1
|
Kotova S, Kostjuk S, Rochev Y, Efremov Y, Frolova A, Timashev P. Phase transition and potential biomedical applications of thermoresponsive compositions based on polysaccharides, proteins and DNA: A review. Int J Biol Macromol 2023; 249:126054. [PMID: 37532189 DOI: 10.1016/j.ijbiomac.2023.126054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Smart thermoresponsive polymers have long attracted attention as materials of a great potential for biomedical applications, mainly for drug delivery, tissue engineering and wound dressing, with a special interest to injectable hydrogels. Poly-N-isopropylacrylamide (PNIPAM) is the most important synthetic thermoresponsive polymer due to its physiologically relevant transition temperature. However, the use of unmodified PNIPAM encounters such problems as low biodegradability, low drug loading capacity, slow response to thermal stimuli, and insufficient mechanical robustness. The use of natural polysaccharides and proteins in combinations with PNIPAM, in the form of grafted copolymers, IPNs, microgels and physical mixtures, is aimed at overcoming these drawbacks and creating dual-functional materials with both synthetic and natural polymers' properties. When developing such compositions, special attention should be paid to preserving their key property, thermoresponsiveness. Addition of hydrophobic and hydrophilic fragments to PNIPAM is known to affect its transition temperature. This review covers various classes of natural polymers - polysaccharides, fibrous and non-fibrous proteins, DNA - used in combination with PNIPAM for the prospective biomedical purposes, with a focus on their phase transition temperatures and its relation to the natural polymer's structure.
Collapse
Affiliation(s)
- Svetlana Kotova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.
| | - Sergei Kostjuk
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; Department of Chemistry, Belarusian State University, Minsk 220006, Belarus; Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220006, Belarus
| | - Yuri Rochev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; National University of Ireland Galway, Galway H91 CF50, Ireland
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Anastasia Frolova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia; N.N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Yao R, Yu X, Deng R, Zou H, He Q, Huang W, Li C, Zou K. Preparation and Application of Double Network Interpenetrating Colon Targeting Hydrogel Based on Konjac Glucomannan and N-Isopropylacrylamide. Gels 2023; 9:gels9030221. [PMID: 36975670 PMCID: PMC10048581 DOI: 10.3390/gels9030221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Konjac glucomannan (KGM) can be degraded by colon-specific enzymes in the colonic environment, making it one of the materials for treating colonic diseases, which has attracted more and more attention. However, during drug administration, especially in the gastric environment and due to its easy swelling, the structure of KGM is usually destroyed and the drug is released, thereby reducing the bioavailability of the drug. To solve this problem, the easy swelling and drug release properties of KGM hydrogels are avoided by creating interpenetrating polymer network hydrogels. In this study, N-isopropylacrylamide (NIPAM) is first formed into a hydrogel framework under the action of a cross-linking agent to stabilize the gel shape before the gel is heated under alkaline conditions to make KGM molecules wrap around the NIPAM framework. The structure of the IPN(KGM/NIPAM) gel was confirmed using Fourier transform infrared spectroscopy (FT-IR) and x-ray diffractometer (XRD). In the stomach and small intestine, it was found that the release rate and swelling rate of the gel were 30% and 100%, which were lower than 60% and 180% of KGM gel. The experimental results showed that this double network hydrogel has a good colon-directed release profile and fine drug carrier ability. This provides a new idea for the development of konjac glucomannan colon-targeting hydrogel.
Collapse
Affiliation(s)
- Renhua Yao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Xiaoqin Yu
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Rui Deng
- Hubei Hongyu New Packing Material Co., Ltd., 1 Juxiang Avenue, Jiaqueling Town, Yiling District, Yichang 443000, China
| | - Huarong Zou
- Hubei Hongyu New Packing Material Co., Ltd., 1 Juxiang Avenue, Jiaqueling Town, Yiling District, Yichang 443000, China
| | - Qingwen He
- Hubei Hongyu New Packing Material Co., Ltd., 1 Juxiang Avenue, Jiaqueling Town, Yiling District, Yichang 443000, China
| | - Wenfeng Huang
- School of Health Care and Nursing, Hubei Three Gorges Polytechnic, Yichang 443000, China
| | - Chunxiao Li
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Correspondence: (C.L.); (K.Z.)
