1
|
Hsu CY, Jasim SA, Pallathadka H, Kumar A, Konnova K, Qasim MT, Alubiady MHS, Pramanik A, Al-Ani AM, Abosaoda MK. A comprehensive insight into the contribution of epigenetics in male infertility; focusing on immunological modifications. J Reprod Immunol 2024; 164:104274. [PMID: 38865894 DOI: 10.1016/j.jri.2024.104274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Numerous recent studies have examined the impact epigenetics-including DNA methylation-has on spermatogenesis and male infertility. Differential methylation of several genes has been linked to compromised spermatogenesis and/or reproductive failure. Specifically, male infertility has been frequently associated with DNA methylation abnormalities of MEST and H19 inside imprinted genes and MTHFR within non-imprinted genes. Microbial infections mainly result in male infertility because of the immune response triggered by the bacteria' accumulation of immune cells, proinflammatory cytokines, and chemokines. Thus, bacterially produced epigenetic dysregulations may impact host cell function, supporting host defense or enabling pathogen persistence. So, it is possible to think of pathogenic bacteria as potential epimutagens that can alter the epigenome. It has been demonstrated that dysregulated levels of LncRNA correlate with motility and sperm count in ejaculated spermatozoa from infertile males. Therefore, a thorough understanding of the relationship between decreased reproductive capacity and sperm DNA methylation status should aid in creating new diagnostic instruments for this condition. To fully understand the mechanisms influencing sperm methylation and how they relate to male infertility, more research is required.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka 560069, India; Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan 303012, India
| | - Karina Konnova
- Assistant of the Department of Propaedeutics of Dental Diseases. Sechenov First Moscow State Medical University, Russia
| | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Divison of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | | | - Munther Kadhim Abosaoda
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Pappas MP, Kawakami H, Corcoran D, Chen KQ, Scott EP, Wong J, Gearhart MD, Nishinakamura R, Nakagawa Y, Kawakami Y. Sall4 regulates posterior trunk mesoderm development by promoting mesodermal gene expression and repressing neural genes in the mesoderm. Development 2024; 151:dev202649. [PMID: 38345319 PMCID: PMC10946440 DOI: 10.1242/dev.202649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
The trunk axial skeleton develops from paraxial mesoderm cells. Our recent study demonstrated that conditional knockout of the stem cell factor Sall4 in mice by TCre caused tail truncation and a disorganized axial skeleton posterior to the lumbar level. Based on this phenotype, we hypothesized that, in addition to the previously reported role of Sall4 in neuromesodermal progenitors, Sall4 is involved in the development of the paraxial mesoderm tissue. Analysis of gene expression and SALL4 binding suggests that Sall4 directly or indirectly regulates genes involved in presomitic mesoderm differentiation, somite formation and somite differentiation. Furthermore, ATAC-seq in TCre; Sall4 mutant posterior trunk mesoderm shows that Sall4 knockout reduces chromatin accessibility. We found that Sall4-dependent open chromatin status drives activation and repression of WNT signaling activators and repressors, respectively, to promote WNT signaling. Moreover, footprinting analysis of ATAC-seq data suggests that Sall4-dependent chromatin accessibility facilitates CTCF binding, which contributes to the repression of neural genes within the mesoderm. This study unveils multiple mechanisms by which Sall4 regulates paraxial mesoderm development by directing activation of mesodermal genes and repression of neural genes.
Collapse
Affiliation(s)
- Matthew P. Pappas
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hiroko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dylan Corcoran
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine Q. Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Earl Parker Scott
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Wong
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Micah D. Gearhart
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yasushi Nakagawa
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yasuhiko Kawakami
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Dong M, Liu J, Liu C, Wang H, Sun W, Liu B. CRISPR/CAS9: A promising approach for the research and treatment of cardiovascular diseases. Pharmacol Res 2022; 185:106480. [PMID: 36191879 DOI: 10.1016/j.phrs.2022.106480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 10/31/2022]
Abstract
The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.
