1
|
Ehsasatvatan M, Baghban Kohnehrouz B. A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation. J Biomol Struct Dyn 2024:1-16. [PMID: 38468545 DOI: 10.1080/07391102.2024.2329290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are increasingly used in clinical practice for the management of type 2 diabetes mellitus. However, the extremely short half-life of GLP-1 and the need for subcutaneous administration limit its clinical application. Thus, half-life extension and alternative delivery methods are highly desired. DARPin domains with high affinity for human serum albumin (HSA) have been selected for the half-life extension of therapeutic peptides and proteins. In the present study, novel trivalent fusion proteins as long-acting GLP-1 receptor agonists with potential for oral delivery were computationally engineered by incorporating a protease-resistant modified GLP-1, an anti-human serum albumin DARPin, and an approved cell-penetrating peptide (Penetratin, Tat, and Polyarginine) linked either by rigid or flexible linkers. Theoretical studies and molecular dynamics simulation results suggested that mGLP1-DARPin-Pen has acceptable quality and stability. Moreover, the potential affinity of the selected fusion proteins for GLP-1 receptor and human serum albumin was explored by molecular docking. The recombinant construct was cloned into the pET28a vector and expressed in Escherichia coli. SDS-PAGE analysis of the purified fusion protein matched its molecular size and was confirmed by western blot analysis. The results demonstrated that the engineered fusion protein could bind HSA with high affinity. Importantly, insulin secretion assays using a mouse pancreatic β-cell line (β-TC6) revealed that the engineered trivalent fusion protein retained the ability to stimulate cellular insulin secretion. Immunofluorescence microscopy analysis indicated the CPP-dependent cellular uptake of mGLP1-DARPin-Pen. These findings demonstrated that mGLP1-DARPin-Pen is a highly potent oral drug candidate that could be particularly useful in the treatment of type 2 diabetes mellitus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
2
|
Lin QY, Yu WJ, Bai J, Jiang WX, Li HH. Mac-1 deficiency ameliorates pressure overloaded heart failure through inhibiting macrophage polarization and activation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167048. [PMID: 38296117 DOI: 10.1016/j.bbadis.2024.167048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
Persistent pressure overload commonly leads to pathological cardiac hypertrophy and remodeling, ultimately leading to heart failure (HF). Cardiac remodeling is associated with the involvement of immune cells and the inflammatory response in pathogenesis. The macrophage-1 antigen (Mac-1) is specifically expressed on leukocytes and regulates their migration and polarization. Nonetheless, the involvement of Mac-1 in cardiac remodeling and HF caused by pressure overload has not been determined. The Mac-1-knockout (KO) and wild-type (WT) mice were subjected to transverse aortic constriction (TAC) for 6 weeks. Echocardiography and pressure-volume loop assessments were used to evaluate cardiac function, and cardiac remodeling and macrophage infiltration and polarization were estimated by histopathology and molecular techniques. The findings of our study demonstrated that Mac-1 expression was markedly increased in hearts subjected to TAC treatment. Moreover, compared with WT mice, Mac-1-KO mice exhibited dramatically ameliorated TAC-induced cardiac dysfunction, hypertrophy, fibrosis, oxidative stress and apoptosis. The potential positive impacts may be linked to the inhibition of macrophage infiltration and M1 polarization via reductions in NF-kB and STAT1 expression and upregulation of STAT6. In conclusion, this research reveals a new function of Mac-1 deficiency in reducing pathological cardiac remodeling and HF caused by pressure overload. Additionally, inhibiting Mac-1 could be a potential treatment option for patients with HF in a clinical setting.
