1
|
Xu R, Li Y, Xu H, Lai H. Unraveling the role of lactate-related genes in myocardial infarction. Heliyon 2024; 10:e38152. [PMID: 39347425 PMCID: PMC11437837 DOI: 10.1016/j.heliyon.2024.e38152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/30/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
Background Lactate is a crucial intermediary, facilitating communication between myocardial energy metabolism and microenvironmental regulation. The present study aimed to investigate the relationship between lactate-related genes (LRGs) and myocardial infarction (MI). Methods A total of 23 LRGs exhibited differential expression between individuals with MI and healthy controls. Lasso regression analysis and validation with the GSE61144 dataset identified three hub genes: COX20, AGK, and PDHX. Single-gene GSEA of these genes revealed strong enrichment in pathways related to amino acid metabolism, cell cycle, and immune functions. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was utilized to validate the expression levels of the hub genes. Results Immune infiltration analysis revealed differences in CD4+ T and CD8+ T cells between the MI and control groups. Additionally, 67 candidate drugs targeting the three hub LRGs were identified, and a ceRNA network was constructed to explore the intricate interactions among these genes. Conclusions These findings enhance the understanding of MI and have potential therapeutic implications.
Collapse
Affiliation(s)
- Rui Xu
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - YanYan Li
- Department of Cardiac Surgery, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - Hong Xu
- Gerontology Center, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| | - HongMei Lai
- Department of Cardiology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China
| |
Collapse
|
2
|
Pędzińska-Betiuk A, Schlicker E, Weresa J, Malinowska B. Re-evaluation of the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria. Front Pharmacol 2024; 15:1382995. [PMID: 38873412 PMCID: PMC11170160 DOI: 10.3389/fphar.2024.1382995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 06/15/2024] Open
Abstract
Ischemic heart disease, associated with high morbidity and mortality, represents a major challenge for the development of drug-based strategies to improve its prognosis. Results of pre-clinical studies suggest that agonists of cannabinoid CB2 receptors and multitarget cannabidiol might be potential cardioprotective strategies against ischemia-reperfusion injury. The aim of our study was to re-evaluate the cardioprotective effects of cannabinoids against ischemia-reperfusion injury according to the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria published recently by the European Union (EU) CARDIOPROTECTION COST ACTION. To meet the minimum criteria of those guidelines, experiments should be performed (i) on healthy small animals subjected to ischemia with reperfusion lasting for at least 2 hours and (ii) confirmed in small animals with comorbidities and co-medications and (iii) in large animals. Our analysis revealed that the publications regarding cardioprotective effects of CB2 receptor agonists and cannabidiol did not meet all three strict steps of IMPACT. Thus, additional experiments are needed to confirm the cardioprotective activities of (endo)cannabinoids mainly on small animals with comorbidities and on large animals. Moreover, our publication underlines the significance of the IMPACT criteria for a proper planning of preclinical experiments regarding cardiac ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Jolanta Weresa
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Verma VK, Mutneja E, Malik S, Sahu AK, Prajapati V, Bhardwaj P, Ray R, Nag TC, Bhatia J, Arya DS. Abatacept: A Promising Repurposed Solution for Myocardial Infarction-Induced Inflammation in Rat Models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:3534104. [PMID: 38957586 PMCID: PMC11219209 DOI: 10.1155/2024/3534104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 07/04/2024]
Abstract
Myocardial infarction (MI) is irreversible damage to the myocardial tissue caused by prolonged ischemia/hypoxia, subsequently leading to loss of contractile function and myocardial damage. However, after a perilous period, ischemia-reperfusion (IR) itself causes the generation of oxygen free radicals, disturbance in cation homeostasis, depletion of cellular energy stores, and activation of innate and adaptive immune responses. The present study employed Abatacept (ABT), which is an anti-inflammatory drug, originally used as an antirheumatic response agent. To investigate the cardioprotective potential of ABT, primarily, the dose was optimized in a chemically induced model of myocardial necrosis. Thereafter, ABT optimized the dose of 5 mg/kg s.c. OD was investigated for its cardioprotective potential in a surgical model of myocardial IR injury, where animals (n = 30) were randomized into five groups: Sham, IR-C, Telmi10 + IR (Telmisartan, 10 mg/kg oral OD), ABT5 + IR, ABT perse. ABT and telmisartan were administered for 21 days. On the 21st day, animals were subjected to LAD coronary artery occlusion for 60 min, followed by reperfusion for 45 min. Further, the cardioprotective potential was assessed through hemodynamic parameters, oxidant-antioxidant biochemical enzymatic parameters, cardiac injury, inflammatory markers, histopathological analysis, TUNEL assay, and immunohistochemical evaluation, followed by immunoblotting to explore signaling pathways. The statistics were performed by one-way analysis of variance, followed by the Tukey comparison post hoc tests. Noteworthy, 21 days of ABT pretreatment amended the hemodynamic and ventricular functions in the rat models of MI. The cardioprotective potential of ABT is accompanied by inhibiting MAP kinase signaling and modulating Nrf-2/HO-1 proteins downstream signaling cascade. Overall, the present work bolsters the previously known anti-inflammatory role of ABT in MI and contributes a mechanistic insight and application of clinically approved drugs in averting the activation of inflammatory response.
Collapse
Affiliation(s)
- Vipin Kumar Verma
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ekta Mutneja
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Salma Malik
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Anil Kumar Sahu
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Vaishali Prajapati
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Priya Bhardwaj
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Ruma Ray
- Cardiac Pathology Laboratory, Department of Pathology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Tapas Chandra Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Jagriti Bhatia
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| | - Dharamvir Singh Arya
- Cardiovascular Research Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi-110029, India
| |
Collapse
|
4
|
Sung HK, Tang J, Jahng JWS, Song E, Chan YK, Lone AH, Peterson J, Abdul‐Sater A, Sweeney G. Ischemia-induced cardiac dysfunction is exacerbated in adiponectin-knockout mice due to impaired autophagy flux. Clin Transl Sci 2024; 17:e13758. [PMID: 38515365 PMCID: PMC10958170 DOI: 10.1111/cts.13758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/23/2024] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Strategies to enhance autophagy flux have been suggested to improve outcomes in cardiac ischemic models. We explored the role of adiponectin in mediating cardiac autophagy under ischemic conditions induced by permanent coronary artery ligation. We studied the molecular mechanisms underlying adiponectin's cardio-protective effects in adiponectin knockout (Ad-KO) compared with wild-type (WT) mice subjected to ischemia by coronary artery ligation and H9c2 cardiomyocyte cell line exposed to hypoxia. Systemic infusion of a cathepsin-B activatable near-infrared probe as a biomarker for autophagy and detection via noninvasive three-dimensional fluorescence molecular tomography combined with computerized tomography to quantitate temporal changes, indicated increased activity in the myocardium of WT mice after myocardial infarction which was attenuated in Ad-KO. Seven days of ischemia increased myocardial adiponectin accumulation and elevated ULK1/AMPK phosphorylation and autophagy assessed by Western blotting for LC3 and p62, an outcome not observed in Ad-KO mice. Cell death, assessed by TUNEL analysis and the ratio of Bcl-2:Bax, plus cardiac dysfunction, measured using echocardiography with strain analysis, were exacerbated in Ad-KO mice. Using cellular models, we observed that adiponectin stimulated autophagy flux in isolated primary adult cardiomyocytes and increased basal and hypoxia-induced autophagy in H9c2 cells. Real-time temporal analysis of caspase-3/7 activation and caspase-3 Western blot indicated that adiponectin suppressed activation by hypoxia. Hypoxia-induced mitochondrial reactive oxygen species production and cell death were also attenuated by adiponectin. Importantly, the ability of adiponectin to reduce caspase-3/7 activation and cell death was not observed in autophagy-deficient cells generated by CRISPR-mediated deletion of Atg7. Collectively, our data indicate that adiponectin acts in an autophagy-dependent manner to attenuate cardiomyocyte caspase-3/7 activation and cell death in response to hypoxia in vitro and ischemia in mice.
