1
|
Chen C, Ma J, Duan S, Xue M, Yang Z, Ma Z, Ji J, Ma Y, Qing G, Guo K, Wu W, Chen T, Wang Z, Luo Y. Mitigation of ischemia/reperfusion injury via selenium nanoparticles: Suppression of STAT1 to inhibit cardiomyocyte oxidative stress and inflammation. Biomaterials 2025; 318:123119. [PMID: 39879840 DOI: 10.1016/j.biomaterials.2025.123119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Ischemia/reperfusion injury (I/RI) following myocardial infarction, a leading cause of global morbidity and mortality, is characterized by detrimental oxidative stress and inflammation. In response, we proposed an I/RI alleviation strategy using the intravenous injection of spherical selenium nanoparticles (SeNPs) synthesized by a template method. Single-cell sequencing revealed these proposed SeNPs exhibited exceptional antioxidant and anti-inflammatory properties, disrupting the STAT1-ROS cycle, therefore preserving mitochondrial respiration and inhibiting caspase-mediated cardiomyocyte apoptosis. Additionally, SeNPs reduced macrophage infiltration and diminished the subsequent release of inflammatory mediators during I/RI. In vivo, SeNPs significantly improved myocardial function while decreasing myocardial apoptosis and fibrosis. These results collectively demonstrated that template method synthesized spherical SeNPs may serve as a promising candidate for enhancing myocardial infarction treatments, while the suppression of STAT1 could be a pivotal mechanism for alleviating ischemia/reperfusion injury following myocardial infarction.
Collapse
Affiliation(s)
- Chunxia Chen
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jingjing Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Shujie Duan
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Menghan Xue
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Zhan Yang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Ziwei Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jianing Ji
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China
| | - Guangchao Qing
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Keying Guo
- Department of Biotechnology and Food Engineering (BFE), Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, 515063, People's Republic of China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400030, People's Republic of China.
| | - Tianfeng Chen
- Department of Oncology, The First Affiliated Hospital, Department of Chemistry, Jinan University, Guangzhou, 510632, People's Republic of China.
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Clinical Laboratory of the First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, 475004, People's Republic of China; Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China.
| | - Yang Luo
- Chongqing Key Laboratory of Reproductive Health and Digital Medicine, Department of Laboratory Medicine, Chongqing General Hospital, School of Medicine, Chongqing University, Chongqing, 400044, People's Republic of China; College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming, Yunnan, 650050, People's Republic of China.
| |
Collapse
|
2
|
Ni B, Ye L, Zhang Y, Hu S, Lei W. Advances in humanoid organoid-based research on inter-organ communications during cardiac organogenesis and cardiovascular diseases. J Transl Med 2025; 23:380. [PMID: 40156006 PMCID: PMC11951738 DOI: 10.1186/s12967-025-06381-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The intimate correlation between cardiovascular diseases and other organ pathologies, such as metabolic and kidney diseases, underscores the intricate interactions among these organs. Understanding inter-organ communications is crucial for developing more precise drugs and effective treatments for systemic diseases. While animal models have traditionally been pivotal in studying these interactions, human-induced pluripotent stem cells (hiPSCs) offer distinct advantages when constructing in vitro models. Beyond the conventional two-dimensional co-culture model, hiPSC-derived humanoid organoids have emerged as a substantial advancement, capable of replicating essential structural and functional attributes of internal organs in vitro. This breakthrough has spurred the development of multilineage organoids, assembloids, and organoids-on-a-chip technologies, which allow for enhanced physiological relevance. These technologies have shown great potential for mimicking coordinated organogenesis, exploring disease pathogenesis, and facilitating drug discovery. As the central organ of the cardiovascular system, the heart serves as the focal point of an extensively studied network of interactions. This review focuses on the advancements and challenges of hiPSC-derived humanoid organoids in studying interactions between the heart and other organs, presenting a comprehensive exploration of this cutting-edge approach in systemic disease research.
