoptotic and fibrotic events. In HCM, structural and cellular information about defective sarcomeric proteins and their altered interactome is emerging but still represents a bottleneck for developing new concepts in basic research and for future therapeutic interventions. This review focuses on the structural and cellular alterations triggered by HCM-causing mutations in troponin and tropomyosin proteins and how structural biology can aid in the discovery of new platforms for therapeutics. We highlight the importance of a better understanding of allosteric communications within these thin-filament proteins to decipher the HCM pathological state.
Collapse
Affiliation(s)
- Mayra de A Marques
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Guilherme A P de Oliveira
- Programa de Biologia Estrutural, Centro Nacional de Ressonância Magnética Nuclear Jiri Jonas, Instituto de Bioquímica Médica Leopoldo de Meis, Instituto Nacional de Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
7
|
The structural and functional effects of the familial hypertrophic cardiomyopathy-linked cardiac troponin C mutation, L29Q. J Mol Cell Cardiol 2015; 87:257-69. [PMID: 26341255 PMCID: PMC4640586 DOI: 10.1016/j.yjmcc.2015.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/09/2015] [Accepted: 08/23/2015] [Indexed: 01/02/2023]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca2 +-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca2 +-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca2 +-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.
The cTnC L29Q mutation causes a small change in the NMR structure of site 1 in cTnC. L29Q reduces the cooperativity of Ca2 +-dependent structural changes in cTnC in situ. L29Q removes the impact of force-generating myosin heads on cTnC structural changes.
Collapse
|
8
|
Kalyva A, Parthenakis FI, Marketou ME, Kontaraki JE, Vardas PE. Biochemical characterisation of Troponin C mutations causing hypertrophic and dilated cardiomyopathies. J Muscle Res Cell Motil 2014; 35:161-78. [PMID: 24744096 DOI: 10.1007/s10974-014-9382-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 04/02/2014] [Indexed: 01/27/2023]
Abstract
Cardiac muscle contraction occurs through an interaction of the myosin head with the actin filaments, a process which is regulated by the troponin complex together with tropomyosin and is Ca(2+) dependent. Mutations in genes encoding sarcomeric proteins are a common cause of familial hypertrophic and dilated cardiomyopathies. The scope of this review is to gather information from studies regarding the in vitro characterisation of six HCM and six DCM mutations on the cardiac TnC gene and to suggest, if possible, how they may lead to dysfunction. Since TnC is the subunit responsible for Ca(2+) binding, mutations in the TnC could possibly have a strong impact on Ca(2+) binding affinities. Furthermore, the interactions of mutant TnCs with their binding partners could be altered. From the characterisation studies available to date, we can conclude that the HCM mutations on TnC increase significantly the Ca(2+) sensitivity of force development or of ATPase activity, producing large pCa shifts in comparison to WT TnC. In contrast, the DCM mutations on TnC have a tendency to decrease the Ca(2+) sensitivity of force development or of ATPase activity in comparison to WT TnC. Furthermore, the DCM mutants of TnC are not responsive to the TnI phosphorylation signal resulting in filaments that preserve their Ca(2+) sensitivity in contrast to WT filaments that experience a decrease in Ca(2+) sensitivity upon TnI phosphorylation.