Collapse
Affiliation(s)
| | - Jialing Tang
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | - Erfei Song
- Department of BiologyYork UniversityTorontoOntarioCanada
| | - Yee Kwan Chan
- Department of BiologyYork UniversityTorontoOntarioCanada
| | | | | | - Ali Abdul‐Sater
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Gary Sweeney
- Department of BiologyYork UniversityTorontoOntarioCanada
| |
Collapse
|
5
|
Sonin D, Papayan G, Istomina M, Anufriev I, Pochkaeva E, Minasian S, Zaytseva E, Mukhametdinova D, Mochalov D, Aleksandrov I, Petrishchev N, Galagudza M. Advanced technique of myocardial no-reflow quantification using indocyanine green. BIOMEDICAL OPTICS EXPRESS 2024; 15:818-833. [PMID: 38404317 PMCID: PMC10890880 DOI: 10.1364/boe.511912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
The post-ischemic no-reflow phenomenon after primary percutaneous coronary intervention (PCI) is observed in more than half of subjects and is defined as the absence or marked slowing of distal coronary blood flow despite removal of the arterial occlusion. To visualize no-reflow in experimental studies, the fluorescent dye thioflavin S (ThS) is often used, which allows for the estimation of the size of microvascular obstruction by staining the endothelial lining of vessels. Based on the ability of indocyanine green (ICG) to be retained in tissues with increased vascular permeability, we proposed the possibility of using it to assess not only the severity of microvascular obstruction but also the degree of vascular permeability in the zone of myocardial infarction. The aim of our study was to investigate the possibility of using ICG to visualize no-reflow zones after ischemia-reperfusion injury of rat myocardium. Using dual ICG and ThS staining and the FLUM multispectral fluorescence organoscope, we recorded ICG and ThS fluorescence within the zone of myocardial necrosis, identifying ICG-negative zones whose size correlated with the size of the no-reflow zones detected by ThS. It is also shown that the contrast change between the no-reflow zone and nonischemic myocardium reflects the severity of blood stasis, indicating that ICG-negative zones are no-reflow zones. The described method can be an addition or alternative to the traditional method of measuring the size of no-reflow zones in the experiment.
Collapse
Affiliation(s)
- Dmitry Sonin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Garry Papayan
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Maria Istomina
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Saint Petersburg Electrotechnical University “LETI”, 5 Professora Popova Street, 197376 Saint Petersburg, Russia
| | - Ilya Anufriev
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Saint Petersburg Electrotechnical University “LETI”, 5 Professora Popova Street, 197376 Saint Petersburg, Russia
| | - Evgeniia Pochkaeva
- Peter the Great Saint Petersburg Polytechnic University, 29 Polytechnicheskaya str., 195251 Saint Petersburg, Russia
| | - Sarkis Minasian
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Ekaterina Zaytseva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Daria Mukhametdinova
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Daniil Mochalov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Ilia Aleksandrov
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
| | - Nickolay Petrishchev
- Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| | - Michael Galagudza
- Institute of Experimental Medicine, Almazov National Medical Research Centre, 2 Akkuratova Str., 197341 Saint Petersburg, Russia
- Pavlov First Saint Petersburg State Medical University, 6–8 Lev Tolstoy Street, 197022 Saint Petersburg, Russia
| |
Collapse
|
6
|
Zhang Q, Gou F, Shi P, Xu Z, Yan Z, He M, Yin X, He Y, Zhang J. Angiotensin-converting enzyme inhibitors provide a protective effect on hypoxia-induced injury in human coronary artery endothelial cells via Nrf2 signaling and PLVAP. Clin Hemorheol Microcirc 2024; 87:141-170. [PMID: 38339922 DOI: 10.3233/ch-232007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
BACKGROUND Angiotensin-converting enzyme inhibitors (ACEIs) were reported to protect from hypoxia-induced oxidative stress in coronary endothelial cells (CECs) after acute myocardial infarction (AMI). Nrf2 shows a protective effect in hypoxia-induced CECs after AMI. Plasmalemma vesicle-associated protein (PLVAP) plays a pivotal role in angiogenesis after AMI. AIM To explore the protective effect of ACEIs and the involved mechanisms under hypoxia challenge. METHODS Human coronary endothelial cells (HCAECs) were used to establish hypoxia-induced oxidative stress injury in vitro. Flow cytometry was used to evaluate the protective effect of ACEI on hypoxia conditions.ET-1, NO, ROS, and VEGF were detected by ELISA. HO-1, Nrf2, and Keap-1, the pivotal member in the Nrf2 signaling pathway, eNOS and PLVAP were detected in HEAECs treated with ACEI by immunofluorescence, qPCR, and western blotting. RESULTS The hypoxia ACEI or Nrf2 agonist groups showed higher cell viability compared with the hypoxia control group at 24 (61.75±1.16 or 61.23±0.59 vs. 44.24±0.58, both P < 0.05) and 48 h (41.85±1.19 or 59.64±1.13 vs. 22.98±0.25, both P < 0.05). ACEI decreased the levels of ET-1 and ROS under hypoxia challenge at 24 and 48 h (all P < 0.05); ACEI increased the VEGF and NO levels (all P < 0.05). ACEI promoted the expression level of eNOS, HO-1, Nrf2 and PLVAP but inhibited Keap-1 expression at the mRNA and protein levels (all P < 0.05). Blockade of the Nrf2 signaling pathway significantly decreased the expression level of PLVAP. CONCLUSION ACEI protects hypoxia-treated HEAECs by activating the Nrf2 signaling pathway and upregulating the expression of PLVAP.
Collapse
Affiliation(s)
- Qiubing Zhang
- Tianjin Medical University, Tianjin, China
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Fang Gou
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Ping Shi
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Zhe Xu
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Zhitao Yan
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Mingfang He
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Xiaohong Yin
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Yuanjun He
- Department of Cardiology, Guang Yuan Central Hospital, Guang Yuan, China
| | - Jun Zhang
- Department of Cardiology, Cangzhou Central Hospital, Tianjin Medical University, Cangzhou, China
| |
Collapse
|
7
|
Shin MA, Oh S, Kim MC, Sim DS, Hong YJ, Kim JH, Ahn Y, Jeong MH. Time to presentation and mortality outcomes among patients with diabetes and acute myocardial infarction. Korean J Intern Med 2024; 39:110-122. [PMID: 38086620 PMCID: PMC10790041 DOI: 10.3904/kjim.2023.307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/04/2023] [Accepted: 09/25/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND/AIMS Due to limited real-world evidence on the association between time to presentation (T2P) and outcomes following acute myocardial infarction and diabetes (AMI-DM), we investigated the characteristics of patients with AMI-DM and their outcomes based on their T2P. METHODS 4,455 patients with AMI-DM from a Korean nationwide observational cohort (2011-2015) were divided into early and late presenters according to symptom-to-door time. The effects of T2P on three-year all-cause mortality were estimated using inverse probability of treatment weighting (IPTW) and survival analysis. RESULTS The incidence of all-cause mortality was consistently higher in late presenters than in early presenters (11.4 vs. 17.2%; p < 0.001). In the IPTW-adjusted dataset, the incidence of all-cause mortality was numerically higher in late presenters than in early presenters (9.1 vs. 12.4%; p = 0.072). In the survival analysis, the cumulative incidence of all-cause mortality was significantly higher in late presenters than in early presenters before and after IPTW. In the subgroup with ST-elevation myocardial infarction, late presenters had a higher incidence of cardiac death than early presenters before (4.8 vs. 10.5%; p < 0.001) and after IPTW (4.2 vs. 9.7%; p = 0.034). In the initial glycated hemoglobin (HbA1c)-stratified analysis, these effects were attenuated in patients with HbA1c ≥ 9.0% before (adjusted hazard ratio [HR]: 1.45, 95% confidence interval [CI]: 0.80-2.64) and after IPTW (adjusted HR: 0.82, 95% CI: 0.40-1.67). CONCLUSION Late presentation was associated with higher mortality in patients with AMI-DM; therefore, multifaceted and systematic interventions are needed to decrease pre-hospital delays.