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Correspondence: (C.L.); (K.Z.)
| |
Collapse
|
3
|
Yu T, Xue P, Ma S, Gu Y, Wang Y, Xu X. Thermal Self‐Protection Behavior of Energy Storage Devices Using a Thermally Responsive Smart Polymer Electrolyte. ChemistrySelect 2022. [DOI: 10.1002/slct.202104499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tiantian Yu
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Pan Xue
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Shaoshuai Ma
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Yifan Gu
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Yutian Wang
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
| | - Xinhua Xu
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan District Tianjin 300072 P. R. China
- School of Materials Science and Engineering Tianjin University Tianjin Key Laboratory of Composite and Functional Materials 135 Yaguan Road, Jinnan DistrictTianjin 300072 P. R. China
| |
Collapse
|
4
|
Petitjean M, García-Zubiri IX, Isasi JR. History of cyclodextrin-based polymers in food and pharmacy: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:3465-3476. [PMID: 33907537 PMCID: PMC8062835 DOI: 10.1007/s10311-021-01244-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/13/2021] [Indexed: 05/08/2023]
Abstract
Cyclodextrins are glucose macrocycles whose inclusional capabilities towards non-polar solutes can be modulated with the help of other macrostructures. The incorporation of cyclodextrin moieties into larger structures produces five types of new materials: crosslinked networks, functionalized chains, amphiphilic cyclodextrins, polyrotaxanes and nanocomposites. This review presents crosslinking and grafting to prepare covalently-attached cyclodextrins, and applications in the food and pharmaceutical sectors, from an historical point of view. In food science, applications include debittering of juices, retention of aromas and release of preservatives from packaging. In biomedical science, cyclodextrin polymers are applied classically to drug release, and more recently to gene delivery and regenerative medicine. The remarkable points are: 1) epichlorohydrin and diisocyanates have been extensively used as crosslinkers since the 1960s, but during the last two decades more complex cyclodextrin polymeric structures have been designed. 2) The evolution of cyclodextrin polymers matches that of macromolecular materials with regard to complexity, functionality and capabilities. 3) The use of cyclodextrin polymers as sorbents in the food sector came first, but smart packaging is now an active challenge. Cyclodextrins have also been recently used to design treatments against the coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Max Petitjean
- Departamento de Química, Facultad de Ciencias, Universidad de Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | | | - José Ramón Isasi
- Departamento de Química, Facultad de Ciencias, Universidad de Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| |
Collapse
|
5
|
Hong KH, Song SC. 3D hydrogel stem cell niche controlled by host-guest interaction affects stem cell fate and survival rate. Biomaterials 2019; 218:119338. [PMID: 31310953 DOI: 10.1016/j.biomaterials.2019.119338] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/05/2019] [Accepted: 07/05/2019] [Indexed: 11/17/2022]
Abstract
Host-guest interaction using β-cyclodextrin (β-CD) and adamantane (Ad) allows facile modulation of guest molecule concentration in 3D hydrogels. Based on this phenomenon, we prepared a thermosensitive poly(organophosphazene) bearing β-CD hydrogel (β-CD PPZ, as host) and Ad-Arg-Gly-Asp (Ad-RGD, as guest). The structures of synthesized thermosensitive β-CD PPZ and Ad-RGD were confirmed by 1H NMR and FT-IR. The β-CD PPZ/Ad-RGD mixture was prepared by simple mixing and elicited thermosensitive properties with the formation of gelation in all Ad-RGDs mixing proportions at the body temperature. Strong and controlled host-guest interactions between β-CD PPZ and Ad-RGD were observed in 2D-NOESY, DLS, and TEM. Regulated MSC behaviors were elicited based on the use of controlled Ad-RGD amounts at the level of in vitro and in vivo. As the amount of Ad-RGD was increased in the β-CD PPZ hydrogel, MSC survival rate was enhanced and was prone to express osteogenic factors. While Ad-RGD is absent or low in hydrogel, relatively poor MSC survival rate and adipogenesis were exhibited. Altogether, we verified that survival rate and differentiation of MSCs could be controlled by host-guest interaction system with thermosensitive 3D hydrogel. This proposed 3D hydrogel controlling system with host-guest interaction is expected to be a platform technology as changing guest molecules.