Collapse
Affiliation(s)
- Mengying Dong
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Jiangen Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Caixia Liu
- Department of Neurology, The Liaoning Province People's Hospital, 33 Wenyi Road, ShenYang, China, 110016
| | - He Wang
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041
| | - Wei Sun
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, China, 130041.
| |
Collapse
|
4
|
Ma X, Wang S, Cheng H, Ouyang H, Ma X. Melatonin Attenuates Ischemia/Reperfusion-Induced Oxidative Stress by Activating Mitochondrial Fusion in Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7105181. [PMID: 35047108 PMCID: PMC8763517 DOI: 10.1155/2022/7105181] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 12/31/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury can stimulate mitochondrial reactive oxygen species production. Optic atrophy 1- (OPA1-) induced mitochondrial fusion is an endogenous antioxidative mechanism that preserves the mitochondrial function. In our study, we investigated whether melatonin augments OPA1-dependent mitochondrial fusion and thus maintains redox balance during myocardial I/R injury. In hypoxia/reoxygenation- (H/R-) treated H9C2 cardiomyocytes, melatonin treatment upregulated OPA1 mRNA and protein expression, thereby enhancing mitochondrial fusion. Melatonin also suppressed apoptosis in H/R-treated cardiomyocytes, as evidenced by increased cell viability, diminished caspase-3 activity, and reduced Troponin T secretion; however, silencing OPA1 abolished these effects. H/R treatment augmented mitochondrial ROS production and repressed antioxidative molecule levels, while melatonin reversed these changes in an OPA1-dependent manner. Melatonin also inhibited mitochondrial permeability transition pore opening and maintained the mitochondrial membrane potential, but OPA1 silencing prevented these outcomes. These results illustrate that melatonin administration alleviates cardiomyocyte I/R injury by activating OPA1-induced mitochondrial fusion and inhibiting mitochondrial oxidative stress.
Collapse
Affiliation(s)
- Xiaoling Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Shengchi Wang
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Hui Cheng
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| | - Haichun Ouyang
- Department of Cardiology, The Seventh Affiliated Hospital, Southern Medical University, China
| | - Xiaoning Ma
- Department of Critical Care Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
5
|
FUNDC1 activates the mitochondrial unfolded protein response to preserve mitochondrial quality control in cardiac ischemia/reperfusion injury. Cell Signal 2022; 92:110249. [DOI: 10.1016/j.cellsig.2022.110249] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022]
|
6
|
Gene Editing in Pluripotent Stem Cells and Their Derived Organoids. Stem Cells Int 2021; 2021:8130828. [PMID: 34887928 PMCID: PMC8651378 DOI: 10.1155/2021/8130828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
With the rapid rise in gene-editing technology, pluripotent stem cells (PSCs) and their derived organoids have increasingly broader and practical applications in regenerative medicine. Gene-editing technologies, from large-scale nucleic acid endonucleases to CRISPR, have ignited a global research and development boom with significant implications in regenerative medicine. The development of regenerative medicine technologies, regardless of whether it is PSCs or gene editing, is consistently met with controversy. Are the tools for rewriting the code of life a boon to humanity or a Pandora's box? These technologies raise concerns regarding ethical issues, unexpected mutations, viral infection, etc. These concerns remain even as new treatments emerge. However, the potential negatives cannot obscure the virtues of PSC gene editing, which have, and will continue to, benefit mankind at an unprecedented rate. Here, we briefly introduce current gene-editing technology and its application in PSCs and their derived organoids, while addressing ethical concerns and safety risks and discussing the latest progress in PSC gene editing. Gene editing in PSCs creates visualized in vitro models, providing opportunities for examining mechanisms of known and unknown mutations and offering new possibilities for the treatment of cancer, genetic diseases, and other serious or refractory disorders. From model construction to treatment exploration, the important role of PSCs combined with gene editing in basic and clinical medicine studies is illustrated. The applications, characteristics, and existing challenges are summarized in combination with our lab experiences in this field in an effort to help gene-editing technology better serve humans in a regulated manner. Current preclinical and clinical trials have demonstrated initial safety and efficacy of PSC gene editing; however, for better application in clinical settings, additional investigation is warranted.