Collapse
Affiliation(s)
- Min-A Shin
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
| | - Seok Oh
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
| | - Min Chul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju,
Korea
| | - Doo Sun Sim
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju,
Korea
| | - Young Joon Hong
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju,
Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju,
Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju,
Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Hospital, Gwangju,
Korea
- The Cardiovascular Convergence Research Center Nominated by Korea Ministry for Health and Welfare, Gwangju,
Korea
- Department of Cardiology, Chonnam National University Medical School, Gwangju,
Korea
| |
Collapse
|
8
|
Li J, Wang H, Chen L, Zhong J, Wang J, Xiao J. Ischemia-reperfusion injury in human AC16 cardiomyocytes is modulated by AXIN1 depending on c-Myc regulation. Ann Med Surg (Lond) 2023; 85:4844-4850. [PMID: 37811065 PMCID: PMC10553099 DOI: 10.1097/ms9.0000000000001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/29/2023] [Indexed: 10/10/2023] Open
Abstract
Objective A major consequence of acute myocardial infarction is myocardial ischemia-reperfusion (I/R) injury. Collecting proof demonstrates that AXIN1 assume a basic part in different disease; however, the role of AXIN1 in I/R injury remains to a great extent obscure. Methods The I/R injury model on AC16 cells was constructed. siRNA transfection was used to knockdown AXIN1. The qRT-PCR assays and western blot assays were used to detect the expression level of AXIN1 and other key proteins. CCK-8 assays and cell apoptosis assays were used to detect cell proliferation and cell apoptosis. Results AXIN1 was significantly overexpressed in an in vitro model of I/R injury. Knockdown of AXIN1 significantly restored the cell proliferation inhibition caused by IR injury, while inhibiting apoptosis and inflammation. Further mechanistic studies revealed that the transcription factor c-Myc could regulate the expression of AXIN1. The effects of I/R injury on AC16 cells after overexpression of c-Myc were reversed by knockdown of AXIN1. Meanwhile, AXIN1 could regulate the SIRT1/p53/Nrf 2 pathway. Conclusion Our results show an important role for AXIN1 and provide new targets for avoiding and treating I/R injury.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing University Center Hospital, Chongqing, People’s Republic of China
| |
Collapse
|
9
|
Qin H, Zhou J. Myocardial Protection by Desflurane: From Basic Mechanisms to Clinical Applications. J Cardiovasc Pharmacol 2023; 82:169-179. [PMID: 37405905 DOI: 10.1097/fjc.0000000000001448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/15/2023] [Indexed: 07/07/2023]
Abstract
ABSTRACT Coronary heart disease is an affliction that is common and has an adverse effect on patients' quality of life and survival while also raising the risk of intraoperative anesthesia. Mitochondria are the organelles most closely associated with the pathogenesis, development, and prognosis of coronary heart disease. Ion abnormalities, an acidic environment, the production of reactive oxygen species, and other changes during abnormal myocardial metabolism cause the opening of mitochondrial permeability transition pores, which disrupts electron transport, impairs mitochondrial function, and even causes cell death. Differences in reliability and cost-effectiveness between desflurane and other volatile anesthetics are minor, but desflurane has shown better myocardial protective benefits in the surgical management of patients with coronary artery disease. The results of myocardial protection by desflurane are briefly summarized in this review, and biological functions of the mitochondrial permeability transition pore, mitochondrial electron transport chain, reactive oxygen species, adenosine triphosphate-dependent potassium channels, G protein-coupled receptors, and protein kinase C are discussed in relation to the protective mechanism of desflurane. This article also discusses the effects of desflurane on patient hemodynamics, myocardial function, and postoperative parameters during coronary artery bypass grafting. Although there are limited and insufficient clinical investigations, they do highlight the possible advantages of desflurane and offer additional suggestions for patients.
Collapse
Affiliation(s)
- Han Qin
- Department of Anesthesiology, Shengjing Hospital, China Medical University, Shenyang, China
| | | |
Collapse
|
10
|
Zeng M, Wei X, He YL, Chen JX, Lin WT. TFAP2C inhibits cell autophagy to alleviate myocardial ischemia/reperfusion injury by regulating miR-23a-5p/SFRP5/Wnt5a axis. FASEB J 2023; 37:e22959. [PMID: 37191968 DOI: 10.1096/fj.202201962r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury contributes to severe injury for cardiomyocytes. In this study, we aimed to explore the underlying mechanism of TFAP2C on cell autophagy in MI/R injury. MTT assay measured cell viability. The cells injury was evaluated by commercial kits. IF detected the level of LC3B. Dual luciferase reporter gene assay, ChIP or RIP assay were performed to verify the interactions between crucial molecules. We found that TFAP2C and SFRP5 expression were decreased while miR-23a-5p and Wnt5a increased in AC16 cells in response to H/R condition. H/R induction led to cell injury and induced autophagy, which were reversed by TFAP2C overexpression or 3-MA treatment (an autophagy inhibitor). Mechanistically, TFAP2C suppressed miR-23a expression through binding to miR-23a promoter, and SFRP5 was a target gene of miR-23a-5p. Moreover, miR-23a-5p overexpression or rapamycin reversed the protective impacts of TFAP2C overexpression on cells injury and autophagy upon H/R condition. In conclusion, TFAP2C inhibited autophagy to improve H/R-induced cells injury by mediating miR-23a-5p/SFRP5/Wnt5a axis.
Collapse
Affiliation(s)
- Min Zeng
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Yang-Li He
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Ji-Xiong Chen
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| | - Wen-Ting Lin
- Medical Center, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan Province, People's Republic of China
| |
Collapse
|
11
|
Kim YH, Her AY, Rha SW, Choi CU, Choi BG, Kim JB, Park S, Kang DO, Park JY, Park SH, Jeong MH. Effect of delayed hospitalization on 3-year clinical outcomes according to renal function in patients with non-ST-segment elevation myocardial infarction. Cardiol J 2023; 31:271-284. [PMID: 37246457 PMCID: PMC11076037 DOI: 10.5603/cj.a2023.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND We evaluated the effect of delayed hospitalization (symptom-to-door time [STD] ≥ 24 h) on 3-year clinical outcomes according to renal function in patients with non-ST-segment elevation myocardial infarction (NSTEMI) undergoing new-generation drug-eluting stent (DES) implantation. METHODS A total of 4513 patients with NSTEMI were classified into chronic kidney disease (CKD) (estimated glomerular filtration rate [eGFR] < 60 mL/min/1.73 m², n = 1118) and non-CKD (eGFR ≥ 60 mL/min/1.73 m², n = 3395) groups. They were further sub-classified into groups with (STD ≥ 24 h) and without (STD < 24 h) delayed hospitalization. The primary outcome was the occurrence of major adverse cardiac and cerebrovascular events (MACCE), defined as all-cause death, recurrent myocardial infarction, any repeat coronary revascularization, and stroke. The secondary outcome was stent thrombosis (ST). RESULTS After multivariable-adjusted and propensity score analyses, the primary and secondary clinical outcomes were similar in patients with or without delayed hospitalization in both CKD and non-CKD groups. However, in both the STD < 24 h and STD ≥ 24 h groups, MACCE (p < 0.001 and p < 0.006, respectively) and mortality rates were significantly higher in the CKD group than in the non-CKD group. However, ST rates were similar between the CKD and non-CKD groups and between the STD < 24 h and STD ≥ 24 h groups. CONCLUSIONS Chronic kidney disease appears to be a much more important determinant of MACCE and mortality rates than STD in patients with NSTEMI.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Division of Cardiology, Department of Internal Medicine, Kangwon National University College of Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Ae-Young Her
- Division of Cardiology, Department of Internal Medicine, Kangwon National University College of Medicine, Kangwon National University School of Medicine, Chuncheon, Republic of Korea
| | - Seung-Woon Rha
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Cheol Ung Choi
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Byoung-Geol Choi
- Cardiovascular Research Institute, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Bak Kim
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Soohyung Park
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Dong Oh Kang
- Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Ji Young Park