Collapse
Affiliation(s)
- Baoqiang Ni
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Lingqun Ye
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Yan Zhang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Shijun Hu
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Wei Lei
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
3
|
Ning J, Sah RK, Wang J. Coculture of mesenchymal stem cells and macrophage: A narrative review. J Pharmacol Exp Ther 2025; 392:103531. [PMID: 40154096 DOI: 10.1016/j.jpet.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/24/2025] [Indexed: 04/01/2025] Open
Abstract
Stem cell transplantation is a promising treatment for repairing damaged tissues, but challenges like immune rejection and ethical concerns remain. Mesenchymal stem cells (MSCs) offer high differentiation potential and immune regulatory activity, showing promise in treating diseases such as gynecological, neurological, and kidney disorders. With scientific progress, MSC applications are overcoming traditional treatment limitations. In MSCs-macrophage coculture, MSCs transform macrophages into anti-inflammatory M2 macrophages, reducing inflammation, whereas macrophages enhance MSCs osteogenic differentiation. This coculture is vital for immune modulation and tissue repair, with models varying by contact type and dimensional arrangements. Factors such as coculture techniques and cell ratios influence outcomes. Benefits include improved heart function, wound healing, reduced lung inflammation, and accelerated bone repair. Challenges include optimizing coculture conditions. This study reviews the methodologies, factors, and mechanisms of MSC-macrophage coculture, providing a foundation for tissue engineering applications. SIGNIFICANCE STATEMENT: This review underlines the significant role of mesenchymal stem cell-macrophage coculture, providing a foundation for tissue engineering application.
Collapse
Affiliation(s)
- Jun Ning
- Department of General Gynecology II, Gynecology and Obstetrics Center, the First Hospital of Jilin University, Changchun, China
| | - Rajiv Kumar Sah
- Department of Pediatrics, Hematology/Oncology, Baylor College of Medicine, Houston, Texas; Texas Children's Hospital, Houston, Texas
| | - Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
4
|
Wang S, Cao C, Peng D. The various roles of TREM2 in cardiovascular disease. Front Immunol 2025; 16:1462508. [PMID: 40083551 PMCID: PMC11903262 DOI: 10.3389/fimmu.2025.1462508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
Triggering receptor expressed on myeloid cells-2 (TREM2) is a transmembrane immune receptor that is expressed mainly on macrophages. As a pathology-induced immune signaling hub, TREM2 senses tissue damage and activates immune remodeling in response. Previous studies have predominantly focused on the TREM2 signaling pathway in Alzheimer's disease, metabolic syndrome, and cancer. Recent research has indicated that TREM2 signaling is also activated in various cardiovascular diseases. In this review, we summarize the current understanding and the unanswered questions regarding the role of TREM2 signaling in mediating the metabolism and function of macrophages in atherosclerosis and various models of heart failure. In the context of atherosclerosis, TREM2 signaling promotes foam cell formation and is crucial for maintaining macrophage survival and plaque stability through efferocytosis and cholesterol efflux. Recent studies on myocardial infarction, sepsis-induced cardiomyopathy, and hypertensive heart failure also implicated the protective role of TREM2 signaling in cardiac macrophages through efferocytosis and paracrine functions. Additionally, we discuss the clinical significance of elevated soluble TREM2 (sTREM2) in cardiovascular disease and propose potential therapies targeting TREM2. The overall aim of this review is to highlight the various roles of TREM2 in cardiovascular diseases and to provide a framework for therapeutic strategies targeting TREM2.