Collapse
Affiliation(s)
- Ki Hyun Hong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Soo-Chang Song
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science & Technology, Seoul, 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
6
|
Bashari A, Hemmatinejad N, Pourjavadi A. Smart and Fragrant Garment via Surface Modification of Cotton Fabric With Cinnamon Oil/Stimuli Responsive PNIPAAm/Chitosan Nano Hydrogels. IEEE Trans Nanobioscience 2017; 16:455-462. [DOI: 10.1109/tnb.2017.2710630] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Hu X, Zou C. Pentaerythrityl tetra-β-cyclodextrin: Synthesis, characterization and application in multiple responses hydrogel. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Yi P, Wang Y, Zhang S, Zhan Y, Zhang Y, Sun Z, Li Y, He P. Stimulative nanogels with enhanced thermosensitivity for therapeutic delivery via β-cyclodextrin-induced formation of inclusion complexes. Carbohydr Polym 2017; 166:219-227. [PMID: 28385226 DOI: 10.1016/j.carbpol.2017.02.107] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 01/21/2023]
Abstract
To explore the potential biomedical application of thermoresponsive nanosystems, it is important to enhance their thermosensitivity to improve the controllability in delivery of therapeutic agents. The present work develops multifunctional nanogels with enhanced thermosensitivity through copolymerization of N-isopropylacrylamide (NIPAM) and acrylic acid (AA) in the presence of β-cyclodextrin (β-CD), using N,N'-bis(acryloyl)cystamine (BAC) as a biodegradable crosslinker. The resulting nanogels display significantly improved sensitivity in deswelling (swelling) behavior upon temperature increase (decrease) around body temperature. The nanogels can effectively encapsulate doxorubicin (DOX), which can be released in an accelerated way under microenvironments that mimic intracellular reductive conditions and acidic tumor tissues. Release can also be remotely manipulated by increasing temperature. In vitro study indicates that the nanogels are quickly taken up by KB cells (a human epithelial carcinoma cell line), exerting improved anticancer cytotoxicity, showing their potential for delivery of therapeutic agents beyond anticancer drugs.
Collapse
Affiliation(s)
- Panpan Yi
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yifeng Wang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Shihao Zhang
- The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Zhan
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuhong Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Zhengguang Sun
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yulin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China; The State Key Laboratory of Bioreactor Engineering and Key Laboratory for Ultrafine Materials of Ministry of Education, Key Laboratory for Ultrafine Materials of Ministry of Education, Engineering Research Centre for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal.
| | - Peixin He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Ministry of Education, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.
| |
Collapse
|
9
|
Thatiparti TR, Juric D, von Recum HA. Pseudopolyrotaxane Formation in the Synthesis of Cyclodextrin Polymers: Effects on Drug Delivery, Mechanics, and Cell Compatibility. Bioconjug Chem 2017; 28:1048-1058. [DOI: 10.1021/acs.bioconjchem.6b00721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Thimma R. Thatiparti
- Department of Biomedical
Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Dajan Juric
- Department of Biomedical
Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Horst A. von Recum
- Department of Biomedical
Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
10
|
Haq MA, Su Y, Wang D. Mechanical properties of PNIPAM based hydrogels: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 70:842-855. [PMID: 27770962 DOI: 10.1016/j.msec.2016.09.081] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/13/2016] [Accepted: 09/29/2016] [Indexed: 11/26/2022]
Abstract
Materials which adjust their properties in response to environmental factors such as temperature, pH and ionic strength are rapidly evolving and known as smart materials. Hydrogels formed by smart polymers have various applications. Among the smart polymers, thermoresponsive polymer poly(N-isopropylacrylamide)(PNIPAM) is very important because of its well defined structure and property specially its temperature response is closed to human body and can be finetuned as well. Mechanical properties are critical for the performance of stimuli responsive hydrogels in diverse applications. However, native PNIPAM hydrogels are very fragile and hardly useful for any practical purpose. Intense researches have been done in recent decade to enhance the mechanical features of PNIPAM hydrogel. In this review, several strategies including interpenetrating polymer network (IPN), double network (DN), nanocomposite (NC) and slide ring (SR) hydrogels are discussed in the context of PNIPAM hydrogel.