- Division of Cardiology, Department of Internal Medicine, Cardiovascular Center, Nowon Eulji Medical Center, Eulji University, Seoul, Republic of Korea
| | - Sang-Ho Park
- Cardiology Department, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Cardiovascular Center, Chonnam National University Hospital, Gwangju, Republic of Korea
| |
Collapse
|
12
|
Hu C, Liao J, Huang R, Su Q, He L. MicroRNA-155-5p in serum derived-exosomes promotes ischaemia-reperfusion injury by reducing CypD ubiquitination by NEDD4. ESC Heart Fail 2023; 10:1144-1157. [PMID: 36631006 PMCID: PMC10053265 DOI: 10.1002/ehf2.14279] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/18/2022] [Accepted: 12/15/2022] [Indexed: 01/13/2023] Open
Abstract
AIMS Recovery of blood flow is a therapeutic approach for myocardial infarction but paradoxically induces injury to the myocardium. Exosomes (exos) are pivotal mediators for intercellular communication that can be released by different cells and are involved in cardiovascular diseases. This study aimed to explore the possible effects and mechanisms of miR-155-5p loaded by serum-derived exos in myocardial infarction reperfusion injury (MIRI). METHODS AND RESULTS Exos were isolated from mouse serum after induction of ischaemia reperfusion (I/R) and injected into I/R-treated mice to assess cardiac function, infarction size, and cardiomyocyte apoptosis. Primary cardiomyocytes were transfected with miR-155-5p inhibitor before treatment with oxygen-glucose deprivation and re-oxygenation (OGD/R) and exos derived from the serum of I/R-treated mice (I/R-Exos), in which Bcl-2, Bax, and cleaved-caspase-3 levels were detected. The interactions among miR-155-5p, NEDD4, and CypD were evaluated. miR-155-5p level was evidently increased in I/R-Exos than in exos from the serum of sham-operated mice (P < 0.05). In comparison with the I/R group, the I/R-Exos + I/R group had increased infarct size, elevated miR-155-5p expression, and boosted apoptotic rate in mouse myocardium (P < 0.05). In mice treated with I/R-Exos and I/R, miR-155-5p inhibition reduced cardiac infarct size and apoptosis (P < 0.05). NEDD4 was a target gene of miR-155-5p and promoted CypD ubiquitination. Cardiomyocyte apoptosis was markedly increased in the miR-155-5p inhibitor + shNEDD4 + OGD/R group versus the miR-155-5p inhibitor + OGD/R group (P < 0.05), but decreased in the miR-155-5p inhibitor + shNEDD4 + shCypD + OGD/R group than in the miR-155-5p inhibitor + shNEDD4 + OGD/R group (P < 0.05). CONCLUSIONS miR-155-5p in I/R-Exos may facilitate MIRI by inhibiting CypD ubiquitination via targeting NEDD4.
Collapse
Affiliation(s)
- Chenkai Hu
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junyu Liao
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Ruiyan Huang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, China.,Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, China
| | - Lei He
- Department of Cardiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Jiang W, Yin Y, Gu X, Zhang Z, Ma H. Opportunities and challenges of pain-related myocardial ischemia-reperfusion injury. Front Physiol 2022; 13:900664. [PMID: 36117689 PMCID: PMC9481353 DOI: 10.3389/fphys.2022.900664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Pain is one of the most serious problems plaguing human health today. Pain is not an independent pathophysiological condition and is associated with a high impact on elevated disability and organ dysfunction. Several lines of evidence suggested the associations of pain with cardiovascular diseases, especially myocardial ischemia-reperfusion (I/R) injury, while the role of pain in I/R injury and related mechanisms are not yet comprehensively assessed. In this review, we attempted to explore the role of pain in myocardial I/R injury, and we concluded that acute pain protects myocardial ischemia-reperfusion injury and chronic pain aggravates cardiac ischemia-reperfusion injury. In addition, the construction of different pain models and animal models commonly used to study the role of pain in myocardial I/R injury were discussed in detail, and the potential mechanism of pain-related myocardial I/R injury was summarized. Finally, the future research direction was prospected. That is, the remote regulation of pain to cardiac function requires peripheral pain signals to be transmitted from the peripheral to the cardiac autonomic nervous system, which then affects autonomic innervation during cardiac ischemia-reperfusion injury and finally affects the cardiac function.
Collapse
Affiliation(s)
- Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Zihui Zhang, ; Heng Ma,
| | - Heng Ma
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
- Department of Physiology and Pathophysiology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Zihui Zhang, ; Heng Ma,
| |
Collapse
|
14
|
Comparison of Clinical Outcomes after Non-ST-Segment and ST-Segment Elevation Myocardial Infarction in Diabetic and Nondiabetic Populations. J Clin Med 2022; 11:jcm11175079. [PMID: 36079008 PMCID: PMC9456669 DOI: 10.3390/jcm11175079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
Using a new-generation drug-eluting stent, we compared the 2-year clinical outcomes of patients with diabetes mellitus (DM) and non-DM concomitant with a non-ST-segment elevation myocardial infarction (NSTEMI) and an ST-segment elevation myocardial infarction (STEMI) who underwent percutaneous coronary intervention. A total of 11,798 patients with acute myocardial infarction were classified into two groups: DM (NSTEMI, n = 2399; STEMI, n = 2693) and non-DM (NSTEMI, n = 2694; STEMI, n = 4012). The primary clinical outcome was the occurrence of major adverse cardiac events (MACE), defined as all-cause death, recurrent myocardial infarction, or any coronary repeat revascularization. The secondary outcome was the occurrence of definite or probable stent thrombosis. In all the patients, both multivariable and propensity score-adjusted analyses revealed that the incidence rates of MACE (adjusted hazard ratio (aHR), 1.214; p = 0.006 and aHR, 1.298; p = 0.002, respectively), all-cause death, cardiac death (CD), and non-CD rate were significantly higher in the NSTEMI group than in the STEMI group. Additionally, among patients with NSTEMI, there was a higher non-CD rate (aHR, 2.200; p = 0.007 and aHR, 2.484; p = 0.004, respectively) in the DM group and a higher CD rate (aHR, 2.688; p < 0.001 and 2.882; p < 0.001, respectively) in the non-DM group. In this retrospective study, patients with NSTEMI had a significantly higher 2-year mortality rate than those with STEMI did. Furthermore, strategies to reduce the non-CD rate in patients with DM and the CD rate in patients without DM could be beneficial for those with NSTEMI.
Collapse
|
15
|
Li Y, Gao Y, Li G. Preclinical multi-target strategies for myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:967115. [PMID: 36072870 PMCID: PMC9444048 DOI: 10.3389/fcvm.2022.967115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite promising breakthroughs in diagnosing and treating acute coronary syndromes, cardiovascular disease’s high global mortality rate remains indisputable. Nearly half of these patients died of ischemic heart disease. Primary percutaneous coronary intervention (PCI) and coronary artery bypass grafting can rapidly restore interrupted blood flow and become the most effective method for salvaging viable myocardium. However, restoring blood flow could increase the risk of other complications and myocardial cell death attributed to myocardial ischemia-reperfusion injury (IRI). How to reduce the damage of blood reperfusion to ischemic myocardium has become an urgent problem to be solved. In preclinical experiments, many treatments have substantial cardioprotective effects against myocardial IRI. However, the transition from these cardioprotective therapies to clinically beneficial therapies for patients with acute myocardial infarction remains elusive. The reasons for the failure of the clinical translation may be multi-faceted, and three points are summarized here: (1) Our understanding of the complex pathophysiological mechanisms of myocardial IRI is far from enough, and the classification of specific therapeutic targets is not rigorous, and not clear enough; (2) Most of the clinical patients have comorbidities, and single cardioprotective strategies including ischemia regulation strategies cannot exert their due cardioprotective effects under conditions of hyperglycemia, hypertension, hyperlipidemia, and aging; (3) Most preclinical experimental results are based on adult, healthy animal models. However, most clinical patients had comorbidities and received multiple drug treatments before reperfusion therapy. In 2019, COST Action proposed a multi-target drug combination initiative for prospective myocardial IRI; the optimal cardioprotective strategy may be a combination of additive or synergistic multi-target therapy, which we support. By establishing more reasonable preclinical models, screening multi-target drug combinations more in line with clinical practice will benefit the translation of clinical treatment strategies.