Collapse
Affiliation(s)
| | | | - Daoquan Peng
- Second Xiangya Hospital of Central South University, Cardiovascular Medicine, Changsha, China
| |
Collapse
|
5
|
Fonseka O, Gare SR, Chen X, Zhang J, Alatawi NH, Ross C, Liu W. Molecular Mechanisms Underlying Heart Failure and Their Therapeutic Potential. Cells 2025; 14:324. [PMID: 40072053 PMCID: PMC11899429 DOI: 10.3390/cells14050324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Heart failure (HF) is a prominent fatal cardiovascular disorder afflicting 3.4% of the adult population despite the advancement of treatment options. Therefore, a better understanding of the pathogenesis of HF is essential for exploring novel therapeutic strategies. Hypertrophy and fibrosis are significant characteristics of pathological cardiac remodeling, contributing to HF. The mechanisms involved in the development of cardiac remodeling and consequent HF are multifactorial, and in this review, the key underlying mechanisms are discussed. These have been divided into the following categories thusly: (i) mitochondrial dysfunction, including defective dynamics, energy production, and oxidative stress; (ii) cardiac lipotoxicity; (iii) maladaptive endoplasmic reticulum (ER) stress; (iv) impaired autophagy; (v) cardiac inflammatory responses; (vi) programmed cell death, including apoptosis, pyroptosis, and ferroptosis; (vii) endothelial dysfunction; and (viii) defective cardiac contractility. Preclinical data suggest that there is merit in targeting the identified pathways; however, their clinical implications and outcomes regarding treating HF need further investigation in the future. Herein, we introduce the molecular mechanisms pivotal in the onset and progression of HF, as well as compounds targeting the related mechanisms and their therapeutic potential in preventing or rescuing HF. This, therefore, offers an avenue for the design and discovery of novel therapies for the treatment of HF.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (O.F.); (S.R.G.); (X.C.); (J.Z.); (N.H.A.)
| |
Collapse
|
6
|
Shen X, Liu Q, Lin T, Zheng D, He Q. Association between Chinese visceral adiposity index and cardiovascular events risk in individuals with cardiovascular-kidney-metabolic syndrome stage 0-3: a nationwide cohort study. Int Urol Nephrol 2025:10.1007/s11255-025-04403-7. [PMID: 39934555 DOI: 10.1007/s11255-025-04403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND The population with cardiovascular-kidney-metabolic (CKM) syndrome has a higher risk of cardiovascular events. Chinese visceral adiposity index (CVAI), an index of both visceral obesity and surrogate insulin resistance, has been linked to cardiovascular events. However, the nature of this relationship remains unclear in individuals with CKM syndrome. METHODS All data came from the China Health and Retirement Longitudinal Study (CHARLS). The association between CVAI and cardiovascular events risk was explored using Cox regression models, restricted cubic spline (RCS) curves, and multiple sensitivity analyses. To compare the predictive abilities of various indices, receiver operating characteristic (ROC) analyses were employed. RESULTS 7744 participants were in final analysis. During 9 year follow-up, 1679 cases of cardiovascular disease (CVD), 1,255 cases of heart disease, and 604 cases of stroke were recorded. Cox regression analyses revealed that per-SD (standard deviation) increase in CVAI, the risk of CVD, heart disease, and stroke increased by 22% (95% CI 1.13-1.32), 22% (95% CI 1.13-1.32), and 32% (95% CI 1.19-1.47). In participants at CKM stage 3 with CVD, a J-shaped curve was observed in the RCS analyses (P non-linearity = 0.036). Subgroup analysis revealed an interaction between age and each 10-unit increase in CVAI in CVD (P interaction = 0.0173) and stroke risk (P interaction = 0.028). The AUC (area under curve) value for CVAI was highest compared to other indicators (all DeLong Test P values < 0.05). CONCLUSIONS This research demonstrates a higher CVAI was linked to increased cardiovascular risk in individuals with CKM syndrome stage 0-3. Monitoring CVAI can help identify high-risk individuals early and improve the effectiveness of disease management.