Collapse
Affiliation(s)
- Athanasia Kalyva
- Molecular Cardiology Laboratory, Department of Cardiology, School of Medicine, University of Crete, Crete, Greece,
| | | | | | | | | |
Collapse
|
9
|
Li AY, Stevens CM, Liang B, Rayani K, Little S, Davis J, Tibbits GF. Familial hypertrophic cardiomyopathy related cardiac troponin C L29Q mutation alters length-dependent activation and functional effects of phosphomimetic troponin I*. PLoS One 2013; 8:e79363. [PMID: 24260207 PMCID: PMC3832503 DOI: 10.1371/journal.pone.0079363] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
The Ca(2+) binding properties of the FHC-associated cardiac troponin C (cTnC) mutation L29Q were examined in isolated cTnC, troponin complexes, reconstituted thin filament preparations, and skinned cardiomyocytes. While higher Ca(2+) binding affinity was apparent for the L29Q mutant in isolated cTnC, this phenomenon was not observed in the cTn complex. At the level of the thin filament in the presence of phosphomimetic TnI, L29Q cTnC further reduced the Ca(2+) affinity by 27% in the steady-state measurement and increased the Ca(2+) dissociation rate by 20% in the kinetic studies. Molecular dynamics simulations suggest that L29Q destabilizes the conformation of cNTnC in the presence of phosphomimetic cTnI and potentially modulates the Ca(2+) sensitivity due to the changes of the opening/closing equilibrium of cNTnC. In the skinned cardiomyocyte preparation, L29Q cTnC increased Ca(2+) sensitivity in a highly sarcomere length (SL)-dependent manner. The well-established reduction of Ca(2+) sensitivity by phosphomimetic cTnI was diminished by 68% in the presence of the mutation and it also depressed the SL-dependent increase in myofilament Ca(2+) sensitivity. This might result from its modified interaction with cTnI which altered the feedback effects of cross-bridges on the L29Q cTnC-cTnI-Tm complex. This study demonstrates that the L29Q mutation alters the contractility and the functional effects of the phosphomimetic cTnI in both thin filament and single skinned cardiomyocytes and importantly that this effect is highly sarcomere length dependent.
Collapse
Affiliation(s)
- Alison Y. Li
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Charles M. Stevens
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bo Liang
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kaveh Rayani
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sean Little
- Physiology and Cell Biology, The Ohio State University, Columbia, Ohio, United States of America
| | - Jonathan Davis
- Physiology and Cell Biology, The Ohio State University, Columbia, Ohio, United States of America
| | - Glen F. Tibbits
- Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia, Canada
- Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
- Cardiovascular Sciences, Child and Family Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Impact of ANKRD1 mutations associated with hypertrophic cardiomyopathy on contraction parameters of engineered heart tissue. Basic Res Cardiol 2013; 108:349. [PMID: 23572067 DOI: 10.1007/s00395-013-0349-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/11/2013] [Accepted: 03/26/2013] [Indexed: 12/25/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a myocardial disease associated with mutations in sarcomeric genes. Three mutations were found in ANKRD1, encoding ankyrin repeat domain 1 (ANKRD1), a transcriptional co-factor located in the sarcomere. In the present study, we investigated whether expression of HCM-associated ANKRD1 mutations affects contraction parameters after gene transfer in engineered heart tissues (EHTs). EHTs were generated from neonatal rat heart cells and were transduced with adeno-associated virus encoding GFP or myc-tagged wild-type (WT) or mutant (P52A, T123M, or I280V) ANKRD1. Contraction parameters were analyzed from day 8 to day 16 of culture, and evaluated in the absence or presence of the proteasome inhibitor epoxomicin for 24 h. Under standard conditions, only WT- and T123M-ANKRD1 were correctly incorporated in the sarcomere. T123M-ANKRD1-transduced EHTs exhibited higher force and velocities of contraction and relaxation than WT- P52A- and I280V-ANKRD1 were highly unstable, not incorporated into the sarcomere, and did not induce contractile alterations. After epoxomicin treatment, P52A and I280V were both stabilized and incorporated into the sarcomere. I280V-transduced EHTs showed prolonged relaxation. These data suggest different impacts of ANKRD1 mutations on cardiomyocyte function: gain-of-function for T123M mutation under all conditions and dominant-negative effect for the I280V mutation which may come into play only when the proteasome is impaired.
