1
|
Yin L, Gao K, Mao X, Hu Y. Lipase B from Candida antarctica immobilized on amphiphilic Janus halloysite nanosheet and application in biphasic interface conversion. Food Chem 2024; 437:137787. [PMID: 37897826 DOI: 10.1016/j.foodchem.2023.137787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
Lipase B from Candida antarctica (CALB) plays a prominent role as a biocatalyst in several industries, especially for biphasic conversion of functional lipids. Herein, an amphiphilic Janus halloysite nanosheet (JHNS) was fabricated and employed simultaneously as a solid surfactant for stabilizing Pickering emulsion and as a carrier for immobilizing CALB, with the aim to realize highly efficient biphasic bioconversion. The obtained JHNS could stabilize Pickering emulsion for at least 7 days. Immobilization of CALB on JHNS improved the substrate affinity, catalytic efficiency, thermal stability, and alkaline tolerance of the enzyme. Moreover, JHNS-based immobilized CALB was exploited as a biocatalytic platform for the conversion of retinyl acetate, with almost twice increase in conversion efficiency. Taken together, the JHNS-based immobilized CALB paves the way for the design of efficient biphasic conversion system for the production of added-value lipids.
Collapse
Affiliation(s)
- Lili Yin
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Kunpeng Gao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China
| | - Xiangzhao Mao
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Yang Hu
- Qingdao Key Laboratory of Food Biotechnology, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, PR China; Key Laboratory of Biological Processing of Aquatic Products, China National Light Industry, Qingdao 266404, PR China.
| |
Collapse
|
2
|
Kanno K, Sase G, McNamee CE. Use of Mixed Langmuir Films of Nanoparticles to Form Metal Oxide Materials with the Optimal Surface Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7643-7654. [PMID: 34125554 DOI: 10.1021/acs.langmuir.1c00388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We aimed to prepare metal oxide materials with the optimal surface charge by preparing mixed films of non-modified metal oxide nanoparticles (NPs) with dissimilar isoelectric points (iep). The purpose of preparing such surfaces was to expand the use of metal oxide materials in environments where the solution pH cannot be changed. Langmuir films of SiO2 (iep: pH 2-3) and TiO2 (iep: pH 5-6.6) NPs were first prepared at air-100 mM NaCl aqueous interfaces. This subphase allowed the formation of stable films of the NPs without the need to modify the NPs with surface-active chemicals, whose presence may detrimentally change the properties of the films. The Langmuir films were then transferred and sintered to silicon wafers and their physical properties were characterized using atomic force microscopy (AFM). The AFM images showed that the films were composed of NP aggregates. The average size of the aggregates decreased, and the uniformity of the aggregate sizes and their inter-aggregate spacing increased with the addition of SiO2 NPs to the film of TiO2 NPs. These changes were explained by an increased electrostatic and steric repulsion between the aggregates formed at the air-100 mM NaCl interface due to the adsorption of negatively charged SiO2 NPs to the slightly positively charged TiO2 aggregates. The force-distance curves measured between a SiO2 probe and the sintered films of SiO2 and/or TiO2 NPs in a 1.0 mM NaCl solution adjusted to pH 4 showed that the magnitude of the repulsive force decreased with an increased number of TiO2 NPs in the film. This force change indicated that the surface charge changed when different types of NPs were mixed. These results indicate that mixing different NP types in a Langmuir film at an air-aqueous interface can help change the physical properties of the transferred film.
Collapse
Affiliation(s)
- Koutarou Kanno
- Shinshu University, Tokida 3-15-1, Ueda-shi 386-8567, Nagano-ken, Japan
| | - Genki Sase
- Shinshu University, Tokida 3-15-1, Ueda-shi 386-8567, Nagano-ken, Japan
| | - Cathy E McNamee
- Shinshu University, Tokida 3-15-1, Ueda-shi 386-8567, Nagano-ken, Japan
| |
Collapse
|
3
|
Optimization and Analysis of a Slow-Release Permanganate Gel for Groundwater Remediation in Porous and Low-Permeability Media. WATER 2021. [DOI: 10.3390/w13060755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Dense nonaqueous phase liquids (DNAPLs) like trichloroethylene (TCE) serve as the most common form of groundwater pollution in the world. Potassium permanganate (KMnO4) is a strong oxidant that can quickly destroy DNAPLs into innocuous products. Slow-release permanganate gel (SRPG), a mixture of colloidal silica (CS) and KMnO4, has been recently developed as novel treatment option for dilute and large plumes of DNAPLs in groundwater. The objective of this study was to characterize and optimize gelling and release properties of a SRPG solution in saturated porous media. It was hypothesized that CS and KMnO4 content of the SRPG constrain gelation and release duration. Batch and column tests showed that gelation could be delayed through manipulation of the KMnO4 content. In column tests, silica content had little effect on the gelation lag stage and release rate but influenced duration of permanganate release. Flow tank tests comparing Bindzil 1440 (B-40) SRPGs with pure KMnO4 solutions under varying media conditions demonstrated that the presence of CS enhanced lateral spread and prolonged release duration of the oxidant.