Collapse
|
7
|
Zhang H, Qu X, Han L, Di X. Mst2 Overexpression Inhibits Thyroid Carcinoma Growth and Metastasis by Disrupting Mitochondrial Fitness and Endoplasmic Reticulum Homeostasis. JOURNAL OF ONCOLOGY 2021; 2021:1262291. [PMID: 34557228 PMCID: PMC8455210 DOI: 10.1155/2021/1262291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Although the incidence of thyroid carcinoma has increased over the past several decades, it has an excellent prognosis and overall 5-year survival, with a stable mortality rate, except in cases with advanced stages or rare malignant tumor types. Biomarkers have emerged as effective targets of molecular therapy against thyroid carcinoma due to their rapid and convenient detection; however, there has been little clinical application. Macrophage stimulating 2 (Mst2) is a proapoptotic protein with implications in carcinogenesis and metastasis. We found that Mst2 overexpression-induced endoplasmic reticulum (ER) stress in MDA-T32 thyroid carcinoma cells, accompanied by elevated caspase-12 activity, increased apoptotic rate, and reduced cell viability. In addition, Mst2 overexpression contributed to mitochondrial damage, as evidenced by increased mitochondrial oxidative stress and activated the mitochondrial apoptotic pathway. Inhibition of the JNK pathway abolished these effects. These results show Mst2 to be a novel tumor suppressor that induces mitochondrial dysfunction and ER stress via the JNK pathway. Thus, Mst2 could potentially serve as a biomarker for developing targeted therapy against thyroid carcinoma.
Collapse
Affiliation(s)
- Haichao Zhang
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Xin Qu
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Lu Han
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| | - Xu Di
- Department of Thyroid and Breast Surgery, Tianjin Fourth Central Hospital, The Fourth Central Hospital Affiliated to Nankai University, The Fourth Center Clinical College of Tianjin Medical University, Tianjin 300140, China
| |
Collapse
|
8
|
Hou X, Li L, Chen S, Ge C, Shen M, Fu Z. MKP-1 Overexpression Reduces Postischemic Myocardial Damage through Attenuation of ER Stress and Mitochondrial Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8905578. [PMID: 34512872 PMCID: PMC8433005 DOI: 10.1155/2021/8905578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022]
Abstract
Mitochondrial dysfunction and endoplasmic reticulum (ER) stress contribute to postischemic myocardial damage, but the upstream regulatory mechanisms have not been identified. In this study, we analyzed the role of mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1) in the regulation of mitochondrial function and ER stress in hypoxic cardiomyocytes. Our results show that MKP-1 overexpression sustains viability and reduces hypoxia-induced apoptosis among H9C2 cardiomyocytes. MKP-1 overexpression attenuates ER stress and expression of ER stress genes and improves mitochondrial function in hypoxia-treated H9C2 cells. MKP-1 overexpression also increases ATP production and mitochondrial respiration and attenuates mitochondrial oxidative damage in hypoxic cardiomyocytes. Moreover, our results demonstrate that ERK and JNK are the downstream signaling targets of MKP-1 and that MKP-1 overexpression activates ERK, while it inhibits JNK. Inhibition of ERK reduces the ability of MKP-1 to preserve mitochondrial function and ER homeostasis in hypoxic cardiomyocytes. These results show that MKP-1 plays an essential role in the regulation of mitochondrial function and ER stress in hypoxic H9C2 cardiomyocytes through normalization of the ERK pathway and suggest that MKP-1 may serve as a novel target for the treatment of postischemic myocardial injury.
Collapse
Affiliation(s)
- Xiaoling Hou
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Lijun Li
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Si Chen
- Department of Cardiology, The First Medical Center of People's Liberation Army General Hospital, China
| | - Cheng Ge
- Department of Cardiology, The First Medical Center of People's Liberation Army General Hospital, China
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, Hainan 572013, China
| | - Zhenhong Fu
- Senior Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
9
|
Ma Z, Wang X, Lv Q, Gong Y, Xia M, Zhuang L, Lu X, Yang Y, Zhang W, Fu G, Ye Y, Lai D. Identification of Underlying Hub Genes Associated with Hypertrophic Cardiomyopathy by Integrated Bioinformatics Analysis. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:823-837. [PMID: 34285551 PMCID: PMC8285300 DOI: 10.2147/pgpm.s314880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022]
Abstract
Background Considered as one of the major reasons of sudden cardiac death, hypertrophic cardiomyopathy (HCM) is a common inherited cardiovascular disease. However, effective treatment for HCM is still lacking. Identification of hub gene may be a powerful tool for discovering potential therapeutic targets and candidate biomarkers. Methods We analysed three gene expression datasets for HCM from the Gene Expression Omnibus. Two of them were merged by “sva” package. The merged dataset was used for analysis while the other dataset was used for validation. Following this, a weighted gene coexpression network analysis (WGCNA) was performed, and the key module most related to HCM was identified. Based on the intramodular connectivity, we identified the potential hub genes. Then, a receiver operating characteristic curve analysis was performed to verify the diagnostic values of hub genes. Finally, we validated changes of hub genes, for genetic transcription and protein expression levels, in datasets of HCM patients and myocardium of transverse aortic constriction (TAC) mice. Results In the merged dataset, a total of 455 differentially expressed genes (DEGs) were identified from normal and hypertrophic myocardium. In WGCNA, the blue module was identified as the key module and the genes in this module showed a high positive correlation with HCM. Functional enrichment analysis of DEGs and key module revealed that the extracellular matrix, fibrosis, and neurohormone pathways played important roles in HCM. FRZB, COL14A1, CRISPLD1, LUM, and sFRP4 were identified as hub genes in the key module. These genes showed a good predictive value for HCM and were significantly up-regulated in HCM patients and TAC mice. We also found protein expression of LUM and sFRP4 increased in myocardium of TAC mice. Conclusion This study revealed that five hub genes are involved in the occurrence and development of HCM, and they are potentially to be used as therapeutic targets and biomarkers for HCM.