Collapse
|
11
|
Cardiomyopathy-Related Mutations in Cardiac Troponin C, L29Q and G159D, Have Divergent Effects on Rat Cardiac Myofiber Contractile Dynamics. Biochem Res Int 2012; 2012:824068. [PMID: 23008774 PMCID: PMC3447348 DOI: 10.1155/2012/824068] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/06/2012] [Accepted: 08/08/2012] [Indexed: 11/17/2022] Open
Abstract
Previous studies of cardiomyopathy-related mutations in cardiac troponin C (cTnC)-L29Q and G159D-have shown diverse findings. The link between such mutant effects and their divergent impact on cardiac phenotypes has remained elusive due to lack of studies on contractile dynamics. We hypothesized that a cTnC mutant-induced change in the thin filament will affect global myofilament mechanodynamics because of the interactions of thin filament kinetics with both Ca(2+) binding and crossbridge (XB) cycling kinetics. We measured pCa-tension relationship and contractile dynamics in detergent-skinned rat cardiac papillary muscle fibers reconstituted with the recombinant wild-type rat cTnC (cTnC(WT)), cTnC(L29Q), and cTnC(G159D) mutants. cTnC(L29Q) fibers demonstrated a significant decrease in Ca(2+) sensitivity, but cTnC(G159D) fibers did not. Both mutants had no effect on Ca(2+)-activated maximal tension. The rate of XB recruitment dynamics increased in cTnC(L29Q) (26%) and cTnC(G159D) (25%) fibers. The rate of XB distortion dynamics increased in cTnC(G159D) fibers (15%). Thus, the cTnC(L29Q) mutant modulates the equilibrium between the non-cycling and cycling pool of XB by affecting the on/off kinetics of the regulatory units (Tropomyosin-Troponin); whereas, the cTnC(G159D) mutant increases XB cycling rate. Different effects on contractile dynamics may offer clue regarding how cTnC(L29Q) and cTnC(G159D) cause divergent effects on cardiac phenotypes.
Collapse
|
12
|
Parvatiyar MS, Landstrom AP, Figueiredo-Freitas C, Potter JD, Ackerman MJ, Pinto JR. A mutation in TNNC1-encoded cardiac troponin C, TNNC1-A31S, predisposes to hypertrophic cardiomyopathy and ventricular fibrillation. J Biol Chem 2012; 287:31845-55. [PMID: 22815480 DOI: 10.1074/jbc.m112.377713] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Defined as clinically unexplained hypertrophy of the left ventricle, hypertrophic cardiomyopathy (HCM) is traditionally understood as a disease of the cardiac sarcomere. Mutations in TNNC1-encoded cardiac troponin C (cTnC) are a relatively rare cause of HCM. Here, we report clinical and functional characterization of a novel TNNC1 mutation, A31S, identified in a pediatric HCM proband with multiple episodes of ventricular fibrillation and aborted sudden cardiac death. Diagnosed at age 5, the proband is family history-negative for HCM or sudden cardiac death, suggesting a de novo mutation. TnC-extracted cardiac skinned fibers were reconstituted with the cTnC-A31S mutant, which increased Ca(2+) sensitivity with no effect on the maximal contractile force generation. Reconstituted actomyosin ATPase assays with 50% cTnC-A31S:50% cTnC-WT demonstrated Ca(2+) sensitivity that was intermediate between 100% cTnC-A31S and 100% cTnC-WT, whereas the mutant increased the activation of the actomyosin ATPase without affecting the inhibitory qualities of the ATPase. The secondary structure of the cTnC mutant was evaluated by circular dichroism, which did not indicate global changes in structure. Fluorescence studies demonstrated increased Ca(2+) affinity in isolated cTnC, the troponin complex, thin filament, and to a lesser degree, thin filament with myosin subfragment 1. These results suggest that this mutation has a direct effect on the Ca(2+) sensitivity of the myofilament, which may alter Ca(2+) handling and contribute to the arrhythmogenesis observed in the proband. In summary, we report a novel mutation in the TNNC1 gene that is associated with HCM pathogenesis and may predispose to the pathogenesis of a fatal arrhythmogenic subtype of HCM.