Collapse
|
16
|
Bell RM, Basalay M, Bøtker HE, Beikoghli Kalkhoran S, Carr RD, Cunningham J, Davidson SM, England TJ, Giesz S, Ghosh AK, Golforoush P, Gourine AV, Hausenloy DJ, Heusch G, Ibanez B, Kleinbongard P, Lecour S, Lukhna K, Ntsekhe M, Ovize M, Salama AD, Vilahur G, Walker JM, Yellon DM. Remote ischaemic conditioning: defining critical criteria for success-report from the 11th Hatter Cardiovascular Workshop. Basic Res Cardiol 2022; 117:39. [PMID: 35970954 PMCID: PMC9377667 DOI: 10.1007/s00395-022-00947-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 01/31/2023]
Abstract
The Hatter Cardiovascular Institute biennial workshop, originally scheduled for April 2020 but postponed for 2 years due to the Covid pandemic, was organised to debate and discuss the future of Remote Ischaemic Conditioning (RIC). This evolved from the large multicentre CONDI-2-ERIC-PPCI outcome study which demonstrated no additional benefit when using RIC in the setting of ST-elevation myocardial infarction (STEMI). The workshop discussed how conditioning has led to a significant and fundamental understanding of the mechanisms preventing cell death following ischaemia and reperfusion, and the key target cyto-protective pathways recruited by protective interventions, such as RIC. However, the obvious need to translate this protection to the clinical setting has not materialised largely due to the disconnect between preclinical and clinical studies. Discussion points included how to adapt preclinical animal studies to mirror the patient presenting with an acute myocardial infarction, as well as how to refine patient selection in clinical studies to account for co-morbidities and ongoing therapy. These latter scenarios can modify cytoprotective signalling and need to be taken into account to allow for a more robust outcome when powered appropriately. The workshop also discussed the potential for RIC in other disease settings including ischaemic stroke, cardio-oncology and COVID-19. The workshop, therefore, put forward specific classifications which could help identify so-called responders vs. non-responders in both the preclinical and clinical settings.
Collapse
Affiliation(s)
- R M Bell
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - M Basalay
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - H E Bøtker
- Aarhus University Hospital and Aarhus University, Aarhus, Denmark
| | - S Beikoghli Kalkhoran
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - R D Carr
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | | | - S M Davidson
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - T J England
- Stroke, Division of Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - S Giesz
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A K Ghosh
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - P Golforoush
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - D J Hausenloy
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
- CVMD, Duke-NUS, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung City, Taiwan
| | - G Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - B Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital & CIBERCV, Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- IIS-Fundación Jiménez Díaz Hospital, Madrid, Spain
| | - P Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Duisburg, Germany
| | - S Lecour
- University of Cape Town, Cape Town, South Africa
| | - K Lukhna
- University of Cape Town, Cape Town, South Africa
| | - M Ntsekhe
- University of Cape Town, Cape Town, South Africa
| | - M Ovize
- INSERM U1060, CarMeN Laboratory, Université de Lyon, Groupement Hospitalier Est, Bâtiment B13, F-69500, Bron, France
| | | | - G Vilahur
- Institut de Recerca de l'Hospital de la Santa Creu i Sant Pau, CIBERCV, Barcelona, Spain
| | - J M Walker
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK
| | - D M Yellon
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
17
|
Design, synthesis, and in vitro protective effect evaluation of α-carboline derivatives against H2O2-induced cardiomyocyte injury. Eur J Med Chem 2022; 238:114469. [DOI: 10.1016/j.ejmech.2022.114469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/06/2022] [Accepted: 05/15/2022] [Indexed: 12/23/2022]
|
18
|
Du J, Li H, Song J, Wang T, Dong Y, Zhan A, Li Y, Liang G. AMPK Activation Alleviates Myocardial Ischemia-Reperfusion Injury by Regulating Drp1-Mediated Mitochondrial Dynamics. Front Pharmacol 2022; 13:862204. [PMID: 35860026 PMCID: PMC9289369 DOI: 10.3389/fphar.2022.862204] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/08/2022] [Indexed: 11/23/2022] Open
Abstract
Mitochondrial dysfunction is a salient feature of myocardial ischemia/reperfusion injury (MIRI), while the potential mechanism of mitochondrial dynamics disorder remains unclear. This study sought to explore whether activation of Adenosine monophosphate-activated protein kinase (AMPK) could alleviate MIRI by regulating GTPase dynamin-related protein 1 (Drp1)-mediated mitochondrial dynamics. Isolated mouse hearts in a Langendorff perfusion system were subjected to ischemia/reperfusion (I/R) treatment, and H9C2 cells were subjected to hypoxia /reoxygenation (H/R) treatment in vitro. The results showed that AICAR, the AMPK activator, could significantly improve the function of left ventricular, decrease arrhythmia incidence and myocardial infarction area of isolated hearts. Meanwhile, AICAR increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) content in myocardial homogenate. Mechanistically, AICAR inhibited the phosphorylation of Drp1 at Ser 616 while enhanced phosphorylation of Drp1 at Ser 637. In addition, AICAR reduced the expression of inflammatory cytokines including TNF-ɑ, IL-6, and IL-1β, as well as mitochondrial fission genes Mff and Fis1, while improved the expression of mitochondrial fusion genes Mfn1 and Mfn2. Similar results were also observed in H9C2 cells. AICAR improved mitochondrial membrane potential (MMP), reduced reactive oxygen species (ROS) production, and inhibited mitochondrial damage. To further prove if Drp1 regulated mitochondrial dynamics mediated AMPK protection effect, the mitochondrial fission inhibitor Mdivi-1 was utilized. We found that Mdivi-1 significantly improved MMP, inhibited ROS production, reduced the expression of TNF-a, IL-6, IL-1β, Fis1, and Mff, and improved the expression of Mfn1 and Mfn2. However, the protection effect of Mdivi-1 was not reversed by AMPK inhibitor Compound C. In conclusion, this study confirmed that activation of AMPK exerted the protective effects on MIRI, which were largely dependent on the inhibition of Drp1-mediated mitochondrial fission.
Collapse
Affiliation(s)
- Jingxia Du
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Hongchao Li
- Pathology Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Jingjing Song
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Tingting Wang
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yibo Dong
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - An Zhan
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yan Li
- Pharmacy Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Gaofeng Liang
- Pathology Department, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
19
|
Wang Z, Bian W, Yan Y, Zhang DM. Functional Regulation of KATP Channels and Mutant Insight Into Clinical Therapeutic Strategies in Cardiovascular Diseases. Front Pharmacol 2022; 13:868401. [PMID: 35837280 PMCID: PMC9274113 DOI: 10.3389/fphar.2022.868401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium channels (KATP channels) play pivotal roles in excitable cells and link cellular metabolism with membrane excitability. The action potential converts electricity into dynamics by ion channel-mediated ion exchange to generate systole, involved in every heartbeat. Activation of the KATP channel repolarizes the membrane potential and decreases early afterdepolarization (EAD)-mediated arrhythmias. KATP channels in cardiomyocytes have less function under physiological conditions but they open during severe and prolonged anoxia due to a reduced ATP/ADP ratio, lessening cellular excitability and thus preventing action potential generation and cell contraction. Small active molecules activate and enhance the opening of the KATP channel, which induces the repolarization of the membrane and decreases the occurrence of malignant arrhythmia. Accumulated evidence indicates that mutation of KATP channels deteriorates the regulatory roles in mutation-related diseases. However, patients with mutations in KATP channels still have no efficient treatment. Hence, in this study, we describe the role of KATP channels and subunits in angiocardiopathy, summarize the mutations of the KATP channels and the functional regulation of small active molecules in KATP channels, elucidate the potential mechanisms of mutant KATP channels and provide insight into clinical therapeutic strategies.
