1
|
Luviano AS, Figueroa-Gerstenmaier S, Sarmiento-Gómez E, Rincón-Londoño N. “Non-disruptive Mixing of Cyclodextrins and Wormlike Micelles in the non-dilute regime”. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Bhattarai A. Studies of aggregation properties of surfactant with and without polyelectrolyte in water and binary mixture of methanol-water from the surface tension measurements. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113438] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Luviano AS, Hernández-Pascacio J, Ondo D, Campbell RA, Piñeiro Á, Campos-Terán J, Costas M. Highly viscoelastic films at the water/air interface: α-Cyclodextrin with anionic surfactants. J Colloid Interface Sci 2019; 565:601-613. [PMID: 32032852 DOI: 10.1016/j.jcis.2019.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023]
Abstract
This work showcases the remarkable viscoelasticity of films consisting of α-cyclodextrin (α-CD) and anionic surfactants (S) at the water/air interface, the magnitude of which has not been observed in similar systems. The anionic surfactants employed are sodium salts of a homologous series of n-alkylsulfates (n = 8-14) and of dodecylsulfonate. Our hypothesis was that the very high viscoelasticity can be systematically related to the bulk and interfacial properties of the system. Through resolution of the bulk distribution of species using isothermal titration calorimetry, the high dilatational modulus is related to (α-CD)2:S1 inclusion complexes in the bulk with respect to both the bulk composition and temperature. Direct interfacial characterization of α-CD and sodium dodecylsulfate films at 283.15 K using ellipsometry and neutron reflectometry reveals that the most viscoelastic films consist of a highly ordered monolayer of 2:1 complexes with a minimum amount of any other component. The orientation of the complexes in the films and their driving force for adsorption are discussed in the context of results from molecular dynamics simulations. These findings open up clear potential for the design of new functional materials or molecular sensors based on films with specific mechanical, electrical, thermal, chemical, optical or even magnetic properties.
Collapse
Affiliation(s)
- Alberto S Luviano
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico; Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, CdMx, Mexico
| | - Jorge Hernández-Pascacio
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico
| | - Daniel Ondo
- Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Richard A Campbell
- Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom.
| | - Ángel Piñeiro
- Departamento de Física de Aplicada, Facultade de Física, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain.
| | - José Campos-Terán
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe, Delegación Cuajimalpa de Morelos, 05348, CdMx, Mexico; Lund Institute of Advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, 223 70 Lund, Sweden.
| | - Miguel Costas
- Laboratorio de Biofisicoquímica, Departamento de Fisicoquímica, Facultad de Química, Universidad Nacional Autónoma de México, CdMx 04510, Mexico.
| |
Collapse
|
4
|
Bhattarai A. Micellization behavior of cetyltrimethylammonium bromide in the absence and presence of sodium polystyrene sulfonate in water and methanol-water mixture: A conductivity approach. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111352] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Zhao HT, Ma S, Zheng SY, Han SW, Yao FX, Wang XZ, Wang SS, Feng K. β-cyclodextrin functionalized biochars as novel sorbents for high-performance of Pb 2+ removal. JOURNAL OF HAZARDOUS MATERIALS 2019; 362:206-213. [PMID: 30240994 DOI: 10.1016/j.jhazmat.2018.09.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/26/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to synthesize the functionalized biochars with β-cyclodextrin (β-CD), compare the two kinds of adsorption capability, and try to explore the possible mechanism for the adsorption Pb2+ by β-CD functionalized rice straw and palm biochars in the aquatic environment. The performance of the functionalized biochars was matched against the activated and raw biochars. Rice straw biochar loaded with β-CD performed better than functionalized palm biochar with the adsorption capabilities of 130.60 mg/g and 90.30 mg/g at Pb2+ concentration of 3000 mg/L and 2000 mg/L, respectively. Maximum adsorption capability of functionalized rice straw and palm biochars from the Langmuir isotherms were all fitted out to be 131.24 mg/g and 118.08 mg/g for Pb2+. Kinetics and thermodynamics are combined to investigate the Pb2+ removal by the two functionalized biochars, e.g, Pb2+ is mainly removed by chemical process for functionalized palm biochar, whereas by both physical and chemical factors for functionalized rice straw biochar.