Collapse
Affiliation(s)
- Muhammad Abdul Haq
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; Laboratory of Food Engineering, Department of Food Science & Technology, University of Karachi, Karachi, Pakistan
| | - Yunlan Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Dujin Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
11
|
Zhao H, Gao J, Liu R, Zhao S. Stimulus-responsiveness and methyl violet release behaviors of poly(NIPAAm-co-AA) hydrogels chemically crosslinked with β-cyclodextrin polymer bearing methacrylates. Carbohydr Res 2016; 428:79-86. [DOI: 10.1016/j.carres.2016.04.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 11/27/2022]
|
12
|
Novel fast thermal-responsive poly(N-isopropylacrylamide) hydrogels with functional cyclodextrin interpenetrating polymer networks for controlled drug release. JOURNAL OF POLYMER RESEARCH 2015. [DOI: 10.1007/s10965-015-0720-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Amiri S, Duroux L, Nielsen TT, Larsen KL. Preparation and characterization of a temperature-sensitive nonwoven poly(propylene) with increased affinity for guest molecules. J Appl Polym Sci 2014. [DOI: 10.1002/app.40497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Setareh Amiri
- Department of Biotechnology; Chemistry and Environmental Engineering, Aalborg University; Aalborg Denmark
| | - Laurent Duroux
- Department of Biotechnology; Chemistry and Environmental Engineering, Aalborg University; Aalborg Denmark
| | - Thorbjørn Terndrup Nielsen
- Department of Biotechnology; Chemistry and Environmental Engineering, Aalborg University; Aalborg Denmark
| | - Kim Lambertsen Larsen
- Department of Biotechnology; Chemistry and Environmental Engineering, Aalborg University; Aalborg Denmark
| |
Collapse
|
14
|
Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2013.09.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Hydrophobic nanocarriers embedded in a novel dual-responsive poly(N-isopropylacrylamide)/chitosan/(β-cyclodextrin) nanohydrogel. JOURNAL OF POLYMER RESEARCH 2013. [DOI: 10.1007/s10965-013-0256-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Concheiro A, Alvarez-Lorenzo C. Chemically cross-linked and grafted cyclodextrin hydrogels: from nanostructures to drug-eluting medical devices. Adv Drug Deliv Rev 2013; 65:1188-203. [PMID: 23631979 DOI: 10.1016/j.addr.2013.04.015] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 12/13/2022]
Abstract
The unique ability of cyclodextrins (CDs) to form inclusion complexes can be transmitted to polymeric networks in which CDs are chemically grafted or cross-linked. Combination of CDs and hydrogels in a single material leads to synergic properties: the hydrophilic network enhances biocompatibility and prevents dilution in the physiological medium increasing the stability of the inclusion complexes, while CDs finely tune the mechanical features and the stimuli-responsiveness and provide affinity-based regulation of drug loading and release. Therefore, CD-functionalized materials are opening new perspectives in pharmacotherapy, emerging as advanced delivery systems (DDS) for hydrophobic and hydrophilic drugs to be administered via almost any route. Medical devices (catheters, prosthesis, vascular grafts, bone implants) can also benefit from surface grafting or thermofixation of CDs. The present review focuses on the approaches tested to synthesize nano- to macro-size covalently cross-linked CD networks: i) direct cross-linking through condensation with di- or multifunctional reagents, ii) copolymerization of CD derivatives with acrylic/vinyl monomers, and iii) grafting of CDs to preformed medical devices. Examples of the advantages of having the CDs chemically bound among themselves and to substrates are provided and their applicability in therapeutics discussed.