Collapse
Affiliation(s)
- Xiaobo Shen
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Qi Liu
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Tianchen Lin
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Danna Zheng
- Urology & Nephrology Center, Department of Nephrology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Qiang He
- Department of Nephrology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Wei J, Peng MY, Lu HX. Functional transformation of macrophage mitochondria in cardiovascular diseases. Mol Cell Biochem 2025; 480:747-757. [PMID: 38884847 DOI: 10.1007/s11010-024-05049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Mitochondria are pivotal in the modulation of macrophage activation, differentiation, and survival. Furthermore, macrophages are instrumental in the onset and progression of cardiovascular diseases. Hence, it is imperative to investigate the role of mitochondria within macrophages in the context of cardiovascular disease. In this review, we provide an updated description of the origin and classification of cardiac macrophages and also focused on the relationship between macrophages and mitochondria in cardiovascular diseases with respect to (1) proinflammatory or anti-inflammatory macrophages, (2) macrophage apoptosis, (3) macrophage pyroptosis, and (4) macrophage efferocytosis. Clarifying the relationship between mitochondria and macrophages can aid the exploration of novel therapeutic strategies for cardiovascular disease.
Collapse
Affiliation(s)
- Jing Wei
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjng Medical University, Nanjing, 211100, China
| | - Ming-Yu Peng
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing, 211100, China
| | - Hong-Xiang Lu
- Department of Laboratory Medicine, Jiangning Hospital Affiliated to Nanjng Medical University, Nanjing, 211100, China.
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjng Medical University, Nanjing, 211100, China.
| |
Collapse
|
8
|
Li R, Li X, Zhang X, Yu J, Li Y, Ran S, Wang S, Luo Z, Zhao J, Hao Y, Zong J, Zheng K, Lai L, Zhang H, Huang P, Zhou C, Wu J, Ye W, Xia J. Macrophages in Cardiovascular Fibrosis: Novel Subpopulations, Molecular Mechanisms, and Therapeutic Targets. Can J Cardiol 2025; 41:309-322. [PMID: 39580052 DOI: 10.1016/j.cjca.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024] Open
Abstract
Cardiovascular fibrosis is a common pathological process that contributes to the development and progression of various cardiovascular diseases. Despite being widely believed to be an irreversible and relentless process, preclinical models and clinical trials have shown that cardiovascular fibrosis is an extremely dynamic process. Additionally, as part of the innate immune system, macrophages are heterogeneous cells that are pivotal in tissue regeneration and fibrosis. They participate in fibroblast activation, extracellular matrix remodelling, and the regression of fibrosis. Although we have made some advances in understanding macrophages in cardiovascular fibrosis, a gap still remains between their identification and conversion into effective treatments. Moreover, the traditional M1-M2 paradigm faces many challenges because it does not sufficiently clarify macrophage diversity and their functions. Exploring novel macrophage-based therapies is urgent for cardiovascular fibrosis treatment. Single-cell techniques have shed light on identifying novel subpopulations that differ in function and molecular signature under steady-state and pathological conditions. In this review, we outline the developmental origins of macrophages, which underlie their functions; and recent technology development in the single-cell era. In addition, we describe the markers and mediators of the newly defined macrophage subpopulations and the molecular mechanisms involved to elucidate potential approaches for targeting macrophages in cardiovascular fibrosis.
Collapse
Affiliation(s)
- Ran Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Luo
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiulu Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanglin Hao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junjie Zong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kexiao Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Longyong Lai
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pinyan Huang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
9
|
Jawaid S, Joshi Y, Neelofar N, Khursheed K, Shams S, Chaudhary M, Arora M, Mahajan K, Anwar F. A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. Curr Pharm Des 2025; 31:741-752. [PMID: 39506444 DOI: 10.2174/0113816128347223241021111914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs. OBJECTIVE This study aims to explore the interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics. OBSERVATIONS In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, Nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities. CONCLUSION The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).