Collapse
|
4
|
Wu H, Niu G, Ren W, Jiang L, Liang O, Zhao J, Liu Y, Xie YH. Crucial Impact of Hydrophilicity on the Self-Assembled 2D Colloidal Crystals Using Langmuir-Blodgett Method. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10061-10068. [PMID: 32787067 DOI: 10.1021/acs.langmuir.0c01168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Large-scale close-packed two-dimensional (2D) colloidal crystal with high coverage is indispensable for various promising applications. The Langmuir-Blodgett (LB) method is a powerful technique to prepare 2D colloidal crystals. However, the self-assembly and movement of microspheres during the whole LB process are less analyzed. In this study, we clarify the crucial impact of hydrophilicity of the microspheres on their self-assembly in the LB process and on the properties of the prepared 2D colloidal crystals. The characteristic surface pressure-area isotherms of the microspheres have been analyzed and adjusted by only counting the quantity of the microspheres on the water surface, which leads to more accurate results. The critical surface pressures for hydrophilic and hydrophobic microspheres are about 61 and 46 mN/m, respectively. The decrease of the surface hydrophilicity of microspheres facilitates their self-assembly on the water surface, which further leads to higher coverage and less defects of the 2D colloidal crystals. A coverage of as high as 97% was obtained using hydrophobic microspheres. Entropy and intersphere capillary forces drive the self-assembly and transportation of the microspheres, respectively. Caused by the diffraction of visible light, opposite contrasts at local adjacent regions on the surface of the 2D colloidal crystals have been observed. The understanding of self-assembly of the microspheres during the LB process paves the way to fabricate the high-quality 2D colloidal crystals for various applications such as photonic papers and inks, stealth materials, biomimetic coatings, and related nanostructures.
Collapse
Affiliation(s)
- Heping Wu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang Niu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Wei Ren
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Luyue Jiang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Owen Liang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jinyan Zhao
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Liu
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Lu S, Yang D, Wang M, Yan M, Qian Y, Zheng D, Qiu X. Pickering emulsions synergistic-stabilized by amphoteric lignin and SiO2 nanoparticles: Stability and pH-responsive mechanism. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Synthesis of amphiphilic V-type silica nanogels and study of their self-assembling at the air–water interface. Russ Chem Bull 2018. [DOI: 10.1007/s11172-018-2333-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Highly sensitive gas sensor using hierarchically self-assembled thin films of graphene oxide and gold nanoparticles. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv Colloid Interface Sci 2017; 246:217-274. [PMID: 28669390 DOI: 10.1016/j.cis.2017.04.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results.
Collapse
|
9
|
Zhang J, Li H, Li S, Hou X. Effects of metal ions with different valences on colloidal aggregation in low-concentration silica colloidal systems characterized by continuous online zeta potential analysis. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Kutzner S, Schaffer M, Börnick H, Licha T, Worch E. Sorption of the organic cation metoprolol on silica gel from its aqueous solution considering the competition of inorganic cations. WATER RESEARCH 2014; 54:273-283. [PMID: 24584001 DOI: 10.1016/j.watres.2014.01.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 06/03/2023]
Abstract
Systematic batch experiments with the organic monovalent cation metoprolol as sorbate and the synthetic material silica gel as sorbent were conducted with the aim of characterizing the sorption of organic cations onto charged surfaces. Sorption isotherms for metoprolol (>99% protonated in the tested pH of around 6) in competition with mono- and divalent inorganic cations (Na(+), NH4(+), Ca(2+), and Mg(2+)) were determined in order to assess their influence on cation exchange processes and to identify the role of further sorptive interactions. The obtained sorption isotherms could be described well by an exponential function (Freundlich isotherm model) with consistent exponents (about 0.8). In general, a decreasing sorption of metoprolol with increasing concentrations in inorganic cations was observed. Competing ions of the same valence showed similar effects. A significant sorption affinity of metoprolol with ion type dependent Freundlich coefficients KF,0.77 between 234.42 and 426.58 (L/kg)(0.77) could still be observed even at very high concentrations of competing inorganic cations. Additional column experiments confirm this behavior, which suggests the existence of further relevant interactions beside cation exchange. In subsequent batch experiments, the influence of mixtures with more than one competing ion and the effect of a reduced negative surface charge at a pH below the point of zero charge (pHPZC ≈ 2.5) were also investigated. Finally, the study demonstrates that cation exchange is the most relevant but not the sole mechanism for the sorption of metoprolol on silica gel.
Collapse
Affiliation(s)
- Susann Kutzner
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany(1).
| | - Mario Schaffer
- Geoscience Centre, Department of Applied Geology, University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany(2)
| | - Hilmar Börnick
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany(1)
| | - Tobias Licha
- Geoscience Centre, Department of Applied Geology, University of Göttingen, Goldschmidtstr. 3, 37077 Göttingen, Germany(2)
| | - Eckhard Worch
- Institute of Water Chemistry, Technische Universität Dresden, 01062 Dresden, Germany(1)
| |
Collapse
|
11
|
Xiang G, Long Y, He J, Xu B, Liu H, Wang X. Unusual enrichment and assembly of TiO2 nanocrystals at water/hydrophobic interfaces in a pure inorganic phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:617-623. [PMID: 24383492 DOI: 10.1021/la403736k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We report an unusual enrichment and assembly of TiO2 nanocrystals at water/hydrophobic interfaces through oxidative hydrolysis of TiCl3 in water. The assembly is a spontaneous process that involves on-water inorganic reaction and assembly in the absence of any organic phases. In this process, TiO2 nanoparticles are preferentially produced at water/hydrophobic interfaces. When the surface tension of the aqueous phase is above a critical value, ca. 25-35 mN m(-1), these TiO2 nanocrystals can spontaneously accumulate at water/air interfaces to produce macroscopic sized sheets and tubes.
Collapse
Affiliation(s)
- Guolei Xiang
- Department of Chemistry, Tsinghua University , Beijing 100084, China
| | | | | | | | | | | |
Collapse
|