Collapse
Affiliation(s)
- Zhicheng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Weikang Bian
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yufeng Yan
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Dai-Min Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Cardiology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Dai-Min Zhang,
| |
Collapse
|
20
|
Chen C, Wan X, Shang J, Zhang W, Xie Z. A review on the effects of vitamin D attenuating ischemia reperfusion injuries. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Chaoran Chen
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, HN, China
| | - Xiao Wan
- Institute of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, HN, China
| | - Jia Shang
- Arts department, School of Kaifeng Culture and Tourism, Kaifeng, HN, China
| | - Wunong Zhang
- College of Educational Sciences, Henan University, Kaifeng, HN, China
| | - Zhenxing Xie
- School of Basic Medical Sciences, Henan University, Kaifeng, HN, China
| |
Collapse
|
21
|
Li X, Zhang Y, Ren X, Wang Y, Chen D, Li Q, Huo M, Shi J. Ischemic Microenvironment-Responsive Therapeutics for Cardiovascular Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105348. [PMID: 34623714 DOI: 10.1002/adma.202105348] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/18/2021] [Indexed: 02/05/2023]
Abstract
Cardiovascular diseases caused by ischemia are attracting considerable attention owing to its high morbidity and mortality worldwide. Although numerous agents with cardioprotective benefits have been identified, their clinical outcomes are hampered by their low bioavailability, poor drug solubility, and systemic adverse effects. Advances in nanoscience and nanotechnology provide a new opportunity to effectively deliver drugs for treating ischemia-related diseases. In particular, cardiac ischemia leads to a characteristic pathological environment called an ischemic microenvironment (IME), significantly different from typical cardiac regions. These remarkable differences between ischemic sites and normal tissues have inspired the development of stimuli-responsive systems for the targeted delivery of therapeutic drugs to damaged cardiomyocytes. Recently, many biomaterials with intelligent properties have been developed to enhance the therapeutic benefits of drugs for the treatment of myocardial ischemia. Strategies for stimuli-responsive drug delivery and release based on IME include reactive oxygen species, pH-, hypoxia-, matrix metalloproteinase-, and platelet-inspired targeting strategies. In this review, state-of-the-art IME-responsive biomaterials for the treatment of myocardial ischemia are summarized. Perspectives, limitations, and challenges are also discussed for the further development of innovative and effective approaches to treat ischemic diseases with high effectiveness and biocompatibility.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yan Wang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dongxu Chen
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Minfeng Huo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, P. R. China
| |
Collapse
|
22
|
Lecour S, Andreadou I, Bøtker HE, Davidson SM, Heusch G, Ruiz-Meana M, Schulz R, Zuurbier CJ, Ferdinandy P, Hausenloy DJ. IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) criteria: guidelines of the EU-CARDIOPROTECTION COST Action. Basic Res Cardiol 2021; 116:52. [PMID: 34515837 PMCID: PMC8437922 DOI: 10.1007/s00395-021-00893-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
Acute myocardial infarction (AMI) and the heart failure (HF) which may follow are among the leading causes of death and disability worldwide. As such, new therapeutic interventions are still needed to protect the heart against acute ischemia/reperfusion injury to reduce myocardial infarct size and prevent the onset of HF in patients presenting with AMI. However, the clinical translation of cardioprotective interventions that have proven to be beneficial in preclinical animal studies, has been challenging. One likely major reason for this failure to translate cardioprotection into patient benefit is the lack of rigorous and systematic in vivo preclinical assessment of the efficacy of promising cardioprotective interventions prior to their clinical evaluation. To address this, we propose an in vivo set of step-by-step criteria for IMproving Preclinical Assessment of Cardioprotective Therapies ('IMPACT'), for investigators to consider adopting before embarking on clinical studies, the aim of which is to improve the likelihood of translating novel cardioprotective interventions into the clinical setting for patient benefit.
Collapse
Affiliation(s)
- Sandrine Lecour
- Department of Medicine, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus N, Denmark
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, University College London, London, UK
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Rainer Schulz
- Institute for Physiology, Justus-Liebig University Giessen, Giessen, Germany
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care Anesthesiology, Department Anesthesiology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore, 169857, Singapore.
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore.
- Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.
- Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan.
| |
Collapse
|
23
|
Zhao W, Zhang X, Rong J. SUMOylation as a Therapeutic Target for Myocardial Infarction. Front Cardiovasc Med 2021; 8:701583. [PMID: 34395563 PMCID: PMC8355363 DOI: 10.3389/fcvm.2021.701583] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/01/2021] [Indexed: 12/23/2022] Open
Abstract
Myocardial infarction is a prevalent and life-threatening cardiovascular disease. The main goal of existing interventional therapies is to restore coronary reperfusion while few are designed to ameliorate the pathology of heart diseases via targeting the post-translational modifications of those critical proteins. Small ubiquitin-like modifier (SUMO) proteins are recently discovered to form a new type of protein post-translational modifications (PTM), known as SUMOylation. SUMOylation and deSUMOylation are dynamically balanced in the maintenance of various biological processes including cell division, DNA repair, epigenetic transcriptional regulation, and cellular metabolism. Importantly, SUMOylation plays a critical role in the regulation of cardiac functions and the pathology of cardiovascular diseases, especially in heart failure and myocardial infarction. This review summarizes the current understanding on the effects of SUMOylation and SUMOylated proteins in the pathophysiology of myocardial infarction and identifies the potential treatments against myocardial injury via targeting SUMO. Ultimately, this review recommends SUMOylation as a key therapeutic target for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Wei Zhao
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiuying Zhang
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China
| | - Jianhui Rong
- Li Ka Shing Faculty of Medicine, School of Chinese Medicine, University of Hong Kong, Hong Kong, China.,Shenzhen Institute of Research and Innovation, The University of Hong Kong, Shenzhen, China
| |
Collapse
|
24
|
Impact of preprocedural coronary flow grade on duration of dual antiplatelet therapy in acute myocardial infarction. Sci Rep 2021; 11:11735. [PMID: 34083627 PMCID: PMC8175426 DOI: 10.1038/s41598-021-91130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 11/09/2022] Open
Abstract
We investigated the impact of pre-percutaneous coronary intervention (pre-PCI) thrombolysis in myocardial infarction (TIMI) flow grade (pre-TIMI) on 3-month (3-mo) and 12-mo of dual antiplatelet therapy (DAPT) in patients with acute myocardial infarction (AMI). This was a post hoc analysis of the TICO trial. A total of 2083 patients with AMI (pre-TIMI 0/1: n = 1143; pre-TIMI 2/3: n = 940) were evaluated. The primary outcome was the occurrence of net adverse clinical events (NACE), defined as a composite of TIMI major bleeding and major adverse cardiac and cerebrovascular events (MACCE) within 12-mo following PCI. The secondary outcomes were the occurrence of the individual components of TIMI bleedings and MACCE. In the pre-TIMI 0/1 group, the primary and second outcomes were not significantly different between the 3-mo and 12-mo DAPT groups. However, in the pre-TIMI 2/3 group, the occurrences of TIMI minor (adjusted hazard ratio [aHR]: 0.294; p = 0.016) and major or minor bleeding (aHR: 0.483; p = 0.014) on intention-to-treat analysis were significantly higher in the 12-mo than in the 3-mo DAPT group. The occurrence of MACCE was similar between the two groups. A higher bleeding tendency in 12-mo DAPT compared with 3-mo DAPT was more obvious in the pre-TIMI 2/3 group than in the pre-TIMI 0/1 group.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique identifier: NCT02494895.