Collapse
Affiliation(s)
- Shagufta Jawaid
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Yogesh Joshi
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Nauroz Neelofar
- Department of Obstetrics and Gynae, Himaliyan Institute of Medical Sciences, Swami Rama Himaliyan University, Jollygrand, Dehradun, Uttarakhand, India
| | - Khuzamah Khursheed
- Shri Guru Ram Rai Institute of Medical and Health Sciences, Shri Guru Ram Rai University, Patel Nagar, Dehradun, Uttarakhand, India
| | - Samya Shams
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mansi Chaudhary
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Mitali Arora
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Karan Mahajan
- Department of Pharmacy Practice, School of Pharmaceutical Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | - Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Rayat Pisheh H, Darvishi A, Masoomkhah SS. Amniotic membrane, a novel bioscaffold in cardiac diseases: from mechanism to applications. Front Bioeng Biotechnol 2024; 12:1521462. [PMID: 39758951 PMCID: PMC11696288 DOI: 10.3389/fbioe.2024.1521462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases represent one of the leading causes of death worldwide. Despite significant advances in the diagnosis and treatment of these diseases, numerous challenges remain in managing them. One of these challenges is the need for replacements for damaged cardiac tissues that can restore the normal function of the heart. Amniotic membrane, as a biological scaffold with unique properties, has attracted the attention of many researchers in recent years. This membrane, extracted from the human placenta, contains growth factors, cytokines, and other biomolecules that play a crucial role in tissue repair. Its anti-inflammatory, antibacterial, and wound-healing properties have made amniotic membrane a promising option for the treatment of heart diseases. This review article examines the applications of amniotic membrane in cardiovascular diseases. By focusing on the mechanisms of action of this biological scaffold and the results of clinical studies, an attempt will be made to evaluate the potential of using amniotic membrane in the treatment of heart diseases. Additionally, the existing challenges and future prospects in this field will be discussed.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Darvishi
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
11
|
Carter K, Shah E, Waite J, Rana D, Zhao ZQ. Pathophysiology of Angiotensin II-Mediated Hypertension, Cardiac Hypertrophy, and Failure: A Perspective from Macrophages. Cells 2024; 13:2001. [PMID: 39682749 PMCID: PMC11640308 DOI: 10.3390/cells13232001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/13/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Heart failure is a complex syndrome characterized by cardiac hypertrophy, fibrosis, and diastolic/systolic dysfunction. These changes share many pathological features with significant inflammatory responses in the myocardium. Among the various regulatory systems that impact on these heterogeneous pathological processes, angiotensin II (Ang II)-activated macrophages play a pivotal role in the induction of subcellular defects and cardiac adverse remodeling during the progression of heart failure. Ang II stimulates macrophages via its AT1 receptor to release oxygen-free radicals, cytokines, chemokines, and other inflammatory mediators in the myocardium, and upregulates the expression of integrin adhesion molecules on both monocytes and endothelial cells, leading to monocyte-endothelial cell-cell interactions. The transendothelial migration of monocyte-derived macrophages exerts significant biological effects on the proliferation of fibroblasts, deposition of extracellular matrix proteins, induction of perivascular/interstitial fibrosis, and development of hypertension, cardiac hypertrophy and heart failure. Inhibition of macrophage activation using Ang II AT1 receptor antagonist or depletion of macrophages from the peripheral circulation has shown significant inhibitory effects on Ang II-induced vascular and myocardial injury. The purpose of this review is to discuss the current understanding in Ang II-induced maladaptive cardiac remodeling and dysfunction, particularly focusing on molecular signaling pathways involved in macrophages-mediated hypertension, cardiac hypertrophy, fibrosis, and failure. In addition, the challenges remained in translating these findings to the treatment of heart failure patients are also addressed.