Collapse
Affiliation(s)
- Qiu-Yue Lin
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Wei-Jia Yu
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jie Bai
- School of Public Health, Dalian Medical University, Dalian, China
| | - Wen-Xi Jiang
- Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China
| | - Hui-Hua Li
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian, China; Department of Emergency Medicine, Beijing Key Laboratory of Cardiopulmonary Cerebral Resuscitation, Beijing Chao-Yang Hospital, Capital Medical University, China.
| |
Collapse
|
3
|
Song BPC, Ch'ng ACW, Lim TS. Review of phage display: A jack-of-all-trades and master of most biomolecule display. Int J Biol Macromol 2024; 256:128455. [PMID: 38013083 DOI: 10.1016/j.ijbiomac.2023.128455] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Phage display was first described by George P. Smith when it was shown that virus particles were capable of presenting foreign proteins on their surface. The technology has paved the way for the evolution of various biomolecules presentation and diverse selection strategies. This unique feature has been applied as a versatile platform for numerous applications in drug discovery, protein engineering, diagnostics, and vaccine development. Over the decades, the limits of biomolecules displayed on phage particles have expanded from peptides to proteomes and even alternative scaffolds. This has allowed phage display to be viewed as a versatile display platform to accommodate various biomolecules ranging from small peptides to larger proteomes which has significantly impacted advancements in the biomedical industry. This review will explore the vast array of biomolecules that have been successfully employed in phage display technology in biomedical research.
Collapse
Affiliation(s)
- Brenda Pei Chui Song
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Angela Chiew Wen Ch'ng
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
4
|
Bojti I, Wang Q, Bojti T, Bojti F, Siegel PM, Heidt T, Moser M, Bode C, Westermann D, Peter K, Diehl P. An Activation-Specific Anti-Mac-1 Designed-Ankyrin-Repeat-Protein Attenuates Colitis in Mice. Life (Basel) 2023; 13:1464. [PMID: 37511839 PMCID: PMC10381548 DOI: 10.3390/life13071464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Inflammatory bowel diseases are complex and multifactorial disorders of unknown etiology. The extravasation of activated leukocytes is a critical step in the pathogenesis of these diseases. Leukocyte integrin Mac-1 (αMβ2; CD11b/CD18) is crucial for the extravasation of myeloid cells, and a novel activation-specific anti-Mac-1 Designed Ankyrin Repeat protein (DARPin F7) is a promising therapeutic agent for inflammatory diseases. In its activated conformation, Mac-1 expresses the high-affinity binding site I-domain, which the DARPin F7 selectively targets. In our study, we aimed to explore the therapeutic potential of anti-Mac-1 DARPin F7 in murine dextrane sodium sulfate (DSS)-induced colitis. (2) Methods: C57BL/6J mice received 3% DSS drinking water for five days, followed by normal drinking water for one week. The mice were treated with DARPin F7 or a control substance daily via intraperitoneal injections. Disease activity index (DAI), colon length, myeloperoxidase (MPO) activity measurements, H&E staining, and qRT-PCR were conducted after euthanizing the mice on day 12. (3) Results: Treatment with DARPin F7 resulted in less pronounced colon shortening and significantly lower histological scores. The DARPin F7-treated animals experienced substantially less disease and myeloperoxidase (MPO) activity. Animals that received DARPin F7 treatment suffered less weight loss and recovered from the weight loss more efficiently. Treatment with DARPin F7 also led to significantly reduced mRNA expression of inflammatory cytokines. (4) Conclusion: Anti-Mac-1 treatment markedly reduced disease activity and inflammatory reaction accompanying DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Istvan Bojti
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Qianqi Wang
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Tibor Bojti
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Felicitas Bojti
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Patrick Malcolm Siegel
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3004, Australia
| | - Philipp Diehl
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Street 55, 79106 Freiburg, Germany
| |
Collapse
|
5
|