Collapse
Affiliation(s)
- Zetao Ma
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China.,Department of Cardiology, Zhongshan People's Hospital, Zhongshan, Guangdong Province, 528403, People's Republic of China
| | - Xizhi Wang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Qingbo Lv
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yingchao Gong
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Minghong Xia
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Lenan Zhuang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Xue Lu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Ying Yang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Wenbin Zhang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Guosheng Fu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Yang Ye
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| | - Dongwu Lai
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310016, People's Republic of China
| |
Collapse
|
10
|
Correale M, Tricarico L, Fortunato M, Mazzeo P, Nodari S, Di Biase M, Brunetti ND. New Targets in Heart Failure Drug Therapy. Front Cardiovasc Med 2021; 8:665797. [PMID: 34026873 PMCID: PMC8131549 DOI: 10.3389/fcvm.2021.665797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in chronic heart failure management (either pharmacological or non-pharmacological), the prognosis of heart failure (HF) patients remains poor. This poor prognosis emphasizes the need for developing novel pathways for testing new HF drugs, beyond neurohumoral and hemodynamic modulation approaches. The development of new drugs for HF therapy must thus necessarily focus on novel approaches such as the direct effect on cardiomyocytes, coronary microcirculation, and myocardial interstitium. This review summarizes principal evidence on new possible pharmacological targets for the treatment of HF patients, mainly focusing on microcirculation, cardiomyocyte, and anti-inflammatory therapy.
Collapse
Affiliation(s)
- Michele Correale
- Department of Cardiology, Policlinico Riuniti University Hospital, Foggia, Italy
| | - Lucia Tricarico
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Martino Fortunato
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Pietro Mazzeo
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Savina Nodari
- Cardiology Section, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Matteo Di Biase
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
11
|
Kolin DA, Kulm S, Christos PJ, Elemento O. Clinical, regional, and genetic characteristics of Covid-19 patients from UK Biobank. PLoS One 2020; 15:e0241264. [PMID: 33201886 PMCID: PMC7671499 DOI: 10.1371/journal.pone.0241264] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (Covid-19) has rapidly infected millions of people worldwide. Recent studies suggest that racial minorities and patients with comorbidities are at higher risk of Covid-19. In this study, we analyzed the effects of clinical, regional, and genetic factors on Covid-19 positive status. METHODS The UK Biobank is a longitudinal cohort study that recruited participants from 2006 to 2010 from throughout the United Kingdom. Covid-19 test results were provided to UK Biobank starting on March 16, 2020. The main outcome measure in this study was Covid-19 positive status, determined by the presence of any positive test for a single individual. Clinical risk factors were derived from UK Biobank at baseline, and regional risk factors were imputed using census features local to each participant's home zone. We used robust adjusted Poisson regression with clustering by testing laboratory to estimate relative risk. Blood types were derived using genetic variants rs8176719 and rs8176746, and genomewide tests of association were conducted using logistic-Firth hybrid regression. RESULTS This prospective cohort study included 397,064 UK Biobank participants, of whom 968 tested positive for Covid-19. The unadjusted relative risk of Covid-19 for Black participants was 3.66 (95% CI 2.83-4.74), compared to White participants. Adjusting for Townsend deprivation index alone reduced the relative risk to 2.44 (95% CI 1.86-3.20). Comorbidities that significantly increased Covid-19 risk included chronic obstructive pulmonary disease (adjusted relative risk [ARR] 1.64, 95% CI 1.18-2.27), ischemic heart disease (ARR 1.48, 95% CI 1.16-1.89), and depression (ARR 1.32, 95% CI 1.03-1.70). There was some evidence that angiotensin converting enzyme inhibitors (ARR 1.48, 95% CI 1.13-1.93) were associated with increased risk of Covid-19. Each standard deviation increase in the number of total individuals living in a participant's locality was associated with increased risk of Covid-19 (ARR 1.14, 95% CI 1.08-1.20). Analyses of genetically