Collapse
Affiliation(s)
| | | | | | | | - Zhi-Qing Zhao
- Cardiovascular Research Laboratory, Mercer University School of Medicine, Savannah, GA 31404, USA
| |
Collapse
|
12
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
13
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
14
|
Jin K, Ma Z, Wang X, Gong C, Sheng J, Chen J, Shen S. The Role of Cardiac Macrophages in Inflammation and Fibrosis after Myocardial Ischemia-Reperfusion. Rev Cardiovasc Med 2024; 25:419. [PMID: 39618853 PMCID: PMC11607502 DOI: 10.31083/j.rcm2511419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 01/03/2025] Open
Abstract
According to current statistics, the mortality rate of cardiovascular diseases remains high, with coronary artery disease being the primary cause of death. Despite the widespread adoption of percutaneous coronary intervention (PCI) in recent years, which has led to a notable decrease in the mortality rate of myocardial infarction (MI), the pathological cardiac remodeling and heart failure that follow myocardial infarction still pose significant clinical challenges. Myocardial ischemia-reperfusion (MIR) injury represents a complex pathophysiological process, and the involvement of macrophages in this injury has consistently been a subject of significant focus. Following MIR, macrophages infiltrate, engulfing tissue debris and necrotic cells, and secreting pro-inflammatory factors. This initial response is crucial for clearing damaged tissue. Subsequently, the pro-inflammatory macrophages (M1) transition to an anti-inflammatory phenotype (M2), a shift that is essential for myocardial fibrosis and cardiac remodeling. This process is dynamic, complex, and continuous. To enhance understanding of this process, this review elaborates on the classification and functions of macrophages within the heart, covering recent research on signaling pathways involved in myocardial infarction through subsequent MIR injury and fibrosis. The ultimate aim is to reduce MIR injury, foster a conducive environment for cardiac recovery, and improve clinical outcomes for MI patients.
Collapse
Affiliation(s)
- Kaiqin Jin
- Department of Cardiology, Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Zijun Ma
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Xiaohe Wang
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Chen Gong
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Jianlong Sheng
- Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, 230001 Hefei, Anhui, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital (Hubei Clinical Research Center of Hypertension), Hubei University of Medicine, 442000 Shiyan, Hubei, China
| | - Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, 230001 Hefei, Anhui, China
| |
Collapse
|
15
|
Burchett A, Siri S, Li J, Lu X, Datta M. Novel 3-D Macrophage Spheroid Model Reveals Reciprocal Regulation of Immunomechanical Stress and Mechano-Immunological Response. Cell Mol Bioeng 2024; 17:329-344. [PMID: 39513012 PMCID: PMC11538219 DOI: 10.1007/s12195-024-00824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Purpose In many diseases, an overabundance of macrophages contributes to adverse outcomes. While numerous studies have compared macrophage phenotype after mechanical stimulation or with varying local stiffness, it is unclear if and how macrophages directly contribute to mechanical forces in their microenvironment. Methods Raw 264.7 murine macrophages were embedded in a confining agarose gel, and proliferated to form spheroids over days/weeks. Gels were synthesized at various concentrations to tune stiffness and were shown to support cell viability and spheroid growth. These cell-agarose constructs were treated with media supplements to promote macrophage polarization. Spheroid geometries were used to computationally model the strain generated in the agarose by macrophage spheroid growth. Agarose-embedded macrophages were analyzed for viability, spheroid size, stress generation, and gene expression. Results Macrophages form spheroids and generate growth-induced mechanical forces (i.e., solid stress) within confining agarose gels, which can be maintained for at least 16 days in culture. Increasing agarose concentration increases gel stiffness, restricts spheroid expansion, limits gel deformation, and causes a decrease in Ki67 expression. Lipopolysaccharide (LPS) stimulation increases spheroid growth, though this effect is reversed with the addition of IFNγ. The mechanosensitive ion channels Piezo1 and TRPV4 have reduced expression with increased stiffness, externally applied compression, LPS stimulation, and M1-like polarization. Conclusions Macrophages alone both respond to and generate solid stress. Understanding how macrophage generation of growth-induced solid stress responds to different environmental conditions will help to inform treatment strategies for the plethora of diseases that involve macrophage accumulation and inflammation. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00824-z.