Xia J, Gao G, Zhang C, Ying J, Li J. Albumin-binding DARPins as scaffold improve the hypoglycemic and anti-obesity effects of exendin-4 in vivo. Eur J Pharm Sci 2023; 185:106422. [PMID: 36906110 DOI: 10.1016/j.ejps.2023.106422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/17/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Type 2 diabetes mellitus (T2DM) and obesity have been considered epidemics and threats to public health worldwide. Exendin-4 (Ex), a GLP-1R agonist, has potential for treating T2DM and obesity. However, Ex has a half-life of only 2.4 h in humans and needs to be administered twice daily, which hampers its clinical application. In this study, we synthesized four new GLP-1R agonists by genetically fusing Ex to the N-terminus of HSA-binding ankyrin repeat proteins (DARPins) via linkers of different lengths, denoted as Ex-DARPin-GSx fusion proteins (x = 0, 1, 2, and 3). The Ex-DARPin fusion proteins were substantially stable, resulting in incomplete denaturation even at 80 °C. The in vitro bioactivity results demonstrated that Ex-DARPin fusion proteins could bind to HSA and activate GLP-1R. The Ex-DARPin fusion proteins had a comparable half-life (29-32 h), which is much longer than that of native Ex (0.5 h in rats). Subcutaneous injection of 25 nmol/kg Ex-DARPin fusion protein normalized blood glucose (BG) levels for at least 72 h in mice. The Ex-DARPin fusion proteins, injected at 25 nmol/kg every three days, significantly lowered BG, inhibited food consumption, and reduced body weight (BW) for 30 days in STZ-induced diabetic mice. Histological analysis of pancreatic tissues using H&E staining revealed that Ex-DARPin fusion proteins significantly improved the survival of pancreatic islets in diabetic mice. The differences in in vivo bioactivity of fusion proteins with different linker lengths were not significant. According to the findings in this study, long-acting Ex-DARPin fusion proteins designed by us hold promise for further development as antidiabetic and antiobesity therapeutic agents. Our findings also indicate that DARPins are a universal platform for generating long-acting therapeutic proteins via genetic fusion, thus broadening the application scope of DARPins.
Collapse
Affiliation(s)
- Jinying Xia
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Guosheng Gao
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China; Department of Clinical Laboratory, Ningbo No. 2 Hospital, Ningbo, China
| | - Changzhen Zhang
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jingjing Ying
- Department of Pharmacy, Ningbo No. 2 Hospital, Ningbo, China
| | - Jianhui Li
- Department of Endocrinology, Ningbo No. 2 Hospital, Ningbo, China; Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
6
|
Siegel PM, Przewosnik AS, Wrobel J, Heidt T, Moser M, Peter K, Bode C, Diehl P, Bojti I. An activation specific anti-Mac-1 designed ankyrin repeat protein improves survival in a mouse model of acute lung injury. Sci Rep 2022; 12:6296. [PMID: 35428807 PMCID: PMC9012056 DOI: 10.1038/s41598-022-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/01/2022] [Indexed: 12/15/2022] Open
Abstract
The acute respiratory distress syndrome (ARDS) is a life-threatening clinical condition. The number of ARDS cases has risen dramatically recently but specific treatment options are limited. ARDS is associated with an overshooting inflammatory response and neutrophils play a central role in its pathogenesis. Neutrophils express the integrin Mac-1 on their surface which adopts a resting and activated conformation depending on leukocyte activation. The aim of this study was to investigate the anti-inflammatory effects of the unique activation-specific anti-Mac-1 DARPin 'F7' in a mouse model of ARDS. ARDS was induced by intratracheal lipopolysaccharide (LPS) instillation and the acute (day 1-4) and chronic phase (day 5-10) were studied. After expression and purification, F7, a control DARPin and PBS, were applied daily via the intraperitoneal route. Survival and weight loss were recorded. Histological analysis of lung sections, flow cytometric leukocyte analysis of blood and bronchioalveolar lavage (BALF) were performed. Moreover, protein concentration and cytokine levels were determined in the BALF. Treatment with F7 improved survival and reduced weight loss significantly compared to treatment with the control DARPin or PBS. Neutrophil count in the BALF and peripheral blood were significantly reduced in mice treated with F7. Histology revealed significantly reduced pulmonary inflammation in the F7 treated group. Treatment with DARPin F7 inhibited neutrophil accumulation, reduced signs of local and systemic inflammation and improved survival in a mouse model of ARDS. F7 may be a novel anti-inflammatory drug candidate for the treatment of severe ARDS.