inferred blood types confirmed that participants with type A blood had increased odds of Covid-19 compared to participants with type O blood (odds ratio [OR] 1.16, 95% CI 1.01-1.33). A meta-analysis of genomewide association studies across ancestry groups did not reveal any significant loci. Study limitations include confounding by indication, bias due to limited information on early Covid-19 test results, and inability to accurately gauge disease severity. CONCLUSIONS When assessing the association of Black race with Covid-19, adjusting for deprivation reduced the relative risk of Covid-19 by 33%. In the context of sociological research, these findings suggest that discrimination in the labor market may play a role in the high relative risk of Covid-19 for Black individuals. In this study, we also confirmed the association of blood type A with Covid-19, among other clinical and regional factors.
Collapse
Affiliation(s)
- David A. Kolin
- The Meyer Cancer Center, Weill Cornell Medicine, Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States of America
| | - Scott Kulm
- The Meyer Cancer Center, Weill Cornell Medicine, Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States of America
| | - Paul J. Christos
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, United States of America
| | - Olivier Elemento
- The Meyer Cancer Center, Weill Cornell Medicine, Caryl and Israel Englander Institute for Precision Medicine, New York, NY, United States of America
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States of America
| |
Collapse
|
12
|
Zhou J, Zhang W, Wei C, Zhang Z, Yi D, Peng X, Peng J, Yin R, Zheng Z, Qi H, Wei Y, Wen T. Weighted correlation network bioinformatics uncovers a key molecular biosignature driving the left-sided heart failure. BMC Med Genomics 2020; 13:93. [PMID: 32620106 PMCID: PMC7333416 DOI: 10.1186/s12920-020-00750-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Left-sided heart failure (HF) is documented as a key prognostic factor in HF. However, the relative molecular mechanisms underlying left-sided HF is unknown. The purpose of this study is to unearth significant modules, pivotal genes and candidate regulatory components governing the progression of left-sided HF by bioinformatical analysis. METHODS A total of 319 samples in GSE57345 dataset were used for weighted gene correlation network analysis (WGCNA). ClusterProfiler package in R was used to conduct functional enrichment for genes uncovered from the modules of interest. Regulatory networks of genes were built using Cytoscape while Enrichr database was used for identification of transcription factors (TFs). The MCODE plugin was used for identifying hub genes in the modules of interest and their validation was performed based on GSE1869 dataset. RESULTS A total of six significant modules were identified. Notably, the blue module was confirmed as the most crucially associated with left-sided HF, ischemic heart disease (ISCH) and dilated cardiomyopathy (CMP). Functional enrichment conveyed that genes belonging to this module were mainly those driving the extracellular matrix-associated processes such as extracellular matrix structural constituent and collagen binding. A total of seven transcriptional factors, including Suppressor of Zeste 12 Protein Homolog (SUZ12) and nuclear factor erythroid 2 like 2 (NFE2L2), adrenergic receptor (AR), were identified as possible regulators of coexpression genes identified in the blue module. A total of three key genes (OGN, HTRA1 and MXRA5) were retained after validation of their prognostic value in left-sided HF. The results of functional enrichment confirmed that these key genes were primarily involved in response to transforming growth factor beta and extracellular matrix. CONCLUSION We uncovered a candidate gene signature correlated with HF, ISCH and CMP in the left ventricle, which may help provide better prognosis and therapeutic decisions and in HF, ISCH and CMP patients.
Collapse
Affiliation(s)
- Jiamin Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Wei Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Chunying Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zhiliang Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Dasong Yi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Xiaoping Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Jingtian Peng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Hongmei Qi
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Yunfeng Wei
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China
| | - Tong Wen
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, 330006, Jiangxi province, China.
- Hypertension Research Institute of Jiangxi Province, Nanchang, 330006, China.
| |
Collapse
|