Collapse
Affiliation(s)
- Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN USA
| |
Collapse
|
16
|
Hofmann U, Frantz S. Cardioprotective effects of glatiramer acetate after ischemic myocardial injury. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1024-1025. [PMID: 39271813 DOI: 10.1038/s44161-024-00517-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
17
|
Cao W, Wang K, Wang J, Chen Y, Gong H, Xiao L, Pan W. Causal relationship between immune cells and risk of myocardial infarction: evidence from a Mendelian randomization study. Front Cardiovasc Med 2024; 11:1416112. [PMID: 39257847 PMCID: PMC11384581 DOI: 10.3389/fcvm.2024.1416112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
Background Atherosclerotic plaque rupture is a major cause of heart attack. Previous studies have shown that immune cells are involved in the development of atherosclerosis, but different immune cells play different roles. The aim of this study was to investigate the causal relationship between immunological traits and myocardial infarction (MI). Methods To assess the causal association of immunological profiles with myocardial infarction based on publicly available genome-wide studies, we used a two-sample mendelian randomization (MR) approach with inverse variance weighted (IVW) as the main analytical method. Sensitivity analyses were used to assess heterogeneity and horizontal pleiotropy. Results A two-sample MR analysis was conducted using IVW as the primary method. At a significance level of 0.001, we identified 47 immunophenotypes that have a significant causal relationship with MI. Seven of these were present in B cells, five in cDC, four in T cells at the maturation stage, six in monocytes, five in myeloid cells, 12 in TBNK cells, and eight in Treg cells. Sensitivity analyses were performed to confirm the robustness of the MR results. Conclusions Our results provide strong evidence that multiple immune cells have a causal effect on the risk of myocardial infarction. This discovery provides a new avenue for the development of therapeutic treatments for myocardial infarction and a new target for drug development.
Collapse
Affiliation(s)
- Wenjing Cao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Kui Wang
- Department of Gastroenterology, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Medical School, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jiawei Wang
- Department of Critical Care Medicine, Jieyang Third People's Hospital, Jieyang, China
| | - Yuhua Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Hanxian Gong
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Lei Xiao
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| | - Wei Pan
- Cardiology Department, Geriatrics Department, Foshan Women and Children Hospital, Foshan, Guangdong, China
| |
Collapse
|
18
|
Li J, Chen P, Ma W. The next frontier in immunotherapy: potential and challenges of CAR-macrophages. Exp Hematol Oncol 2024; 13:76. [PMID: 39103972 DOI: 10.1186/s40164-024-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Chimeric antigen receptor macrophage (CAR-MΦ) represents a significant advancement in immunotherapy, especially for treating solid tumors where traditional CAR-T therapies face limitations. CAR-MΦ offers a promising approach to target and eradicate tumor cells by utilizing macrophages' phagocytic and antigen-presenting abilities. However, challenges such as the complex tumor microenvironment (TME), variability in antigen expression, and immune suppression limit their efficacy. This review addresses these issues, exploring mechanisms of CAR-MΦ action, optimal construct designs, and interactions within the TME. It also delves into the ex vivo manufacturing challenges of CAR-MΦ, discussing autologous and allogeneic sources and the importance of stringent quality control. The potential synergies of integrating CAR-MΦ with existing cancer therapies like checkpoint inhibitors and conventional chemotherapeutics are examined to highlight possible enhanced treatment outcomes. Furthermore, regulatory pathways for CAR-MΦ therapies are scrutinized alongside established protocols for CAR-T cells, identifying unique considerations essential for clinical trials and market approval. Proposed safety monitoring frameworks aim to manage potential adverse events, such as cytokine release syndrome, crucial for patient safety. Consolidating current research and clinical insights, this review seeks to refine CAR-MΦ therapeutic applications, overcome barriers, and suggest future research directions to transition CAR-MΦ therapies from experimental platforms to standard cancer care options.