Collapse
Affiliation(s)
- Patrick M Siegel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Anne-Sophie Przewosnik
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Jan Wrobel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Timo Heidt
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia.,Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - István Bojti
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany.
| |
Collapse
|
7
|
Liu H, Pietersz G, Peter K, Wang X. Nanobiotechnology approaches for cardiovascular diseases: site-specific targeting of drugs and nanoparticles for atherothrombosis. J Nanobiotechnology 2022; 20:75. [PMID: 35135581 PMCID: PMC8822797 DOI: 10.1186/s12951-022-01279-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/21/2022] [Indexed: 02/18/2023] Open
Abstract
Atherosclerosis and atherothrombosis, the major contributors to cardiovascular diseases (CVDs), represent the leading cause of death worldwide. Current pharmacological therapies have been associated with side effects or are insufficient at halting atherosclerotic progression effectively. Pioneering work harnessing the passive diffusion or endocytosis properties of nanoparticles and advanced biotechnologies in creating recombinant proteins for site-specific delivery have been utilized to overcome these limitations. Since CVDs are complex diseases, the most challenging aspect of developing site-specific therapies is the identification of an individual and unique antigenic epitope that is only expressed in lesions or diseased areas. This review focuses on the pathological mechanism of atherothrombosis and discusses the unique targets that are important during disease progression. We review recent advances in site-specific therapy using novel targeted drug-delivery and nanoparticle-carrier systems. Furthermore, we explore the limitations and future perspectives of site-specific therapy for CVDs.
Collapse
Affiliation(s)
- Haikun Liu
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Geoffrey Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Burnet Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia.,Department of Medicine, Monash University, Melbourne, VIC, Australia.,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, 3004, Australia. .,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia. .,Department of Cardiometabolic Health, University of Melbourne, VIC, Australia. .,Department of Medicine, Monash University, Melbourne, VIC, Australia. .,La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Mitochondrial calpain-1 activates NLRP3 inflammasome by cleaving ATP5A1 and inducing mitochondrial ROS in CVB3-induced myocarditis. Basic Res Cardiol 2022; 117:40. [PMID: 35997820 PMCID: PMC9399059 DOI: 10.1007/s00395-022-00948-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/04/2022] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
Treatment options for myocarditis are currently limited. Inhibition of calpains has been shown to prevent Coxsackievirus B3 (CVB3)-induced cardiac injuries, but the underlying mechanism of action of calpains has not been elucidated. We investigated whether NOD-, LRR-, and pyrin domain-containing 3 (NLRP3) inflammasome participated in CVB3-induced myocarditis, and investigated the effects of calpain-1 on CVB3-induced cardiac injury. NLRP3 inflammasome was activated in CVB3-infected hearts, evidenced by elevated protein levels of NLRP3, N-terminal domain of Gasdermin D, and cleaved caspase-1, and the increased co-localization of NLRP3 and apoptosis-associated speck-like protein. The intraperitoneal administration of MCC950, a selective inhibitor of the NLRP3 inflammasome, led to decreased levels of serum creatine kinase-MB, cardiac troponin I, lactate dehydrogenase, interleukin-18, interleukin-1β, prevention of the infiltration of inflammatory cells, and improvement of cardiac function under CVB3 infection. Transgenic mice overexpressing the endogenous calpain inhibitor calpastatin (Tg-CAST mice) exhibited not only decreased apoptosis, inflammation, fibrosis, and enhanced cardiac function but also inhibition of NLRP3 inflammasome and pyroptosis. The selective inhibition of calpain-1 using PD151746 protected cardiomyocytes in vitro from CVB3 infection by downregulating NLRP3 inflammasome and, thus, preserved cell viability. Mechanistically, we showed that mitochondrial dysfunction preceded inflammatory response after CVB3 treatment and elimination of mitochondrial reactive oxygen species (ROS) using mitochondria-targeted antioxidants (mito-TEMPO) recapitalized the phenotype observed in Tg-CAST mice. Furthermore, the promotion or inhibition of calpain-1 activation in vitro regulated the mitochondrial respiration chain. Mito-TEMPO reversed calpain-1-mediated NLRP3 inflammation activation and cell death. We also found that mitochondrial calpain-1, which was increased after CVB3 stimulation, activated the NLRP3 inflammasome and resulted in cell death. Furthermore, ATP synthase-α (ATP5A1) was revealed to be the cleaving target of calpain-1 after CVB3 treatment. Downregulating ATP5A1 using ATP5A1-small interfering RNA impaired mitochondrial function, decreased cell viability, and induced NLRP3 inflammasome activation. In conclusion, CVB3 infection induced calpain-1 accumulation in mitochondria, and led to subsequent ATP5A1 cleavage, mitochondrial ROS overproduction, and impaired mitochondrial function, eventually causing NLRP3 inflammasome activation and inducing pyroptosis. Therefore, our findings established the role of calpain in viral myocarditis and unveiled its underlying mechanism of its action. Calpain appears as a promising target for the treatment of viral myocarditis.