Collapse
|
25
|
Hsu WT, Tseng YH, Jui HY, Kuo CC, Wu KK, Lee CM. 5-Methoxytryptophan attenuates postinfarct cardiac injury by controlling oxidative stress and immune activation. J Mol Cell Cardiol 2021; 158:101-114. [PMID: 34087195 DOI: 10.1016/j.yjmcc.2021.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/20/2023]
Abstract
AIMS Myocardial infarction (MI) remains a major cause of heart failure. 5-Methoxytryptophan (5-MTP), a 5-methoxyindole metabolite of L-tryptophan, exerts anti-inflammatory and antifibrotic effects, but MI impairs the biosynthesis of cardiac 5-MTP. Therefore, we evaluated the effect of exogenous 5-MTP administration on rescuing post-MI cardiac injury. METHODS AND RESULTS After a detailed pharmacokinetic analysis of 5-MTP, Sprague Dawley rats that had undergone left anterior descending coronary artery ligation received intraperitoneal administration of either 17 mg/kg 5-MTP or saline at 0.5 and 24 h after MI. Cardiac systolic function, infarction size, and fibrosis were evaluated using echocardiography, triphenyltetrazolium chloride staining, and Masson trichrome staining, respectively. Myocardial apoptosis was analyzed by staining for caspase-3 and cardiac troponin I. 5-MTP treatment decreased the infarct area and myocardial apoptosis; attenuated systolic dysfunction and left ventricular dilatation; and reduced cardiomyocyte hypertrophy, myocardial fibrosis, and infarct expansion. Crucially, 5-MTP alleviated oxidative stress by preserving mitochondrial antioxidant enzymes and downregulating reactive oxygen species-generating NADPH oxidase isoforms and endothelin-1. Consequently, 5-MTP-treated MI rat hearts exhibited lower levels of chemokines and cytokines, namely interleukin (IL)-1β, IL-18, IL-6, C-C motif chemokine ligand (CCL)-2, and CCL5, accompanied by reduced infiltration of CD11b+ cells and CD4+ T cells. Notably, 5-MTP protected against H2O2-induced damage in HL-1 cardiomyocytes and human umbilical vein endothelial cells in vitro. CONCLUSION 5-MTP prevented post-MI cardiac injury by promoting mitochondrial stabilization and controlling redox imbalance. This cytoprotective effect ameliorated macrophage and T-cell infiltration, thus reducing the infarct size, attenuating fibrosis, and restoring myocardial function.
Collapse
Affiliation(s)
- Wan-Tseng Hsu
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsuan Tseng
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiang-Yiang Jui
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chen-Chin Kuo
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan
| | - Kenneth K Wu
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan; College of Life Sciences, National Tsing Hua University, Hsin-Chu, Taiwan
| | - Chii-Ming Lee
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan.
| |
Collapse
|
26
|
Therapies Targeted at Non-Coding RNAs in Prevention and Limitation of Myocardial Infarction and Subsequent Cardiac Remodeling-Current Experience and Perspectives. Int J Mol Sci 2021; 22:ijms22115718. [PMID: 34071976 PMCID: PMC8198996 DOI: 10.3390/ijms22115718] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.
Collapse
|
27
|
Tian F, Zhang Y. Overexpression of SERCA2a Alleviates Cardiac Microvascular Ischemic Injury by Suppressing Mfn2-Mediated ER/Mitochondrial Calcium Tethering. Front Cell Dev Biol 2021; 9:636553. [PMID: 33869181 PMCID: PMC8047138 DOI: 10.3389/fcell.2021.636553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/11/2022] Open
Abstract
Our previous research has shown that type-2a Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2a) undergoes posttranscriptional oxidative modifications in cardiac microvascular endothelial cells (CMECs) in the context of excessive cardiac oxidative injury. However, whether SERCA2a inactivity induces cytosolic Ca2+ imbalance in mitochondrial homeostasis is far from clear. Mitofusin2 (Mfn2) is well known as an important protein involved in endoplasmic reticulum (ER)/mitochondrial Ca2+ tethering and the regulation of mitochondrial quality. Therefore, the aim of our study was to elucidate the specific mechanism of SERCA2a-mediated Ca2+ overload in the mitochondria via Mfn2 tethering and the survival rate of the heart under conditions of cardiac microvascular ischemic injury. In vitro, CMECs extracted from mice were subjected to 6 h of hypoxic injury to mimic ischemic heart injury. C57-WT and Mfn2KO mice were subjected to a 1 h ischemia procedure via ligation of the left anterior descending branch to establish an in vivo cardiac ischemic injury model. TTC staining, immunohistochemistry and echocardiography were used to assess the myocardial infarct size, microvascular damage, and heart function. In vitro, ischemic injury induced irreversible oxidative modification of SERCA2a, including sulfonylation at cysteine 674 and nitration at tyrosine 294/295, and inactivation of SERCA2a, which initiated calcium overload. In addition, ischemic injury-triggered [Ca2+]c overload and subsequent [Ca2+]m overload led to mPTP opening and ΔΨm dissipation compared with the control. Furthermore, ablation of Mfn2 alleviated SERCA2a-induced mitochondrial calcium overload and subsequent mito-apoptosis in the context of CMEC hypoxic injury. In vivo, compared with that in wild-type mice, the myocardial infarct size in Mfn2KO mice was significantly decreased. In addition, the findings revealed that Mfn2KO mice had better heart contractile function, decreased myocardial infarction indicators, and improved mitochondrial morphology. Taken together, the results of our study suggested that SERCA2a-dependent [Ca2+]c overload led to mitochondrial dysfunction and activation of Mfn2-mediated [Ca2+]m overload. Overexpression of SERCA2a or ablation of Mfn2 expression mitigated mitochondrial morphological and functional damage by modifying the SERCA2a/Ca2+-Mfn2 pathway. Overall, these pathways are promising therapeutic targets for acute cardiac microvascular ischemic injury.
Collapse
Affiliation(s)
- Feng Tian
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ying Zhang
- Department of Cardiology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
28
|
Novel Insight into the Role of Endoplasmic Reticulum Stress in the Pathogenesis of Myocardial Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5529810. [PMID: 33854692 PMCID: PMC8019635 DOI: 10.1155/2021/5529810] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 02/28/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Impaired function of the endoplasmic reticulum (ER) is followed by evolutionarily conserved cell stress responses, which are employed by cells, including cardiomyocytes, to maintain and/or restore ER homeostasis. ER stress activates the unfolded protein response (UPR) to degrade and remove abnormal proteins from the ER lumen. Although the UPR is an intracellular defense mechanism to sustain cardiomyocyte viability and heart function, excessive activation initiates ER-dependent cardiomyocyte apoptosis. Myocardial ischemia/reperfusion (I/R) injury is a pathological process occurring during or after revascularization of ischemic myocardium. Several molecular mechanisms contribute to the pathogenesis of cardiac I/R injury. Due to the dual protective/degradative effects of ER stress on cardiomyocyte viability and function, it is of interest to understand the basic concepts, regulatory signals, and molecular processes involved in ER stress following myocardial I/R injury. In this review, therefore, we present recent findings related to the novel components of ER stress activation. The complex effects of ER stress and whether they mitigate or exacerbate myocardial I/R injury are summarized to serve as the basis for research into potential therapies for cardioprotection through control of ER homeostasis.
Collapse
|
29
|
Kim YH, Her AY, Jeong MH, Kim BK, Hong SJ, Kim S, Ahn CM, Kim JS, Ko YG, Choi D, Hong MK, Jang Y. Comparison of First- and Second-Generation Drug-Eluting Stents in Patients with ST-Segment Elevation Myocardial Infarction Based on Pre-Percutaneous Coronary Intervention Thrombolysis in Myocardial Infarction Flow Grade. J Clin Med 2021; 10:jcm10020367. [PMID: 33478003 PMCID: PMC7835978 DOI: 10.3390/jcm10020367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
This study aims to investigate the two-year clinical outcomes between first-generation (1G) and second-generation (2G) drug-eluting stents (DES) based on pre-percutaneous coronary intervention (PCI) thrombolysis in myocardial infarction (TIMI) flow grade (pre-TIMI) in patients with ST-segment elevation myocardial infarction (STEMI). Overall, 17,891 STEMI patients were classified into two groups: pre-TIMI 0/1 group (n = 12,862; 1G-DES (n = 4318), 2G-DES (n = 8544)) and pre-TIMI 2/3 group (n = 5029; 1G-DES (n = 2046), 2G-DES (n = 2983)). During a two-year follow-up period, major adverse cardiac events (MACEs) defined as all-cause death, recurrent myocardial infarction (re-MI), or any repeat revascularization and stent thrombosis (ST) were considered as the primary and the secondary outcomes. In the pre-TIMI 0/1 and 2/3 groups, the cumulative incidences of MACEs (adjusted hazard ratio (aHR): 1.348, p < 0.001, and aHR: 1.415, p = 0.02, respectively) and any repeat revascularization (aHR: 1.938, p < 0.001, and aHR: 1.674, p = 0.001, respectively) were significantly higher in the 1G-DES than in the 2G-DES. However, sirolimus-eluting stent showed similar cumulative incidence of any repeat revascularization compared with zotarolimus-eluting stent and biolimus-eluting stent in both pre-TIMI 0/1 and 2/3 groups. The cumulative incidences of all-cause death, re-MI, and ST were similar between the 1G-DES and 2G-DES groups. In this study, 2G-DES showed better clinical outcomes than 1G-DES concerning MACEs and any repeat revascularization regardless of pre-TIMI. However, more research is needed to support these results.