Collapse
|
17
|
Mishra RK, Ramasamy K, Ban NN, Majeed ABA. Synthesis of poly[3-(methacryloylamino) propyl trimethylammonium chloride-co-methacrylic acid] copolymer hydrogels for controlled indomethacin delivery. J Appl Polym Sci 2012. [DOI: 10.1002/app.38491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Mishra RK, Ramasamy K, Majeed ABA. pH-responsive poly(DMAPMA-co-HEMA)-based hydrogels for prolonged release of 5-fluorouracil. J Appl Polym Sci 2012. [DOI: 10.1002/app.36714] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Butun S, Sahiner N. A versatile hydrogel template for metal nano particle preparation and their use in catalysis. POLYMER 2011. [DOI: 10.1016/j.polymer.2011.08.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Huang Y, Liu M, Wang L, Gao C, Xi S. A novel triple-responsive poly(3-acrylamidephenylboronic acid-co-2-(dimethylamino) ethyl methacrylate)/(β-cyclodextrin-epichlorohydrin)hydrogels: Synthesis and controlled drug delivery. REACT FUNCT POLYM 2011. [DOI: 10.1016/j.reactfunctpolym.2011.03.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Release characteristics and antibacterial activity of solid state eugenol/β-cyclodextrin inclusion complex. J INCL PHENOM MACRO 2011. [DOI: 10.1007/s10847-011-9928-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
|
23
|
Wang T, Li B, Feng Y, Guo Q. Preparation, quantitive analysis and bacteriostasis of solid state iodine inclusion complex with β-cyclodextrin. J INCL PHENOM MACRO 2010. [DOI: 10.1007/s10847-010-9836-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Otero-Espinar F, Torres-Labandeira J, Alvarez-Lorenzo C, Blanco-Méndez J. Cyclodextrins in drug delivery systems. J Drug Deliv Sci Technol 2010. [DOI: 10.1016/s1773-2247(10)50046-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Affiliation(s)
- Akira Harada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Akihito Hashidzume
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Hiroyasu Yamaguchi
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
26
|
pH Sensitive hydrogels based on acryl amides and their swelling and diffusion characteristics with drug delivery behavior. Polym Bull (Berl) 2008. [DOI: 10.1007/s00289-008-0011-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Shan T, Chen J, Yang L, Jie S, Qian Q. Radiation preparation and characterization of pH-sensitive hydrogel of acrylic acid/cyclodextrin based copolymer. J Radioanal Nucl Chem 2008. [DOI: 10.1007/s10967-007-7271-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Zhang JT, Liu XL, Fahr A, Jandt KD. A new strategy to prepare temperature-sensitive poly(N-isopropylacrylamide) microgels. Colloid Polym Sci 2008. [DOI: 10.1007/s00396-008-1890-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Ling Y, Lu M. Preparation and Characterization of pH and Temperature Dual Responsive-, Poly(N-isopropylacrylamide-co-itaconic acid) Hydrogels Using DMF and Water as Mixed Solvents. Polym J 2008. [DOI: 10.1295/polymj.pj2007213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Yang M, Chu LY, Xie R, Wang C. Molecular-Recognition-Induced Phase Transitions of Two Thermo-Responsive Polymers with Pendentβ-Cyclodextrin Groups. MACROMOL CHEM PHYS 2008. [DOI: 10.1002/macp.200700359] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Rodriguez-Tenreiro C, Diez-Bueno L, Concheiro A, Torres-Labandeira JJ, Alvarez-Lorenzo C. Cyclodextrin/carbopol micro-scale interpenetrating networks (ms-IPNs) for drug delivery. J Control Release 2007; 123:56-66. [PMID: 17761336 DOI: 10.1016/j.jconrel.2007.07.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/23/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
Abstract
Cross-linking of hydroxypropyl-beta-cyclodextrin (HP beta CD) with ethyleneglycol diglycidylether (EGDE) in carbopol dispersions enabled the synthesis of cyclodextrin hydrogels with domains of interpenetrating acrylic microgels (micro-scale-IPNs) in a single step under mild conditions. As carbopol proportion increased, the hardness and compressibility of the ms-IPNs decreased, but their bioadhesion force and pH-responsiveness rose. Control HP beta CD hydrogel and ms-IPNs were loaded with estradiol and ketoconazole by immersion in drug suspensions, some of which were autoclaved to enhance (up to a 50%) drug/cyclodextrin affinity. ms-IPNs prepared with 0.8% or 1.0% carbopol showed the highest loading due to their greater swelling degree and, consequently, mesh size. The total loading of the ms-IPNs greatly exceeded (up to 200-fold) the amount dissolved in their aqueous phase, which highlights the main role of drug complexation with the cross-linked cyclodextrins. The affinity of the drug for HP beta CD sustained the release for several days; the rate being also dependent on carbopol content and on pH of the medium. Therefore, an adequate design of the HP beta CD/carbopol ms-IPNs provides a single material with tunable mechanical properties, in which the complexation ability of cyclodextrins is combined with the bioadhesive and pH-responsive properties of carbopol. The ms-IPNs are potentially useful as vehicles of relatively hydrophobic substances.