Collapse
|
9
|
Siegel PM, Bender I, Chalupsky J, Heger LA, Rieder M, Trummer G, Wengenmayer T, Duerschmied D, Bode C, Diehl P. Extracellular Vesicles Are Associated With Outcome in Veno-Arterial Extracorporeal Membrane Oxygenation and Myocardial Infarction. Front Cardiovasc Med 2021; 8:747453. [PMID: 34805303 PMCID: PMC8600355 DOI: 10.3389/fcvm.2021.747453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is being increasingly applied in patients with circulatory failure, but mortality remains high. An inflammatory response syndrome initiated by activation of blood components in the extracorporeal circuit may be an important contributing factor. Patients with ST-elevation myocardial infarction (STEMI) may also experience a systemic inflammatory response syndrome and are at risk of developing cardiogenic shock and cardiac arrest, both indications for VA-ECMO. Extracellular vesicles (EV) are released by activated cells as mediators of intercellular communication and may serve as prognostic biomarkers. Cardiomyocyte EV, released upon myocardial ischemia, hold strong potential for this purpose. The aim of this study was to assess the EV-profile in VA-ECMO and STEMI patients and the association with outcome. Methods: In this prospective observational study, blood was sampled on day 1 after VA-ECMO initiation or myocardial reperfusion (STEMI patients). EV were isolated by differential centrifugation. Leukocyte, platelet, endothelial, erythrocyte and cardiomyocyte (caveolin-3+) Annexin V+ EV were identified by flow cytometry. EV were assessed in survivors vs. non-survivors of VA-ECMO and in STEMI patients with normal-lightly vs. moderately-severely reduced left ventricular function. Logistic regression was conducted to determine the predictive accuracy of EV. Pearson correlation analysis of EV with clinical parameters was performed. Results: Eighteen VA-ECMO and 19 STEMI patients were recruited. Total Annexin V+, cardiomyocyte and erythrocyte EV concentrations were lower (p ≤ 0.005) while the percentage of platelet EV was increased in VA-ECMO compared to STEMI patients (p = 0.002). Total Annexin V+ EV were increased in non-survivors of VA-ECMO (p = 0.01), and higher levels were predictive of mortality (AUC = 0.79, p = 0.05). Cardiomyocyte EV were increased in STEMI patients with moderately-severely reduced left ventricular function (p = 0.03), correlated with CK-MBmax (r = 0.57, p = 0.02) and time from reperfusion to blood sampling (r = 0.58, p = 0.01). Leukocyte EV correlated with the number of coronary stents placed (r = 0.60, p = 0.02). Conclusions: Elevated total Annexin V+ EV on day 1 of VA-ECMO are predictive of mortality. Increased cardiomyocyte EV on day 1 after STEMI correlate with infarct size and are associated with poor outcome. These EV may aid in the early identification of patients at risk of poor outcome, helping to guide clinical management.