Collapse
Affiliation(s)
- Yong Hoon Kim
- Department of Internal Medicine, Division of Cardiology, Kangwon National University School of Medicine, 156 Baengnyeong Road, Chuncheon 24289, Korea;
- Correspondence: ; Tel.: +82-33-258-9168
| | - Ae-Young Her
- Department of Internal Medicine, Division of Cardiology, Kangwon National University School of Medicine, 156 Baengnyeong Road, Chuncheon 24289, Korea;
| | - Myung Ho Jeong
- Cardiovascular Center, Department of Cardiology, Chonnam National University Hospital, Gwangju 61469, Korea;
| | - Byeong-Keuk Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Sung-Jin Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Seunghwan Kim
- Division of Cardiology, Inje University College of Medicine, Haeundae Paik Hospital, Busan 48108, Korea;
| | - Chul-Min Ahn
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Jung-Sun Kim
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Young-Guk Ko
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Donghoon Choi
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Myeong-Ki Hong
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| | - Yangsoo Jang
- Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (B.-K.K.); (S.-J.H.); (C.-M.A.); (J.-S.K.); (Y.-G.K.); (D.C.); (M.-K.H.); (Y.J.)
| |
Collapse
|
30
|
Yu P, Li Y, Fu W, Li X, Liu Y, Wang Y, Yu X, Xu H, Sui D. Panax quinquefolius L. Saponins Protect Myocardial Ischemia Reperfusion No-Reflow Through Inhibiting the Activation of NLRP3 Inflammasome via TLR4/MyD88/NF-κB Signaling Pathway. Front Pharmacol 2021; 11:607813. [PMID: 33628178 PMCID: PMC7898550 DOI: 10.3389/fphar.2020.607813] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
At present, many patients who undergo reperfusion immediately after percutaneous coronary intervention will undergo microvascular obstruction and reduction in myocardial blood flow. This phenomenon is called "no-reflow (NR)," and there is still no effective therapy for NR. Studies showed Panax quinquefolius L. saponins (PQS) have effect on MI/R injury, while the effect and mechanism of PQS on MI/R induced NR are not clear. In this study, we established a MI/R model to investigate whether PQS decrease NR phenomenon via suppression of inflammation. We found that PQS significantly alleviated the symptoms of NR by reducing ischemia, infarction, and NR area; improving cardiac function; preventing pathological morphology changes of myocardium; depressing leukocytes' aggregation and adhesion; and suppressing the excessive inflammation. Further study demonstrated that PQS remarkably inhibited TLR4, MyD88, p-NF-κB, and NLRP3 inflammasome-associated protein, and these effects could be reversed by LPS. These results indicated that PQS may protect NR by inhibiting the activation of NLRP3 inflammasome via TLR4/MyD88/NF-κB signaling pathway in part, suggesting that PQS exist potential in preventing NR induced by MI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huali Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Dayun Sui
- Department of Pharmacology, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| |
Collapse
|
31
|
Yang H, Liu S, Du H, Hong Z, Lv Y, Nie C, Yang W, Gao Y. Hydrogen Attenuates Myocardial Injury in Rats by Regulating Oxidative Stress and NLRP3 Inflammasome Mediated Pyroptosis. Int J Med Sci 2021; 18:3318-3325. [PMID: 34400901 PMCID: PMC8364469 DOI: 10.7150/ijms.61329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/16/2021] [Indexed: 11/26/2022] Open
Abstract
Purpose: Hydrogen (H2) is an antioxidant with anti-inflammatory and apoptosis functions.This study aimed to estimate the effects of H2 on acute myocardial infarction (AMI) in rats and its association with the inhibition of oxidative stress and cardiomyocyte pyroptosis. Methods: Sixty-four rats were randomly divided into three groups (Sham, AMI, and H2). The left anterior descending coronary artery (LAD) of rats in the AMI and H2 groups was ligated, while rats in the Sham group were threaded without ligation. In addition, 2% H2 was administered by inhalation for 24 h after ligation in the H2 group. Transthoracic echocardiography was performed after H2 inhalation, followed by collection of the serum and cardiac tissue of all rats. Results: H2 inhalation ameliorated the cardiac dysfunction, infarct size and inflammatory cell infiltration caused by AMI. Meanwhile, H2 inhalation reduced the concentration of serum Troponin I (TnI), brain natriuretic peptide (BNP), reactive oxygen species (ROS), cardiac malondialdehyde (MDA), and 8-OHdG. In addition, H2 inhalation inhibited cardiac inflammation and pyroptosis relative proteins expression. Conclusion: H2 effectively promoted heart functions in AMI rats by regulating oxidative stress and pyroptosis.
Collapse
Affiliation(s)
- Hongxiao Yang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuang Liu
- Department of Cardiology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huijun Du
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zi Hong
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yajing Lv
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Chaoqun Nie
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wei Yang
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunan Gao
- Department of Cardiology, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
32
|
Golforoush P, Yellon DM, Davidson SM. Mouse models of atherosclerosis and their suitability for the study of myocardial infarction. Basic Res Cardiol 2020; 115:73. [PMID: 33258000 PMCID: PMC7704510 DOI: 10.1007/s00395-020-00829-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Atherosclerotic plaques impair vascular function and can lead to arterial obstruction and tissue ischaemia. Rupture of an atherosclerotic plaque within a coronary artery can result in an acute myocardial infarction, which is responsible for significant morbidity and mortality worldwide. Prompt reperfusion can salvage some of the ischaemic territory, but ischaemia and reperfusion (IR) still causes substantial injury and is, therefore, a therapeutic target for further infarct limitation. Numerous cardioprotective strategies have been identified that can limit IR injury in animal models, but none have yet been translated effectively to patients. This disconnect prompts an urgent re-examination of the experimental models used to study IR. Since coronary atherosclerosis is the most prevalent morbidity in this patient population, and impairs coronary vessel function, it is potentially a major confounder in cardioprotective studies. Surprisingly, most studies suggest that atherosclerosis does not have a major impact on cardioprotection in mouse models. However, a major limitation of atherosclerotic animal models is that the plaques usually manifest in the aorta and proximal great vessels, and rarely in the coronary vessels. In this review, we examine the commonly used mouse models of atherosclerosis and their effect on coronary artery function and infarct size. We conclude that none of the commonly used strains of mice are ideal for this purpose; however, more recently developed mouse models of atherosclerosis fulfil the requirement for coronary artery lesions, plaque rupture and lipoprotein patterns resembling the human profile, and may enable the identification of therapeutic interventions more applicable in the clinical setting.
Collapse
MESH Headings
- Animals
- Aortic Diseases/complications
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Aortic Diseases/pathology
- Atherosclerosis/complications
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Coronary Artery Disease/complications
- Coronary Artery Disease/genetics
- Coronary Artery Disease/metabolism
- Coronary Artery Disease/pathology
- Diet, High-Fat
- Disease Models, Animal
- Genetic Predisposition to Disease
- Mice, Knockout, ApoE
- Myocardial Infarction/etiology
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocardium/pathology
- Phenotype
- Plaque, Atherosclerotic
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Rupture, Spontaneous
- Scavenger Receptors, Class B/deficiency
- Scavenger Receptors, Class B/genetics
- Species Specificity
Collapse
Affiliation(s)
- Pelin Golforoush
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|