Collapse
Affiliation(s)
- Carmen Rodriguez-Tenreiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
32
|
Wang HD, Chu LY, Yu XQ, Xie R, Yang M, Xu D, Zhang J, Hu L. Thermosensitive Affinity Behavior of Poly(N-isopropylacrylamide) Hydrogels with β-Cyclodextrin Moieties. Ind Eng Chem Res 2007. [DOI: 10.1021/ie061265a] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hai-Dong Wang
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang-Yin Chu
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiao-Qi Yu
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Rui Xie
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mei Yang
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Dan Xu
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Zhang
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lin Hu
- Schools of Chemical Engineering, and Chemistry, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
33
|
Rodriguez-Tenreiro C, Alvarez-Lorenzo C, Rodriguez-Perez A, Concheiro A, Torres-Labandeira JJ. New Cyclodextrin Hydrogels Cross-Linked with Diglycidylethers with a High Drug Loading and Controlled Release Ability. Pharm Res 2006; 23:121-30. [PMID: 16320002 DOI: 10.1007/s11095-005-8924-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 10/03/2005] [Indexed: 10/25/2022]
Abstract
PURPOSE The goal of the study is to develop new hydrogels based on cyclodextrins cross-linked with ethyleneglycol diglycidylether (EGDE) under mild conditions, to be used as carriers of amphiphilic drugs. Also, it aims to characterize the cross-linking and the drug loading and release processes. METHODS The cross-linking of hydroxypropyl-beta-cyclodextrin (HPbetaCD) with EGDE, in the absence or presence of hydroxypropylmethylcellulose (HPMC) Methocel K4M, was optimized applying oscillatory rheometry and Fourier transform infrared. Hydrogels were characterized regarding swelling in water, ability to load diclofenac, and release after different drying treatments. RESULTS Solutions of HPbetaCD (14.28%), without or with HPMC (0.2-1.0%), provided firm and transparent hydrogels after cross-linking with EGDE (14.28%), in which around two thirds of the OH groups were cross-linked. The incorporation of HPMC progressively reduced the gel time and the swelling degree of hydrogels. HPbetaCD hydrogels efficiently loaded diclofenac and sustained the release for several hours. The presence of HPMC slowed the release from swollen hydrogels, but promoted it from hydrogels dried before the loading and also before the release. CONCLUSIONS HPbetaCD hydrogels with good mechanical properties and tunable loading and release ability can be obtained by direct cross-linking with EGDE.
Collapse
Affiliation(s)
- Carmen Rodriguez-Tenreiro
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
34
|
Alvarez-Lorenzo C, Concheiro A. Molecularly imprinted materials as advanced excipients for drug delivery systems. BIOTECHNOLOGY ANNUAL REVIEW 2006; 12:225-68. [PMID: 17045196 DOI: 10.1016/s1387-2656(06)12007-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The application of the molecular imprinting technology in the design of new drug delivery systems (DDS) and devices useful in closely related fields, such as diagnostic sensors or biological traps, is receiving increasing attention. Molecular imprinting technology can provide polymeric materials with the ability to recognize specific bioactive molecules and with a sorption/release behaviour that can be made sensitive to the properties of the surrounding medium. In this review, an introduction to the imprinting technology presenting the different approaches in preparing selective polymers of different formats is given, and the key factors involved in obtaining of imprinted binding sites in materials useful for pharmaceutical applications are analysed. Examples of DDS based on molecularly imprinted polymers (MIPs) can be found for the three main approaches developed to control the moment at which delivery should begin and/or the drug release rate; i.e., rate-programmed, activation-modulated or feedback-regulated drug delivery. This review seeks to highlight the most remarkable advantages of the imprinting technique in the development of new efficient DDS as well as to point out some possibilities of adapting the synthesis procedures to create systems compatible with both the relative instable drug molecules, especially of peptide nature, and the sensitive physiological tissues with which MIP-based DDS would enter into contact when administered. The prospects for future development are also analysed.
Collapse
Affiliation(s)
- Carmen Alvarez-Lorenzo
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782-Santiago de Compostela, Spain.
| | | |
Collapse
|
35
|
Zhang JT, Huang SW, Zhuo RX. A novel sol–gel strategy to prepare temperature-sensitive hydrogel for encapsulation of protein. Colloid Polym Sci 2005. [DOI: 10.1007/s00396-005-1357-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Literature Alerts. Drug Deliv 2005. [DOI: 10.1080/10717540500201502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|