Collapse
Affiliation(s)
- Patrick M Siegel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ileana Bender
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Julia Chalupsky
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas A Heger
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marina Rieder
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Wengenmayer
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Duerschmied
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Siegel PM, Orlean L, Bojti I, Kaier K, Witsch T, Esser JS, Trummer G, Moser M, Peter K, Bode C, Diehl P. Monocyte Dysfunction Detected by the Designed Ankyrin Repeat Protein F7 Predicts Mortality in Patients Receiving Veno-Arterial Extracorporeal Membrane Oxygenation. Front Cardiovasc Med 2021; 8:689218. [PMID: 34350217 PMCID: PMC8326337 DOI: 10.3389/fcvm.2021.689218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) is used for critically ill patients requiring hemodynamic support but has been shown to induce an inflammatory response syndrome potentially leading to severe complications and poor outcome. Monocytes are comprised of different subsets and play a central role in the innate immune system. The unique small binding proteins, Designed Ankyrin Repeat Protein “F7” and single chain variable fragment “MAN-1,” specifically detect the activated conformation of the leukocyte integrin Mac-1 enabling the highly sensitive detection of monocyte activation status. The aim of this study was to characterize monocyte function and heterogeneity and their association with outcome in VA-ECMO patients. Methods: VA-ECMO patients were recruited from the ICUs of the University Hospital in Freiburg, Germany. Blood was sampled on day 0 and day 3 after VA-ECMO placement, after VA-ECMO explantation and from healthy controls. Monocyte subset distribution, baseline activation and stimulability were analyzed by flow cytometry using the unique small binding proteins F7 and MAN-1 and the conventional activation markers CD163, CD86, CD69, and CX3CR1. Furthermore, expression of monocyte activation markers in survivors and non-survivors on day 0 was compared. Simple logistic regression was conducted to determine the association of monocyte activation markers with mortality. Results: Twenty two patients on VA-ECMO and 15 healthy controls were recruited. Eleven patients survived until discharge from the ICU. Compared to controls, baseline monocyte activation was significantly increased, whereas stimulability was decreased. The percentage of classical monocytes increased after explantation, while the percentage of intermediate monocytes decreased. Total, classical, and intermediate monocyte counts were significantly elevated compared to controls. On day 0, baseline binding of F7 was significantly lower in non-survivors than survivors. The area under the ROC curve associated with mortality on day 0 was 0.802 (p = 0.02). Conclusions: Distribution of monocyte subsets changes during VA-ECMO and absolute classical and intermediate monocyte counts are significantly elevated compared to controls. Monocytes from VA-ECMO patients showed signs of dysfunction. Monocyte dysfunction, as determined by the unique tool F7, could be valuable for predicting mortality in patients receiving VA-ECMO and may be used as a novel biomarker guiding early clinical decision making in the future.
Collapse
Affiliation(s)
- Patrick M Siegel
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Orlean
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - István Bojti
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaus Kaier
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Breisgau, Germany
| | - Thilo Witsch
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jennifer S Esser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Georg Trummer
- Department of Cardiovascular Surgery, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Moser
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Medicine, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, VIC, Australia
| | - Christoph Bode
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Diehl
- Department of Cardiology and Angiology I, University Heart Center Freiburg - Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Folding and Stability of Ankyrin Repeats Control Biological Protein Function. Biomolecules 2021; 11:biom11060840. [PMID: 34198779 PMCID: PMC8229355 DOI: 10.3390/biom11060840] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Ankyrin repeat proteins are found in all three kingdoms of life. Fundamentally, these proteins are involved in protein-protein interaction in order to activate or suppress biological processes. The basic architecture of these proteins comprises repeating modules forming elongated structures. Due to the lack of long-range interactions, a graded stability among the repeats is the generic properties of this protein family determining both protein folding and biological function. Protein folding intermediates were frequently found to be key for the biological functions of repeat proteins. In this review, we discuss most recent findings addressing this close relation for ankyrin repeat proteins including DARPins, Notch receptor ankyrin repeat domain, IκBα inhibitor of NFκB, and CDK inhibitor p19INK4d. The role of local folding and unfolding and gradual stability of individual repeats will be discussed during protein folding, protein-protein interactions, and post-translational modifications. The conformational changes of these repeats function as molecular switches for biological regulation, a versatile property for modern drug discovery.
Collapse
|