Collapse
Affiliation(s)
- Hai-Tao Zhao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Shuai Ma
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Sheng-Yang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Shu-Wen Han
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Fen-Xia Yao
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Xiao-Zhi Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Sheng-Sen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China
| | - Ke Feng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
6
|
Milcovich G, Antunes FE, Grassi M, Asaro F. Stabilization of unilamellar catanionic vesicles induced by β-cyclodextrins: A strategy for a tunable drug delivery depot. Int J Pharm 2018; 548:474-479. [DOI: 10.1016/j.ijpharm.2018.07.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/01/2022]
|
7
|
Yue X, Chen X, Li Q, Qian Z. Soft aggregates formed by a nonionic phytosterol ethoxylate and β-cyclodextrin in aqueous solution. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.03.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Adsorption and electrokinetic properties in the system: Beta-cyclodextrin/alumina in the presence of ionic and non-ionic surfactants. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Use of liquid crystals for imaging different inclusion abilities of α-cyclodextrin and β-cyclodextrin toward cetyltrimethyl ammonium bromide. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Li S, Xing P, Hou Y, Yang J, Yang X, Wang B, Hao A. Formation of a sheet-like hydrogel from vesicles via precipitates based on an ionic liquid-based surfactant and β-cyclodextrin. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.08.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Abstract
Hydroxyapatite (HA) is a bioceramics that commonly used as bone substitute materials, coating materials and scaffolds in orthopedics. It is well known for its remarkable biocompatibility with natural human tissue. However, synthetic HA is different from biological apatite whereby apatites contain carbonate ion which is about 3-8wt% of the hard tissues of human body which described as carbonated hydroxyapatite (CHA). Hence, synthetic CHA may have a better bioactivity than HA and more widely used as biomaterials. This study described the synthesis and characterization of nanoporous carbonated hydroxyapatite (CHA) by co-precipitation method through self-organization mechanism with different type of non-ionic surfactants (P123 and F127). Diammonium hydrogen phosphate, (NH4)2HPO4 and calcium nitrate tetrahydrate, Ca (NO3)2.4H2O were used as starting materials for preparing the precursor for CHA powder. The ammonium carbonate, NH4HCO3 was used as the main source for carbonate ion. Synthesized powder was characterized using XRD, FESEM, EDS and FTIR. From the XRD result, pure HA phase was obtained for all samples. FTIR analysis results obviously showed the substitution of carbonate ion into the apatite and confirm the formation of CHA. The FTIR results also demonstrated that the surfactants had been removed completely through calcination process. SEM image revealed a sphere-like particle shape of CHA was produced after the calcinations. The mesoporous CHA with pore size 2-12 nm (F127) and 2-8 nm (P123) was synthesized.
Collapse
|
12
|
Carlstedt J, Lundberg D, Dias RS, Lindman B. Condensation and decondensation of DNA by cationic surfactant, spermine, or cationic surfactant-cyclodextrin mixtures: macroscopic phase behavior, aggregate properties, and dissolution mechanisms. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7976-7989. [PMID: 22546152 DOI: 10.1021/la300266h] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The macroscopic phase behavior and other physicochemical properties of dilute aqueous mixtures of DNA and the cationic surfactant hexadecyltrimethylammounium bromide (CTAB), DNA and the polyamine spermine, or DNA, CTAB, and (2-hydroxypropyl)-β-cyclodextrin (2HPβCD) were investigated. When DNA is mixed with CTAB we found, with increasing surfactant concentration, (1) free DNA coexisting with surfactant unimers, (2) free DNA coexisting with aggregates of condensed DNA and CTAB, (3) a miscibility gap where macroscopic phase separation is observed, and (4) positively overcharged aggregates of condensed DNA and CTAB. The presence of a clear solution beyond the miscibility gap cannot be ascribed to self-screening by the charges from the DNA and/or the surfactant; instead, hydrophobic interactions among the surfactants are instrumental for the observed behavior. It is difficult to judge whether the overcharged mixed aggregates represent an equilibrium situation or not. If the excess surfactant was not initially present, but added to a preformed precipitate, redissolution was, in consistency with previous reports, not observed; thus, kinetic effects have major influence on the behavior. Mixtures of DNA and spermine also displayed a miscibility gap; however, positively overcharged aggregates were not identified, and redissolution with excess spermine can be explained by electrostatics. When 2HPβCD was added to a DNA-CTAB precipitate, redissolution was observed, and when it was added to the overcharged aggregates, the behavior was essentially a reversal of that of the DNA-CTAB system. This is attributed to an effectively quantitative formation of 1:1 2HPβCD-surfactant inclusion complexes, which results in a gradual decrease in the concentration of effectively available surfactant with increasing 2HPβCD concentration.