Collapse
Affiliation(s)
- Jing Li
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Union Hospital, Fujian Medical University Fuzhou, Fujian, 350001, China
| | - Wenxue Ma
- Sanford Stem Cell Institute, Moores Cancer Center, University of California San Diego, CA, 92093, La Jolla, USA.
| |
Collapse
|
19
|
Anitua E, Troya M, Alkhraisat MH. Immunoregulatory role of platelet derivatives in the macrophage-mediated immune response. Front Immunol 2024; 15:1399130. [PMID: 38983851 PMCID: PMC11231193 DOI: 10.3389/fimmu.2024.1399130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Background Macrophages are innate immune cells that display remarkable phenotypic heterogeneity and functional plasticity. Due to their involvement in the pathogenesis of several human conditions, macrophages are considered to be an attractive therapeutic target. In line with this, platelet derivatives have been successfully applied in many medical fields and as active participants in innate immunity, cooperation between platelets and macrophages is essential. In this context, the aim of this review is to compile the current evidence regarding the effects of platelet derivatives on the phenotype and functions of macrophages to identify the advantages and shortcomings for feasible future clinical applications. Methods A total of 669 articles were identified during the systematic literature search performed in PubMed and Web of Science databases. Results A total of 27 articles met the inclusion criteria. Based on published findings, platelet derivatives may play an important role in inducing a dynamic M1/M2 balance and promoting a timely M1-M2 shift. However, the differences in procedures regarding platelet derivatives and macrophages polarization and the occasional lack of information, makes reproducibility and comparison of results extremely challenging. Furthermore, understanding the differences between human macrophages and those derived from animal models, and taking into account the peculiarities of tissue resident macrophages and their ontogeny seem essential for the design of new therapeutic strategies. Conclusion Research on the combination of macrophages and platelet derivatives provides relevant information on the function and mechanisms of the immune response.
Collapse
Affiliation(s)
- Eduardo Anitua
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - María Troya
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| | - Mohammad H. Alkhraisat
- Regenerative Medicine Laboratory, BTI-Biotechnology Institute, Vitoria, Spain
- University Institute for Regenerative Medicine & Oral Implantology, UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain
| |
Collapse
|
20
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
21
|
Burchett A, Siri S, Li J, Lu X, Datta M. Novel 3-D macrophage spheroid model reveals reciprocal regulation of immunomechanical stress and mechano-immunological response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580327. [PMID: 38405787 PMCID: PMC10888788 DOI: 10.1101/2024.02.14.580327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Purpose In many diseases, an overabundance of macrophages contributes to adverse outcomes. While numerous studies have compared macrophage phenotype after mechanical stimulation or with varying local stiffness, it is unclear if and how macrophages themselves contribute to mechanical forces in their microenvironment. Methods Raw 264.7 murine macrophages were embedded in a confining agarose gel, where they proliferated to form spheroids over time. Gels were synthesized at various concentrations to tune the stiffness and treated with various growth supplements to promote macrophage polarization. The spheroids were then analyzed by immunofluorescent staining and qPCR for markers of proliferation, mechanosensory channels, and polarization. Finally, spheroid geometries were used to computationally model the strain generated in the agarose by macrophage spheroid growth. Results Macrophages form spheroids and generate growth-induced mechanical forces (i.e., solid stress) within confining agarose gels, which can be maintained for at least 16 days in culture. Increasing agarose concentration restricts spheroid expansion, promotes discoid geometries, limits gel deformation, and induces an increase in iNOS expression. LPS stimulation increases spheroid growth, though this effect is reversed with the addition of IFN-γ. Ki67 expression decreases with increasing agarose concentration, in line with the growth measurements. Conclusions Macrophages alone both respond to and generate solid stress. Understanding how macrophage generation of growth-induced solid stress responds to different environmental conditions will help to inform treatment strategies for the plethora of diseases that involve macrophage accumulation.
Collapse
Affiliation(s)
- Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN, USA
| | - Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN, USA
| | - Jun Li
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN, USA
| | - Xin Lu
- Department of Biological Sciences, University of Notre Dame, IN, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, IN, USA
| |
Collapse
|