Collapse
Affiliation(s)
- Michelle S Parvatiyar
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
13
|
Tripathi S, Schultz I, Becker E, Montag J, Borchert B, Francino A, Navarro-Lopez F, Perrot A, Özcelik C, Osterziel KJ, McKenna WJ, Brenner B, Kraft T. Unequal allelic expression of wild-type and mutated β-myosin in familial hypertrophic cardiomyopathy. Basic Res Cardiol 2011; 106:1041-55. [PMID: 21769673 PMCID: PMC3228959 DOI: 10.1007/s00395-011-0205-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 11/29/2022]
Abstract
Familial hypertrophic cardiomyopathy (FHC) is an autosomal dominant disease, which in about 30% of the patients is caused by missense mutations in one allele of the β-myosin heavy chain (β-MHC) gene (MYH7). To address potential molecular mechanisms underlying the family-specific prognosis, we determined the relative expression of mutant versus wild-type MYH7-mRNA. We found a hitherto unknown mutation-dependent unequal expression of mutant to wild-type MYH7-mRNA, which is paralleled by similar unequal expression of β-MHC at the protein level. Relative abundance of mutated versus wild-type MYH7-mRNA was determined by a specific restriction digest approach and by real-time PCR (RT-qPCR). Fourteen samples from M. soleus and myocardium of 12 genotyped and clinically well-characterized FHC patients were analyzed. The fraction of mutated MYH7-mRNA in five patients with mutation R723G averaged to 66 and 68% of total MYH7-mRNA in soleus and myocardium, respectively. For mutations I736T, R719W and V606M, fractions of mutated MYH7-mRNA in M. soleus were 39, 57 and 29%, respectively. For all mutations, unequal abundance was similar at the protein level. Importantly, fractions of mutated transcripts were comparable among siblings, in younger relatives and unrelated carriers of the same mutation. Hence, the extent of unequal expression of mutated versus wild-type transcript and protein is characteristic for each mutation, implying cis-acting regulatory mechanisms. Bioinformatics suggest mRNA stability or splicing effectors to be affected by certain mutations. Intriguingly, we observed a correlation between disease expression and fraction of mutated mRNA and protein. This strongly suggests that mutation-specific allelic imbalance represents a new pathogenic factor for FHC.
Collapse
Affiliation(s)
- Snigdha Tripathi
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Imke Schultz
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
- Present Address: Niederwiesenring 4, 63110 Rodgau, Germany
| | - Edgar Becker
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Bianca Borchert
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
- Present Address: Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, Hannover Medical School, Carl-Neuberg Str. 1, 30625 Hannover, Germany
| | - Antonio Francino
- Hospital Clinic/IDIBAPS, University of Barcelona, 08036 Barcelona, Spain
| | | | - Andreas Perrot
- Charité-Unversitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC) am Max-Delbrück-Centrum für Molekulare Medizin, Kardio-Genetisches Labor, 13125 Berlin, Germany
| | - Cemil Özcelik
- Charité-Unversitätsmedizin Berlin, Experimental and Clinical Research Center (ECRC) am Max-Delbrück-Centrum für Molekulare Medizin, Kardio-Genetisches Labor, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Kardiologie am Campus Virchow-Klinikum, 13353 Berlin, Germany
| | - Karl-Josef Osterziel
- Charité-Universitätsmedizin Berlin, Kardiologie am Campus Virchow-Klinikum, 13353 Berlin, Germany
- Present Address: Kardiologische Gemeinschaftspraxis, Marienstraße 9, 92224 Amberg, Germany
| | - William J. McKenna
- Institute of Cardiovascular Science, University College London, London, WC1E 6BT United Kingdom
| | - Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Carl Neuberg Str. 1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Pinto JR, Reynaldo DP, Parvatiyar MS, Dweck D, Liang J, Jones MA, Sorenson MM, Potter JD. Strong cross-bridges potentiate the Ca(2+) affinity changes produced by hypertrophic cardiomyopathy cardiac troponin C mutants in myofilaments: a fast kinetic approach. J Biol Chem 2010; 286:1005-13. [PMID: 21056975 DOI: 10.1074/jbc.m110.168583] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This spectroscopic study examined the steady-state and kinetic parameters governing the cross-bridge effect on the increased Ca(2+) affinity of hypertrophic cardiomyopathy-cardiac troponin C (HCM-cTnC) mutants. Previously, we found that incorporation of the A8V and D145E HCM-cTnC mutants, but not E134D into thin filaments (TFs), increased the apparent Ca(2+) affinity relative to TFs containing the WT protein. Here, we show that the addition of myosin subfragment 1 (S1) to TFs reconstituted with these mutants in the absence of MgATP(2-), the condition conducive to rigor cross-bridge formation, further increased the apparent Ca(2+) affinity. Stopped-flow fluorescence techniques were used to determine the kinetics of Ca(2+) dissociation (k(off)) from the cTnC mutants in the presence of TFs and S1. At a high level of complexity (i.e. TF + S1), an increase in the Ca(2+) affinity and decrease in k(off) was achieved for the A8V and D145E mutants when compared with WT. Therefore, it appears that the cTnC Ca(2+) off-rate is most likely to be affected rather than the Ca(2+) on rate. At all levels of TF complexity, the results obtained with the E134D mutant reproduced those seen with the WT protein. We conclude that strong cross-bridges potentiate the Ca(2+)-sensitizing effect of HCM-cTnC mutants on the myofilament. Finally, the slower k(off) from the A8V and D145E mutants can be directly correlated with the diastolic dysfunction seen in these patients.
Collapse
Affiliation(s)
- Jose Renato Pinto
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Kreutziger KL, Piroddi N, McMichael JT, Tesi C, Poggesi C, Regnier M. Calcium binding kinetics of troponin C strongly modulate cooperative activation and tension kinetics in cardiac muscle. J Mol Cell Cardiol 2010; 50:165-74. [PMID: 21035455 DOI: 10.1016/j.yjmcc.2010.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 11/18/2022]
Abstract
Tension development and relaxation in cardiac muscle are regulated at the thin filament via Ca(2+) binding to cardiac troponin C (cTnC) and strong cross-bridge binding. However, the influence of cTnC Ca(2+)-binding properties on these processes in the organized structure of cardiac sarcomeres is not well-understood and likely differs from skeletal muscle. To study this we generated single amino acid variants of cTnC with altered Ca(2+) dissociation rates (k(off)), as measured in whole troponin (cTn) complex by stopped-flow spectroscopy (I61Q cTn>WT cTn>L48Q cTn), and exchanged them into cardiac myofibrils and demembranated trabeculae. In myofibrils at saturating Ca(2+), L48Q cTnC did not affect maximum tension (T(max)), thin filament activation (k(ACT)) and tension development (k(TR)) rates, or the rates of relaxation, but increased duration of slow phase relaxation. In contrast, I61Q cTnC reduced T(max), k(ACT) and k(TR) by 40-65% with little change in relaxation. Interestingly, k(ACT) was less than k(TR) with I61Q cTnC, and this difference increased with addition of inorganic phosphate, suggesting that reduced cTnC Ca(2+)-affinity can limit thin filament activation kinetics. Trabeculae exchanged with I61Q cTn had reduced T(max), Ca(2+) sensitivity of tension (pCa(50)), and slope (n(H)) of tension-pCa, while L48Q cTn increased pCa(50) and reduced n(H). Increased cross-bridge cycling with 2-deoxy-ATP increased pCa(50) with WT or L48Q cTn, but not I61Q cTn. We discuss the implications of these results for understanding the role of cTn Ca(2+)-binding properties on the magnitude and rate of tension development and relaxation in cardiac muscle.
Collapse
Affiliation(s)
- Kareen L Kreutziger
- Department of Bioengineering, University of Washington, Box 355061, 3720 15th Avenue NE, Seattle, WA 98195, USA.
| | | | | | | | | | | |
Collapse
|