Collapse
Affiliation(s)
- Jonas Carlstedt
- Physical Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Lund, Sweden.
| | | | | | | |
Collapse
|
13
|
Carlstedt J, Bilalov A, Krivtsova E, Olsson U, Lindman B. Cyclodextrin-surfactant coassembly depends on the cyclodextrin ability to crystallize. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:2387-2394. [PMID: 22217424 DOI: 10.1021/la203673w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Full equilibrium phase diagrams are presented for two ternary systems composed of the cationic surfactant dodecyltrimethylammonium bromide (DTAB), water (D(2)O), and a cyclodextrin, either β-cyclodextrin (β-CD) or (2-hydroypropyl)-β-cyclodextrin (2HPβCD). (2)H NMR, SAXS, WAXS, and visual examination were used to determine the phase boundaries and characterize the nature of the phases formed. Additionally, diffusion (1)H NMR was used to investigate parts of the diagrams. The water solubility of 2HPβCD is 80% (w/w), whereas it is only 1.85% (w/w) for β-CD. Solubility increases for both species upon complexation with DTAB; while the increase is minute for 2HPβCD, it is dramatic for β-CD. Both systems displayed an isotropic liquid solution (L(1)) one-phase region, the extension of which differs extensively between the two systems. Additionally, the DTAB:2HPβCD:water system also comprised a normal hexagonal (H(1)) area, which was not found for the DTAB:β-CD:water system. In the DTAB:β-CD:water system, on the other hand, we found cocrystallization of DTAB and β-CD. From this work we conclude that DTAB and CD molecules form 1:1 inclusion complexes with high affinities. Moreover, we observed indications of an association of 2HPβCD to DTAB micelles in the isotropic solution phase, which was not the case for β-CD and DTAB micelles. This is, to our knowledge, the first complete phase diagrams of surfactant-CD mixtures; as a novel feature it includes the observation of cocrystallization at high concentrations.
Collapse
Affiliation(s)
- Jonas Carlstedt
- Physical Chemistry, Center of Chemistry and Chemical Engineering, Lund University, POB 124, 221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|
14
|
Complexation approach for fixed dose tablet formulation of lopinavir and ritonavir: an anomalous relationship between stability constant, dissolution rate and saturation solubility. J INCL PHENOM MACRO 2011. [DOI: 10.1007/s10847-011-0022-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Kandadai MA, Mohan P, Lin G, Butterfield A, Skliar M, Magda JJ. Comparison of surfactants used to prepare aqueous perfluoropentane emulsions for pharmaceutical applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:4655-60. [PMID: 20218695 PMCID: PMC2866627 DOI: 10.1021/la100307r] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Perfluoropentane (PFP), a very hydrophobic, nontoxic, noncarcinogenic fluoroalkane, has generated much interest in biomedical applications, including occlusion therapy and controlled drug delivery. For most of these applications, the dispersion within aqueous media of a large quantity of PFP droplets of the proper size is critically important. Surprisingly, the interfacial tension of PFP against water in the presence of surfactants used to stabilize the emulsion has rarely, if ever, been measured. In this study, we report the interfacial tension of PFP in the presence of surfactants used in previous studies to produce emulsions for biomedical applications: polyethylene oxide-co-polylactic acid (PEO-PLA) and polyethylene oxide-co-poly-epsilon-caprolactone (PEO-PCL). Because both of these surfactants are uncharged diblock copolymers that rely on the mechanism of steric stabilization, we also investigate for comparison's sake the use of the small-molecule cationic surfactant cetyl trimethyl ammonium bromide (CTAB) and the much larger protein surfactant bovine serum albumin (BSA). The results presented here complement previous reports of the PFP droplet size distribution and will be useful for determining to what extent the interfacial tension value can be used to control the mean PFP droplet size.
Collapse
Affiliation(s)
- Madhuvanthi A Kandadai
- Department of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | |
Collapse
|